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Abstract: We study the spontaneous emission rate of emitter in a 
periodically patterned metal or dielectric membrane in the picture of a 
multimode field of damped Bloch states. For Bloch states in dielectric 
structures, the approach fully describes the Purcell effect in photonic crystal 
or spatially coupled cavities with losses. For a metal membrane, the Purcell 
factor depends on resistive loss at the resonant frequency of surface 
plasmon polariton (SPP). Analysis of an InP-Au-InP structure indicates that 
the SPP’s Purcell effect can exceed a value of 50 in the ultraviolet. For a 
plasmonic crystal, we find a position-dependent Purcell enhancement with a 
mean value similar to the unpatterned membrane. 
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1. Introduction 

The surface plasmon polariton (SPP) is a collective motion of electrons in metal that confines 
electromagnetic modes to the vicinity of the metal-dielectric interface. The excitonic 
spontaneous emission (SE) rate into a SPP cavity mode is enhanced over the vacuum decay 

rate 0Γ  through its spatially confined photon energy density (PED), as described by the 
Purcell effect [1–6]. Due to the spatial and spectral distribution of PED, the SE enhancement 

rate of a cavity mode, called Purcell factor cav
F , is proportional to the ratio of the mode’s 

quality factor Q to its mode volume V [7]. Plasmonic cavities with large Q/V values are 
therefore of great interest in a wide range of applications. 

Even in the absence of a cavity, metallic structures can provide a large density of optical 
states, and hence a large SE rate enhancement. For instance, a large density of states occurs at 
the metal-dielectric interface, where a field-electron resonance leads to small group 

velocity g
v  [8] and a large enhancement in the radiative decay rate Γ [9–12]. The 

enhancement of Γ in the metal structure is given by F = Γ/nΓ
0
, ignoring non-radiative 

recombination, where nΓ
0
 is the SE rate in a bulk material with the index n. We refer to F as 

the Purcell enhancement factor [12]. F is the enhancement into all photonic states and is 

therefore distinguished from the cavity Purcell factor cav
F  for the radiation into a cavity 

mode. F is a measure of the Purcell effect at a quasi-infinite metal-dielectric interface, where a 
number of SPP modes are involved in the SE enhancement. 
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Several approaches have been taken to analyze F for an exciton coupled to a number of 
propagating waves in a quasi-infinite structure [13–19]. In one approach, the 1D-confined 
PED is evaluated in the picture of quantum electrodynamics (QED). In analogy to the single-
cavity mode volume V, the mode length L of a traveling SPP at a uniform metal-dielectric 
interface is considered as the normalized 1D-integral of the PED: 

L  = ])()(max[)()(
22

zdzz EE ωωεωωε ∂∂∂∂∫  (the length is calculated in the z-

direction, perpendicular to the interface) [6,12]. Evaluating L of an SPP mode with 
momentum k provides the SE rate enhancement into SPP modes with a specific k-regime, and 
numerically reveals the relation between the frequency-dependence of F and the SPP’s 
dispersion. However, in the QED picture the effect of the resistive loss on the SE into the 
propagating waves has not been clarified. The resistive loss strongly depends on the mode’s k 
value, which determines the mode’s overlap with the metal region and its group velocity 
[8,20–22]. The loss in the metal results in a spectral linewidth for a particular mode which has 
to be included in the F calculation. The total SE rate, Γ, is thus obtained by summing these SE 
spectra over all SPP and non-SPP modes. At the band edge of a periodic metal structure or at 
the SPP’s resonant frequency [8,9], the SE rate into a SPP mode is particularly strongly 
influenced because of a high density of photonic states (slow v

g
) [23,24]. Our analysis of SE 

in terms of k-states with absorption-dependent linewidth represents a simple and intuitive 
approach for designing SPP structures to control the excitonic radiation. 

In this paper, we study the Purcell enhancement factor F  for the exciton coupled to SPP 
modes both at a uniform and periodically patterned absorptive metal-dielectric interface (or 
periodically patterned lossy photonic crystal), as illustrated in Figs. 1(a) and 1(b). To 
investigate the effect of resistive loss in a periodically patterned metal surface (plasmonic 
crystal), we expand the emission rates over the damped plasmonic Bloch states with different 
in-plane momenta K and quantum numbers of dispersion branches j. These states indexed by 
K and j have different quality factors QK,j. Our analysis yields the SE enhancement spectrum 

dis
F  in reciprocal space, called the distributed Purcell factor, while the total spontaneous 

emission enhancement factor F is described as a sum of dis
F  over all photonic states. The 

values of dis
F  provide us with the Purcell enhancement ratio for the SE into a specific k-

mode, with resistive loss considered. Compared to the previous works, our approach reveals 
how the overlap of SE spectrum with the modes affects the total SE rate; this overlap has a 
crucial role in a slow-v

g
 regime. Hence, it is a useful tool to study SE enhancement in the 

structures, such as a patterned metal membrane or nanowire, arranged metal particles, and 
coupled cavities in lossy photonic crystal. 

 

Fig. 1. (a) A metal membrane with uniform metal-dielectric interfaces and the electrical field 
cross-section of a SPP mode. (b) A plasmonic crystal fabricated on top of a metal membrane. 
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Fig. 2. (a) SPP’s electromagnetic field with a momentum k at a uniform metal (z ≤ 0) -

dielectric (z > 0) boundary with an area l 2. z

kE  is an out-of-plane component of the electric 

field, and //

kE  and 
kH are in-plane components of the electric and magnetic fields. z

kE  and //

kE  

are parallel to z-direction and k, respectively. An emitter with an electric dipole µ lies at the 

distance of zA from the metal surface (positioned at z = 0). (b) Time-evolution of z

k
E  and //

k
E  

oscillating in the z-k plane. ek is a unit vector composed of the amplitudes of z

k
E  and //

k
E . 

2. Purcell enhancement at a uniform metal-dielectric interface 

Consider the geometry of Fig. 2(a) where an emitter with a frequency υ and an electric dipole 
µ lies in the dielectric medium of index n, a distance zA from the metal surface with an area l 

2
. 

An electromagnetic mode guided along the interface has an energy which decays as e
-αx

, 
where α is a decay constant and x is a distance traveled. In terms of its quality factor Q, the 
mode energy decays as e

-ωt /Q
, where ω is the mode frequency. By equating the last two 

expressions, we obtain Q = ω/αv
g
, where v

g
 is the group velocity of the wavepacket 

[22,25,26]. The electric field of SPP mode k can be represented as: 

 ( ) ( ) ( ) /2wp *
,  .

2

i t i t t QA
t e e e

ω ω ω− −∆
+∆ +∆∆

 ≈ + ∑ k k k kk
k k k k kk

E r f r f r  (1) 

Here, ( )rfk  is a normalized time-independent part of SPP’s electric field with a frequency ωk, 

and ( ) ( ) xk

kk urf ⋅= i
ez , where k and x are a SPP’s momentum and in-plane position vector on 

metal surface, respectively. In dispersive media, the electric field energy density is not εE
2
/2 

but [∂(εω)/∂ω]E
2
/2 [27]. Therefore, the normalization is represented as follows 

∫∫∫ ∂∂ ruk d
2
||/)( ωεω  = 1. If ωk is smaller enough than plasma frequency ωp with 

22
/1 ωωε p−= , ∂(εω)/∂ω ≈|ε| and then ( )rfkωεω ∂∂ /)( ≈ ( )rfk|| ε  is considered to be a 

normalized orthogonal field for the modes with different k’s (it should be noted that in general 

Eε of SPP is not necessarily precisely orthogonal for an arbitrary structure but 

approximately is, due to the frequency-dependence of ε in metal) [28]. In the microscopic 
picture, the field quantization in metal is required to analyze a motion of free-electron’s 
polarization P, and find orthogonal canonical conjugate variables, which generally relies on 
an effective Hamiltonian [29,30]. However, by taking the time-average of the field energy, the 

motion of P is included in an electric field energy density [∂(εω)/∂ω]E
2
/2 with a frequency-

dependent permittivity ε [27,31]. Hence, we start with the time-averaged field energy to find 
canonical conjugate operators. The Hamiltonian and results of the field quantization are 
summarized in Appendix I. 
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Ignoring non-radiative processes, the Purcell enhancement factor F is defined as a sum of the 

SE rate into SPP modes, 
sp
Γ , and into non-SPP modes, 

sp-nonΓ , normalized by 0Γn : 

0spnonsp /)( ΓΓ+Γ≡ −
nF . Here 0Γ  is a free space SE rate, 

3

0

320 3/ cℏπευµ=Γ  [2,7,32]. By 

adding the decay rates for individual k-states (which can be obtained from the solution to the 
Jaynes-Cummings Hamiltonian or Fermi’s golden rule, with the electric field shown in 

Appendix I [2,7,11,32]), we obtain the radiative decay rate 
spΓ  into SPP modes, normalized 

by 0Γn : 

 ( )
( )

( ) ( )
sp

2sp

0

2
 ,AF g z D

n n

π
υ υ

υ
Γ

≡ =
Γ Γ∑ k k0 k

  (2) 

where )( Azgk  is a coupling factor between a k-mode and the exciton; )cos()(0 ϑψ zgg =k  with 

( ) ])1[( 22

0 kk Llng Θ+= υµ ℏℏ , )(max)()( rErE kk=zψ , and µk ee ⋅=)cos(ϑ  where µe  is a 

unit vector parallel to the excitonic dipole, and ke  ≡ |)()(|)]()([ ** zzzz kkkk uuuu ++ , (see 

Fig. 2(b) for the geometry of ke ) [12,28]. The mode length Lk is defined by Lk ≡ 

]|)(|/)(max[|)(|/)( 22 rErE kk ωεωωεω ∂∂∂∂∫ dz , and )1/(1 kΘ+ describes the ratio of 

the electric field energy to the total field energy ( ≡Θk  ∫∫∫ ×∇ rf kk di
2

0 |)/(|)/1( ωµ , as 

derived in the Appendix I). The introduction of the )1/(1 kΘ+  term is critical in this case, and 

is the result of the electromagnetic field quantization, as the energy is not equally distributed 

between electric and magnetic field (as described in the Appendix I). )(υkD  in Eq. (2) is the 

Lorentzian function describing the density of optical states (DOS): 

 ( )
( ) ( )2 2

/ 21
 .

/ 2

Q
D

Q

ω
υ

π ω υ ω
=

− +
k k

k

k k k

  (3) 

To analyze the Purcell enhancement of state k, we introduce the distributed Purcell Factor, 

),(dis
kυF , defined as follows: 

 ( )
( )

( ) ( )
2dis

0

1 2
,  ,

Ax y
F g z D

k k n

π
υ υ

υ
≡
∆ ∆ Γ k k

k   (4) 

where 22 /)2( lkk
yx π≡∆∆ is the reciprocal-space area of one SPP mode. If the real-space area 

l
2
 is large enough that k can be considered continuous, then we can approximate Eq. (4): 

yx
kkFF ∂∂∂= )(),( sp2dis υυ k . In this form, the normalized SE rate into a small reciprocal-

space area ∆k is expressed as kk ∆),(
dis υF . From Eq. (4), the definition of gk , and the 

expression for 0Γ , ),(
dis

kυF  becomes: 

 ( ) ( ) ( ) ( )
3

2dis

3 2

3 1 1
,  ,

2 1

Ah zc
F D

n L
υ υ

υ
= ⋅

+ Θ
k

k µ k

k k

k e e   (5) 

where ( ) ]|)(|/)([max|)(| 222 rErE kkk ωεω ∂∂= nzh . eff

kL ≡ ])()([
2

µkkk ee ⋅⋅AzhL  is an 

effective mode volume for 1D-field confinement (effective mode length) [6]. 

Now we consider a uniform metal-dielectric interface. By integrating ),(dis
kυF  in polar 

coordinates k = (k cosφ, k sinφ, 0), we rewrite )(sp υF  = ∫ ∫
∞π

υϕ
2

0 0

dis  ),( kdkFd k  = dkkf∫
∞

0
),(υ , 

where 
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 ( ) ( ) ( )
3

3 2

 3 1
,  .

1

k A

k

k k

h zc
f k kD

n L

ςπ
υ υ

υ
= ⋅

+ Θ
  (6) 

The subscript k → k indicates the values independent of φ. The factor ς results from the 

angular dependence of the coupling strength and averaging of 
2)( µk ee ⋅  over φ 

with ) ,sin ,cos( //// z

kkk eee ϕϕ=ke : 2//
)(2/1 ke×=ς  when the dipole µ is parallel to the metal 

surface, and 2
)(

z

ke=ς  when µ is normal to it. 

 

Fig. 3. (a) Distributions of the SPP spontaneous emission enhancement spectrum i(υ,k) by 
classical electrodynamics analysis (left-side panel), following References [13–16] and by 
quantum electrodynamics analysis, f(υ,k) (right-side panel). The electric dipole lies normal to 

the Au surface at a distance of 10 nm from it. ωp and τp are set 1.21 × 1016 sec−1 and 1.05 × 

10−14 sec, respectively. (b) Spectra of f(υ,k) and i(υ,k) at k = 0.1 nm−1 along the dashed lines in 
Fig. 3(a), showing an excellent match between the two analyses. The ∆υk shows a spectral half-
width. (c) Distributions of i(υ,k) above the light line. The distances of µ from the Au surface 
are set to 200 nm and 400 nm. 

In Fig. 3 we compare the distributed spontaneous emission rate enhancement f(υ,k) for a 
dipole near a uniform metal-dielectric interface obtained using the approach we presented and 
the classical analysis, i(υ,k), (from the power radiated by a classical dipole in the modified and 
unmodified electromagnetic environment [13–16]). For the numerical calculation, we consider 
an exciton close to a uniform Au/InP interface: the dipole is normal to the Au surface (for 
example, conduction-to-light hole band transition in a quantum well lying beneath the 
membrane [10,26]), the InP has index n = 3.2, and Au has plasma frequency ωp = 1.21 × 10

16
 

sec
−1

 ( pc ωπ /2  = 156 nm) and plasma life-time τp = 1.05 × 10
−14

 sec (τp = 3.15 µm/c). A 

decay constant was evaluated by the imaginary part of propagation constant k ′′  of SPP: α 

≈ k ′′2 , while g

kv  and k ′′  are obtained by solving Maxwell’s equations under the condition 

|Re| Im pp εε <<  with )//(1 22

ppp i τωωωε +−≡ , as in Ref. [8]. The expressions for i(υ,k) for a 

uniform metal-dielectric boundary were also summarized by R. Chance et al. [16] and W. L. 
Barnes [13,14]. The resulting i(υ,k) and the f(υ,k) by Eq. (6) are plotted in Figs. 3(a) and 3(b). 
The area of i(υ,k) above the light line corresponds to SE into non-SPP modes. When the 
emitter is moved away from the metal surface, then i(υ,k) develops oscillations above the light 
line. This is evident in Fig. 3(c), which graphs i(υ,k) for emitter distances of 200 and 400 nm 
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above the metal surface. These oscillations in the emission rate are attributed to reflections 
from the Au surface [13–16,33]. Below the light line, which corresponds to the radiation into 

SPP modes, the spectral half-width kυ∆  of i(υ,k) is results from damp of SPP mode k with 

resistive loss at the dipole’s position. In the spectra plotted in Figs. 3(a) and 3(b), the spectral 
distributions f(υ,k) are closely identical to the Lorentzian spectra of i(υ,k) in the same k-range, 

0.02 nm
−1

 < k < 0.3 nm
−1

. 

 

Fig. 4. Purcell enhancement factors at various frequencies from quantum analysis - spF  (black 

lines) and classical analysis - spI  (red lines) for an exciton zA = 10 nm and 30 nm away from 

the Au/InP boundary, estimated by summing up f(υ,k) and i(υ,k) over k ≤ 0.3 nm−1, 
respectively. The values of f(υ,k) and i(υ,k) for zA = 10 nm are plotted in Fig. 3(a). Blue lines 

show the Purcell enhancement factor sp

ab-nonF  for non-absorbing media. The electric dipole lies 

normal to the Au surface. Non-SPP modes were ignored in the calculation of these plots. 

Figure 4 compares the classical and quantum mechanically derived SE enhancement, 

)(sp υI  and )(sp υF , respectively. These were obtained by summing i(υ,k) and f(υ,k) over all 

SPP states, i.e., over the k-states below the light line. We additionally plot the enhancement 

)(sp υabnonF −
 for non-absorbing media (τp → ∞). For the exciton lying 30 nm below the Au 

surface, these three estimates provide similar values. However, for a small exciton spacing of 

10 nm, )(sp υabnonF −
 gives a higher peak around 2/12 )1/( npp +≡ωυ , as absorption losses matter 

more for small dipole separation from the metal surface. The deviation of )(sp υabnonF −
 shows 

that it is crucial to include the spectral spreading due to resistive loss in the slow group 

velocity region. On the other hand, at sufficiently low frequencies (υ/c < 0.01 nm
−1

), the SPP 

dispersion approaches the light line, where the spectral spreading of )(υkD  is averaged in the 

integration over k and results in a Purcell modification that is nearly independent of resistive 
loss. 
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3. Purcell enhancement in a photonic or plasmonic crystal 

We will now consider 2D-plasmonic or photonic crystal structures. We take the same 
approach but note that the structure with a periodic permittivity ε(r) folds the dispersion 

diagram into the first Brillouin zone. The normalized electric fields of SPP modes )(, rfK j  in a 

2D-plasmonic crystal are represented as Bloch states [34]: 

 
, ,

( ) ( )  ,
i t i i t

j j
e e e
ω ω− ⋅ −= K x

K K
f r u r   (7) 

where )(, ruK j  with [ ]∫∫∫ ∂∂ 2

, ||/)( jd Kur ωεω  = 1 is a normalized Bloch function, and K 

denotes an in-plane wave vector in the first Brillouin zone. Since the number of unit cells in 
the xy-space (with dimensions l × l) is 

cell

2
/ Sl , where 

cellS  is the area taken by one unit cell, 

the mode volume jV ,K  for the (K, j)- mode is expressed as )/( cell

2 cell

,, SlVV jj KK =  where: 

 cell 2 2

,
unit cell

( ) / | | max ( ) / | |  .
j , j , j

V d εω ω εω ω ≡ ∂ ∂ ∂ ∂ ∫∫∫K K K
r u u   (8) 

The mode’s quality factor QK, j is defined by the ratio of the energy damping rate and stored 

energy of the mode: )( ,,,,,

⊥∆+∆= j

ab

jjjj WQ KKKKK ω  where 
jW ,K
, ab

j,K∆ , ⊥∆ j,K
, and 

j,Kω  are the 

stored energy, energy absorption rate in metal, out-of-plane leakage rate, and angular 

frequency of the mode. Replacing Vk, Qk and ∑k
 in Eqs. (2)-(6) with VK, j, QK, j and 

∑ ∑j K
, we obtain the Purcell enhancement factor )(cry υF  and distributed Purcell factor 

), ,(discry
jF Kυ−

 for the exciton at position rA in a periodic structure: 

 ( ) ( ) ( )cry cry-dis

,,  ,  ,
x y x y

jj j
F K K F j K K Oυ υ υ= ∆ ∆ + ∆ ∆∑ ∑ ∑ ∑ KK K

K   (9) 

 ( ) ( ) ( ) ( )
3

2
cry-dis cell

, ,3 2 cell

, ,

3 1 1
,  ,  ,

2 1
j A j j

j j

Sc
F j h D

n V
µυ υ

υ
= ⋅ ⋅

+ Θ K K K,

K K

K r e e   (10) 

where, 

 ( ) 2 2 2

, , ,| ( , ) | / max ( ) / | ( , ) |  .j A j A jh n υ εω ω υ = ∂ ∂ K K Kr u r u r   (11) 

In the above formulae, j,Ke ≡ ||)( *

,,

*

,, jjjj KKKK uuuu ++ , 
j,KΘ ≡ ∫∫∫ ×∇ 2

,,0 |)/(|)/1( jj id KKfr ωµ , 

and )(, υjDK
 is defined by Eq. (3) with kQ , kω  → jQ ,K , j,Kω . The second term in Eq. (9), 

shown by the summation of )(, υjOK , represents the emission into the modes that are not 

bound to the metal-dielectric interface. The emission into non-SPP modes or highly leaky SPP 
modes can be included in the second term. We only used the properties of 2D-Bloch functions 
to derive Eqs. (9)-(11). Therefore, these expressions are valid for any modes described as 2D-
Bloch states, no matter if the structure is a plasmonic or photonic crystal (PhC). For planar 
photonic crystals with negligible absorption, the Q-factor is defined by the radiation loss in 

the direction perpendicular to the PhC slab, i.e., jQ ,K → ⊥⊥ ∆≡ jjjj WQ ,,,, KKKK ω . In this case, 

⊥
jQ ,K  for the modes located under the light line approaches infinity, and the spectrum )(, υjDK  

is expressed by a Dirac’s δ-function [35,36]. 

3a Purcell enhancement in a coupled photonic crystal cavity array 

As the first example of the use of Eqs. (9)-(11), we will now analyze the Purcell effect for an 
exciton located in an array of coupled high-Q resonators embedded in photonic crystal 
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[37,38]. Figure 5(a) shows a 1D-array of resonators, described by the permittivity )(rε . The 

spacing of the resonators is large enough for a small mode overlap that results in weak, 
nearest-neighbor coupling. The resonators themselves consist of single defects in a 2D-

photonic crystal, given by )(0 rε  as shown in Fig. 5(b), and have resonant fields )(0
rE j

. The 

field of the array is then described as the superposition of the single-defect modes, )(, rE jK  = 

∑ −
m xj

imKR

jK mRetiA )()exp( 0

, erEω , where j denotes the mode of the single defect cavity, and 

xRe  and K  are a lattice vector and a mode’s momentum, respectively. The frequency of the 

1D array differs from the single defect resonance jΩ  due to the coupling as follows: 

)]cos(2/1[ 

, KR
j

jK καω ∆+∆−Ω=  where ∆κ = ( ) ( )∫ −−−− )]()(][[ 000

xjjxx RRRd erErEererr εε  is a 

coupling coefficient between the neighboring defect modes and ∆α = ∫ − 200 )]()][()([ rErrr jd εε  

[37]. Assuming that the overlap of the nearby resonators is weak enough that 

∫∫ <<− 200000
)]()[()()()( rErrerErErr jxjj dRd εε , and ( ) 2

,, )( jKAjKh eer ⋅⋅ µ  = 1, we obtain the 

Purcell enhancement factor shown for the modes of the branch j: 

 ( ) ( )
3

,3 2 cell

,

3 1
2  ,

4

j

K j

K K j

c R
F K D

n V
υ π υ

υ
= ∆ ∑   (12) 

where ∆K = 2π/l. To obtain Eq. (12) for PhC in dielectric media, )1/(1 kΘ+  is set equal to 1/2 

[28]. Equation (12) shows that the deviation of the frequencies ωK, j from jΩ  due to the 
interactions causes wider spectral spreading of F 

j
(υ) than the SE spectrum of a single 

resonator [38]. Taking the limit of R  → ∞, F 
j
(υ) will approach the Purcell factor for the 

single defect cavity shown in Fig. 5(b). Hence, in the weak coupling condition, F 
j
(υ) can be 

understood as a Purcell factor of a high-Q resonator which is affected by the energy exchange 
to the neighboring defects. 

 

Fig. 5. (a) 1D-array of high-Q resonators, composed of defects in 2D-photonic crystal with a 
periodic permittivity ε(r). The defects are aligned in x-direction with a lattice vector Rex. An 
exciton lies at the position rA in a defect. (b) A single defect in a 2D-photonic crystal with a 
permittivity ε 0(r). 

3b Purcell enhancement in a plasmonic crystal 

We also investigate the effect of periodic patterning on the Purcell effect in a gold membrane 
with hexagonally arranged dielectric holes, sandwiched by half-infinite InP layers, as shown 
in Fig. 6(a). (The Purcell enhancement in such a structure without any patterning is studied in 
the Appendix II). The thickness of the Au layer is 20 nm, and the periodicity of the crystal and 
radius of the InP holes are a = 450 nm and r/a = 0.2, respectively. We call this structure a 
“plasmonic crystal”. For simplicity, we considered only antisymmetric SPP modes around the 

Γ -point. These modes are particularly interesting in plasmonic devices because of low 
resistive losses and vertical emission from the metal surface (The effect of resistive losses on 
the Purcell effect in an unpatterned InP/Au/InP structure is summarized in Appendix II). 
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Figure 6(b) shows the dispersion diagram for antisymmetric modes around the Γ -point, 
obtained by a Finite Difference Time Domain (FDTD) simulation. The dispersion of the 
antisymmetric modes in the unpatterned InP/Au/InP structure is shown in the dashed lines, 
which are folded into the first Brillouin zone of the hexagonal lattice [7]. The plasmonic 
crystal dispersion is represented by the dots, which was verified to match the dashed line in 
the limit of vanishing hole radii. Figure 7(a) shows the components of the electrical field 
belonging to the lower and upper edges of the plasmonic band gap [39]. The lower and upper 
bands both consist of three orthogonal modes (a monopole and two dipoles), and their field 
maxima are located beneath the Au layer and the dielectric holes, respectively. The electric 
field at the lower band (metal band) is confined out-of-plane, but the fields in the upper band 
(dielectric band) have large leakage losses. The Q-factors at the Γ -point are 96 for the 
monopole and 80 for the dipoles in the metal band, and less than 10 in the dielectric band. The 
Q-factors of the metal band are close to the one for an unpatterned structure: Qk|k = G = 98 with 

G = a3/4π . 

In the studied structure, only SPP modes around the Γ -point are strongly affected by the 
periodical patterning, because of weak scattering by the holes in a thin metal membrane; the 
modes far from the Γ-point are not affected significantly relative to unpatterned structure. We 
here investigate the change of SE rate of coupling to the modes around the Γ -point, which is 
observable as the vertical emission from the membrane. From the field patterns shown in Fig. 

7(a), we estimate the values of cell

cell

, / SV jK  for the monopole and dipole components in the 

metal band at Γ-point to be 56 nm and 65 nm, respectively. On the other hand, for the modes 

belonging to the dielectric band, the values of cell

cell

, / SV jK  could not be accurately evaluated 

because of their large leakage loss. This indicates that the coupling strength into the dielectric 
bands is much weaker than that into the metal band around the Γ -point. Hence, although the 
field components shown in Fig. 7(a) overlap with the whole surface of the membrane (both on 
the metal and dielectric holes), the difference of the field confinements in the metal and 
dielectric bands produces the position-dependence of SPP’s coupling strength for the 
observable vertical emission [40]. 

To estimate the effect of the patterning on the Purcell enhancement, we compare the sum 
of the density of optical states in the periodic plasmonic crystal ∑ ∑j jD

K K )(, υ  relative to an 

unpatterned structure (the structure in the limit of vanishing hole radii, studied in the 

Appendix II) around Γ-point (K ≤ 0.0005 nm
−1

). We ignored dielectric bands because of their 
weaker coupling strengths at Γ-point. This comparison is shown in Fig. 7(b). It indicates that 
the change of the density of states is small around Γ-point, and thus the enhancement at the 
band edge is not visible because of large spectral width (induced by losses) and a small region 

of v
g
 ≈0. Therefore, in the studied frequency range, the development of the low group velocity 

regions in the plasmonic crystal is not leading to an enhancement in the spontaneous emission 
rate relative to an unpatterned metal-dielectric structure. However, we should point out that 
patterning can certainly help in improving the light extraction from the structure, so the 
collected emission at the output can be larger. 

It should be noted that for a structure with strong patterning induced perturbation such as 
holes engraved in both metal and dielectric layers, a wide band gap and a wider small-v

g
 

region can appear in a dispersion diagram. In this case, it is required to consider all SPP 
modes in an interested frequency range, following the formulae in Eqs. (9) and (10). 
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Fig. 6. (a) The plasmonic crystal consists of hexagonally arranged InP-filled holes in the Au 
membrane. The thickness of the Au layer is 20 nm, and the periodicity of the crystal a and 
radius r of the InP holes are determined by a = 450 nm and r/a = 0.2. (b) Dispersion diagrams 
of antisymmetric modes in the plasmonic crystal, obtained by FDTD simulation (dots). Dashed 
lines show the dispersion branches of the unpatterned InP/Au/InP structure. 

 

Fig. 7. (a) Field patterns on surface of Au layer in the plasmonic crystal, belonging to the upper 
edge (top figures) and the lower edge (bottom figures) of the plasmonic band gap shown in Fig. 
6(b), obtained by FDTD simulation. The field of each band edge consists of three orthogonal 
modes (monopoles in the left figures and dipoles in the right figures). At the band edge, three 
dispersion branches overlap so close that their eigen-modes could not be separated by our 

FDTD simulation. (b) The sum of the density of photonic states ∑ ∑j jD
K K )(, υ  for the 

plasmonic crystal (red line) and unpatterned structure (black line). For computation, we take 

the summation over the region K ≤ 0.0005 nm−1, considering the degeneracy of each branch. 
The Q-factor for the plasmonic crystal and unpatterned structure equals 96 and 98 by FDTD 
simulation, respectively. In the estimation, the upper branches were ignored because of the 
large leakage loss. 

4. Conclusion 

We evaluated the full Purcell enhancement factor F(υ) by summing contributions to the 
spontaneous emission rate enhancement f(υ,k) over various points of the photonic/plasmonic 
band diagram k. F(υ) for a uniform metal layer has large resistive loss-dependence at the SPP 

resonant frequency of 2/12 )1/( npp +=ωυ , where ωp is the metal’s plasma frequency. Around 

the frequencies where the group velocity v
g
 vanishes, it is essential to consider resistive loss. 

Otherwise, the width of the photon energy spectrum is neglected and F(υ) overestimated. A 
large Purcell enhancement in the slow-v

g
 regime is therefore achievable only in extremely 

low-resistive metal (i.e., a metal with less defect and surface-roughness at low temperature). 
On the other hand, the Purcell enhancement in the infrared due to the exciton-SPP coupling is 
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almost independent of resistive loss because the spectral width is greatly diminished in 
summing f(υ,k) over k. Hence, the approximation of non-absorbing media reliably estimates 
F(υ) in the infrared. 

For 2D-periodic structures, our approach links F(υ) to Bloch states and )(cav υF  for a 

single unit cell (or single cavity inside of the cavity array). The Purcell enhancement for 
antisymmetric SPP in a Au membrane with a plasmonic crystal shows that the position-
dependence of the Purcell enhancement depends on the leakage loss of the SPP and its field 
redistribution. In a hexagonal plasmonic crystal, large leakage loss of the dielectric (upper) 
band weakens the SPP’s coupling of the emitters beneath the dielectric holes, while the 
emitters beneath the metal region strongly radiate into SPP. This result agrees with our 
experimental observation of the Purcell effect for wave-guided antisymmetric SPP modes 
[40]. Although the precise form of the dispersion and field patterns is required to estimate the 
total Purcell enhancement factor, our approach enables an analysis of the Purcell effect in 
plasmonic crystals with respect to SE spectra, as opposed to CED analyses relying on the total 
power dissipation. In this work, we focused on plasmonic crystals, but our approach is also 
applicable to emitters coupled to nanowires, in which traveling waves are two-dimensionally 
confined [41]. The theoretical platform discussed in this paper is a useful tool to fully describe 
the Purcell effects in photonic and plasmonic crystals, and spatially coupled cavities. 

Appendix I: EM field quantization 

The electromagnetic field of a mode with a particular k-vector can be described as follows 
[28]: 

 ( ) ( ) ( )1
, . .   ,

2
kt D t c cη= +  E r f r   (13) 

 ( ) ( ) ( )
0

1 1
, . .  ,

2
k

k

D
t t c cχ

µ ω
 

= ∇× + 
 

H r f r   (14) 

and 

 ( ) ( ) ( )  ,t q t ip tη = +   (15a) 

 ( ) ( ) ( )  ,t p t iq tχ = −   (15b) 

where q(t) ≡ cos(ωk t) and p(t) ≡ −sin(ωk t) describe time-varying (oscillating) parts, µ0 is the 

magnetic permeability of free space, and D is a constant. As described previously, )(rfk  is a 

normalized time-independent part of electric field: xkurf ⋅= i

kk ez)()(  with 

∫∫∫ ∂∂ ru dk

2||/)( ωεω  = 1. The total energy can then be expressed as [27]: 

 0

1
( ) / ( , ) ( , )

2
W t t dεω ω µ = ∂ ∂ + ∫∫∫ 2 2

E r H r r  

 ( ) ( ) ( )2 2 2 2 2 2 2 2 211 1 1
 ,

4 4 2 2

k
kD p q D p q D p q

+Θ
= + + Θ + = +   (16) 

where and )1/(1 kΘ+ describes the ratio of the electric field energy to the total field energy 

( kΘ ≡ ∫∫∫ ×∇ rf di kk

2

0 |)/(|)/1( ωµ ). The choice of )1/(2 kkiD Θ+−= ω  leads to satisfying of 

the Hamilton's equations: 

  ,
k

W
q p

q
ω

∂
− = − =
∂

ɺ   (17a) 
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  .
k

W
p q

p
ω

∂
− = =
∂

ɺ   (17b) 

Then the mode can be represented as a harmonic oscillator and the quantized Hamiltonian and 
electromagnetic fields are: 
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 ,
2

k
H a aω + = + 

 
ℏ   (18) 

 ( ) ( ), . . ,
1

k
k

k

t i a H C
ω

= +
+Θ

E r f r
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  (19) 
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( )

( )
0

1
, . . .

1
k

k k

t a H C
ω µ

= ∇× +
+Θ

H r f r
ℏ

  (20) 

The Fig. 8 below shows the )1/(1 kΘ+  and contributions of the perpendicular and parallel 

electric field and magnetic field components to total energy for SPP's at Au/InP interface. 

 

Fig. 8. Values of )1/(1 kΘ+ , WWEz / , WWE ///
, and WWH /  plotted for different k’s for a 

SPP mode at Au/InP interface, where 
//EW ≡ ∫∫∫ ∂∂ rE dk

2// ||/)(
2

1
ωωε , 

EzW ≡ 

rE
z

dk∫∫∫ ∂∂ 2||/)(
2

1
ωωε , 

H
W ≡ ∫∫∫ rH dk

2

0 ||
2

1
µ , and W is a k-mode’s total field energy. 

The lines show the values estimated by analytically solving Maxwell’s equations [21], and the 
marks by FDTD. The index and plasma frequency at Au/InP interface are set n = 3.2, and 

pc ωπ /2  = 156 nm, respectively. 

Appendix II: Purcell enhancement in a uniform semiconductor-metal-semiconductor 
structure 

We consider the Purcell enhancement in a semiconductor-metal-semiconductor structure 
following the classical analyses by R. Chance et al. [16] and W. L. Barnes [13,14]. 

The structure is shown in Fig. 9(a) and consists of a 10 nm thick Au membrane 
sandwiched by InP. In this structure, the dispersion diagram of SPP is split into symmetric and 
antisymmetric modes [8,20,21], whose electric fields parallel to Au surface are shown in the 
bottom of Fig. 9(a). The antisymmetric modes have less resistive loss than symmetric modes 
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because of their smaller overlap with a metal membrane. The dissipation spectrum ),( ki layer υ  

for this structure has been derived by R. Chance et al. [16], and is graphed in Figures 9(b) and 

9(c) for an exciton 10 nm from Au surface. In these plots, the ),( ki layer υ  below the light line 

is expressed as the sum of two Lorentzian spectra, which correspond to SE into symmetric 

and antisymmetric modes, respectively: ),( ki layer υ  = ),(),( kiki antisym υυ + . Figure 10(a) 

shows the Q-factor kk υυ ∆/0
 for the symmetric and antisymmetric modes at room temperature 

(RT) (τp = 1.05×10
−14

 sec) and 77 K (τp = 3.27×10
−14

 sec), estimated by fitting ),( ki layer υ  with 

Lorentzian spectra. The values of g

kvk ′′2/υ  for the antisymmetric modes, analytically 

evaluated as in Reference [8], are also plotted in Fig. 10(a) (blue circles) and in close 

agreement with the corresponding kk υυ ∆/0
. As expected, the values of kk υυ ∆/0

 for the 

antisymmetric modes are larger than those for symmetric modes, due to less absorption in the 

Au membrane. Fig. 10(b) shows the sums of the dissipation spectra, ∑≡ k

symsym kiI ),()( υυ  and 

∑≡ k

antianti kiI ),()( υυ . According to the comparison between QED and CED analyses, which 

are made in Section 2 for a single metal-dielectric boundary, )(υsymI  and )(υantiI  are 

considered to be the enhanced SE rate into symmetric and antisymmetric modes, normalized 

by nΓ
0
, respectively. Comparing )(υantiI  shown in Fig. 10(b) with ),( ki

anti υ  shown in Fig. 

9(b), it is evident that the small-
gv  regime of the antisymmetric mode’s dispersion diagram 

results in a peak in )(υanti
I  at 0== vυυ , where a large number of ),( ki

anti υ  overlap at the same 

frequency. As for a single metal-dielectric boundary, a high susceptibility to resistive loss is 

observed in the slow group velocity region at 0== vυυ . 

 

Fig. 9. (a) An InP/Au/InP structure with an electric dipole lying on the dielectric side (top), and 
electric field components parallel to the Au surface of an antisymmetric and symmetric modes 
(bottom). The Au membrane is 10 nm thick. The electric dipole lies normal to the Au surface at 

a distance of 10 nm apart from it. (b) The distribution of ),( ki
layer υ  estimated for the structure 

shown in Fig. 9(a). The 
0=vυ is a frequency with 0=g

v  for the antisymmetric modes, and 

2/12 )1/( npp +≡ωυ . (c) Dissipation spectrum ),( ki
layer υ  at k = 0.1 nm−1 along the dashed line 

in Fig. 9(b). The ),( ki
layer υ  below the light line is expressed by the sum of two Lorentzian 

spectra, ),( ki
layer υ  = ),( ki

anti υ  + ),( ki
sym υ , corresponding to SE into the antisymmetric 

and symmetric modes. The ∆υk is a half-width of the spectrum. 
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Fig. 10. (a) Quality factor 
kk υυ ∆/0

 of symmetric and antisymmetric modes plotted with 

different k’s, estimated by fitting ),( ki
layer υ  at RT (shown in Fig. 9(c)) and 77 K with 

Lorentzian spectra. The τp is set 1.05 × 10−14 sec at RT and 3.72 × 10−14 sec at 77 K, 

respectively, and ωp = 1.21 × 1016 sec−1. The circles show the quality factors, estimated by 
g

vk ′′2/υ  for antisymmetric modes at RT [8]. (b) Purcell enhancements for the symmetric and 

anti-symmetric mode, 
sym

I  and 
anti

I , at RT and 77 K, estimated by summing up 
sym

i  and 

anti
i  shown in Figs. 9(b) and 9(c) over k ≤ 0.3 nm−1, respectively. 

Acknowledgements 

This work has been supported by Canon Inc. and the IFC. 

#128920 - $15.00 USD Received 24 May 2010; revised 3 Jul 2010; accepted 4 Jul 2010; published 22 Jul 2010
(C) 2010 OSA 2 August 2010 / Vol. 18,  No. 16 / OPTICS EXPRESS  16560




