l
CHAPTER 7’-\

Modeling Cognitive Processes:
The Interactive Activation Model

In this chapter our goal is to consider the application of PDP modeling
techniques to the task of accounting for human cognitive processes, as
revealed through psychological experimentation. As our example for this,
we’ve chosen the interactive activation model of word perception (McClel-
land & Rumelhart, 1981; Rumelhart & McClelland, 1982). This model
exemplifies our approach to modeling psychological processes, and it is of
tractable size for running on smaller machines.

BACKGROUND

Our initial interest in parallel distributed processing mechanisms grew out
of an attempt to capture our ideas about continuous, interactive processes,
particularly as they applied to the problems of visual word recognition and
reading. Both of us had already done both experimental and theoretical
work in this area, but without the benefit of simulations (see McClelland
1976, 1979; Rumelhart, 1977, Rumelhart & Siple, 1974).

Our primary aim was to account for contextual influences on perception.
These influences have been described since psychologists first began to
present visual or auditory stimuli under controlled conditions (Bagley,
1900; Cattell, 1886). Among the early observations was the fact that sub-
jects could identify far more letters from a single brief flash if the letters fit
together to form a word than if the letters made a random string. Context
could override the sensory input too, as in the cases where subjects

g

204 BACKGROUND

reported the strong impression that they saw all the letters in the word
FOREVER when in fact FOYEVER was shown (Pillsbury, 1897).

In early studies the experimenter relied on what is generally called a free
report of the contents of the briefly displayed stimulus, and many research-
ers pointed out that there were serious methodological problems with this.
It has often been pointed out that subjects might see as much in the two
cases, but forget less or correctly guess more when the stimuli form words.

An experiment that controlled for both guessing and forgetting at once
was carried out by Reicher (1969) and followed up by a number of investi-
gators, including Wheeler (1970), Johnston and McClelland (1973, 1974,
1980; Johnston, 1978; McClelland & Johnston, 1977), and several others
(Baron & Thurston, 1973; Manelis, 1974; Massaro, 1973; Massaro &
Klitzke, 1979; Spoehr & Smith, 1975).

In Reicher’s experiments, a target was presented (e.g., E) either in a
word (e.g., READ), in a scrambled letter string (e.g., AEDR), or in isola-
tion. The presentation was followed by a masking stimulus, which con-
sisted of a jumbled array of letter parts, and a pair of letters, which was
keyed to the position occupied by the target letter. One of the letters was
the target letter itself, and the other was another letter that fit the context
(if any) to make an item of the same type. For the displays READ, AEDR,
and E in isolation, the pair could be E and O, presented with a row of
dashes to indicate which display location was being tested: :

E

)

The subject’s task was to choose which of the two letters had appeared in
the indicated position. The target could appear in any of the four positions,
and subjects did not know in advance which position would be tested on a
given trial.

Reicher’s test is called the forced choice test. Using this test, he found that
subjects were more accurate when the letters occurred in words than in
either of the other two conditions. This finding is called the word superiority
effect.

Reicher’s finding is important because it indicates that the advantage for
words is not simply a matter of guessing letters that fit the context better
from fragmentary cues. Rather, it appears that the perceptual system is
better able to use the information in the display when the letters form a
word with their context. The fact that the advantage holds for words over
single letters makes it difficult to view the phenomenon as a result simply
of forgetting, since a single letter surely places a very light load on memory.

Reicher’s findings, backed up by a large literature of further experimen-
tal tests, seemed to us to be a very clear demonstration that context plays a
role in perception. We therefore set out to model this phenomenon, basing
our approach on a number of basic assumptions.

7. MODELING COGNITIVE PROCESSES 205

Basic Assumptions of the Interactive Activation Model

Here we describe each of the basic tenets of the interactive activation
model and explain why we adopted each one.

Perception occurs in a multilevel processing system. This assumption is
nearly ubiquitous, and so we will give it little discussion; surely there are
separate levels of representation for visual features, for words, and for
larger wholes such as sentences. For our model of the processing of indi-
vidual words or strings of letters, we assumed that there are at least three
levels: a visual feature level, a letter level, and a word level.

Deeper levels of processing are accessed via intermediate levels. This
assumption has often seemed contentious, particularly with respect to visual
word recognition. We have assumed that a letter level is interposed
between the feature and the word level because words appear to be defined,
not in terms of their particular visual configurations, but in terms of the
sequences of letters that they contain. Thus READ, read, and reap are all
recognizable as words, and letters in such stimuli are all perceived better
than letters in unrelated context (e.g., the E in reap is perceived better than
the E in ardr; cf. Adams, 1979; McClelland, 1976). Thus it would appear
that readers can use their knowledge of words to perceive sequences of
letters, even if the visual configuration of the input is highly novel.

If, as we assume, access to the word level is via the letter level, then
sequences of letters should be more effective as masks for words than
sequences of feature bundles that do not form letters. This prediction was
confirmed by Johnston and McClelland (1980).

Processing is interactive. By this we mean that processing involves the
simultaneous consideration of both bottom-up input information and top-
down knowledge-based constraints. Our principle reason for this belief was
the well-known and ubiquitous role of contextual factors in perceptual pro-
cessing already alluded to above. We take the role of word context in letter
perception as one example of this kind of interactive processing. Models
that captured the outcome of the simultaneous consideration of bottom-up
and top-down information had been developed by others (particularly
Morton, 1969), but we wished to embody this assumption in a dynamic
processing model.

Information flow is continuous. At the time we began to consider
interactive processing, the predominant view among psychologists working
in perceptual information processing was that information processing
occurred through a sequence of discrete steps. FEach step took a certain
amount of time and resulted in a discrete output. However, alternatives to

206 BACKGROUND

this view were developed during the course of the 1970s (cf. McClelland,
1979; Norman & Bobrow, 1976; Turvey, 1973). In fact, the utility of con-
tinuous information flow was pointed out quite early in the pandemonium
model of Selfridge (1955), an early Al model designed to account for the
role of context in letter recognition. For us, the assumption of continuity
seemed to be required in order to capture contextual influences in word
recognition (McClelland, 1976; Rumelhart, 1977). The reason is that if the
word level is to influence processing at the letter level, then the letter level
must be making information available to the word level before processing at
the letter level is complete.

PDP models as a way of capturing these basic assumptions. We turned
to PDP models because they provided a simple and direct way of making
our basic assumptions about continuous, interactive processing explicit in a
computational model. By assuming a processing unit for each possible
hypothesis about the input at each of the three levels of processing, by
allowing each unit to be working continually, updating its own activation
and sending activation to other units, and by allowing units to influence
each other via simple excitatory and inhibitory interactions, we found we
were able to capture our basic assumptions in a simulation model and
explore how well these assumptions could account for contextual influences
in letter perception.

Central Questions

In developing the interactive activation model, there were several basic
questions:

® Could we make a PDP embodiment of our basic assumptions
account for the basic fact that word context facilitates letter percep-
tion, as established by Reicher and others?

® Could we account for the fact that subjects perceive letters in pro-
nounceable nonwords {(e.g., REAT) more accurately than letters in
random or scrambled strings and, under some conditions, more
accurately than single letters (Johnston & McClelland, 1973;
Wheeler, 1970)?

® Could we apply the model to the large body of existing data and
show that we could really account for the existing findings? The
most important facts we considered were these: (a) The perceptual
advantage for letters in words is shared with pronounceable non-
words; that is, letters in words and in pronounceable nonwords

7. MODELING COGNITIVE PROCESSES 207

show a sizeable advantage over single letters or letters in random
strings. (b) Within pronounceable words and nonwords, there is no
consistent advantage for strings containing frequent letter clusters
(e.g., PEEP or TEEP) compared to those containing much less fre-
quent letter clusters (e.g., POET or HOET). Though apparent
letter-cluster effects are found in some studies (see Rumelhart &
McClelland, 1982, Experiment 9), other studies did not show these
effects (McClelland & Johnston, 1977). Our hope was to account
for both patterns of results, based on detailed aspects of the partic-
ular materials used in different experiments. (c) For letters in
words, under the visual conditions in which Reicher’s word
superiority effect was obtained, there is no advantage for letters
occurring in contexts that strongly constrain the identity of the
letter (e.g., the C in CLUE: only three letters make words in the
context _LUE) compared to letters in context that exert much
weaker constraints (e.g., the C in CAKE, 10 letters make words in
the context AKE, Johnston, 1978). Again, however, such effects
do occur in other studies. Our hope was to use the model to
understand and account for these differences.

® Could we account for a set of new findings from our own labora-
tory? These findings were based on the use of a new technique for
visual presentation, in which the letters in a four-letter string could
be started and ended at different times. We found (as reported in
Rumelhart & McClelland, 1982) that subjects perceived a particular
letter better when the other letters with which it occurred were
presented for a longer time. This was true both when the letter
formed a word with the context and when it formed a pronounce-
able nonword with the context, but not when the letter was embed-
ded in a random-letter string.

The approach that we took in trying to answer these questions was to begin
by trying to develop a model that produced the basic perceptual facilitation
advantage for letters in words when compared to letters in nonword strings;
this turned out to be one of the hardest parts of the project. We tried a
number of variants on the basic activation equation, as well as a wide range
of different parameter values before we developed enough understanding
for what we were doing to find a combination of assumptions that worked.
Once we accomplished this, we began to consider the list of phenomena we
wanted to account for, working our way more or less down the list just
given. Our goal was to find a single formulation, together with a single set
of parameter values, that would allow us to give a fairly close account of
the findings discussed earlier.

Two further aspects of our approach are worth mentioning. First, we
endeavored to keep the model as simple as possible, within the constraint
that we preserved sufficient structure to capture our basic assumptions. For

208 THE INTERACTIVE ACTIVATION MODEL

example, we used a highly simplified representation of the visual forms of
letters, and we assumed that each letter in a visual display came rigidly
channeled into one of four letter positions. Second, we did not attempt to
obtain detailed quantitative fits of the model to the results of particular
experiments. Rather, we attempted to come as close as we could to pro-
ducing results that captured the major qualitative features of the
phenomena.

We do not mean to suggest that detailed quantitative fits are not
appropriate in many cases. Rather, we want to suggest that in this and
many other cases, detailed quantitative fits may require very detailed and
specific assumptions (for example, about the confusability of particular
pairs of letters) that fall outside of the basic assumptions that are at issue.
Attention to such assumptions may in certain instances interfere with the
search for understanding of the basic principles that transcend such details.
Under these circumstances, a simplified model may yield a more satisfying
explanatory account, even when it is known to be wrong in some details, if
it provides an explanation for the qualitative patterns observed in the
empirical phenomena. (More discussion of this point may be found in
Sejnowski’s discussion of the role of computational models in PDP:21,
pp. 387-389.)

We were also concerned with making sure we understood exactly what
was going on in the model that allowed it to account for the phenomena.
To this end, we spent a great deal of time studying the processing of indi-
vidual examples so that the details of what was happening in the simula-
tions would be clear. This kind of detailed study of individual items will be
the focus of this chapter. In assessing the model, we supplemented this in-
dividual example approach by running large simulations with lists of items
taken from the original experiments we were trying to understand. We
omit these kinds of simulations here, although they played a central role in
evaluating how well the model could account for the facts reported in par-
ticular experiments.

When we felt we had been reasonably successful in accounting for the
phenomena that we wanted to account for, we began to consider whether
there might not be additional experiments that we might do to test the prin-
ciples underlying the approach. We were able to come up with one such
experiment (Rumelhart & McClelland, 1982, Experiment 10). It will be
described in more detail in one of the exercises.

THE INTERACTIVE ACTIVATION MODEL

In this section we describe the essential features of the interactive activa-
tion (IA) model. Some additional details may be found in McClelland and
Rumethart (1981).

7. MODELING COGNITIVE PROCESSES 209

Network Architecture

The model consists of units at each of three processing levels: the
feature level, the letter level, and the word level (see Figure 1). At the
feature level, there is a set of units that serves to detect features in each of
four letter positions. Within each set, there is a unit for the presence of
each of the line segments in the simple font used by Rumelhart and Siple
(1974) (shown in Figure 2) and another unit for the absence of each such
line segment. These units are said to be detectors for the different values
(present, absent) of each of the possible line-segment features. This
assumption allows the model to distinguish between not knowing whether a
line segment is present (both units off) and knowing that a segment is not
present (the absence unit on and the presence unit off). At the letter level,
there are four sets of letter units, one for each position. Each set contains
a unit for each of the 26 letters of the English alphabet. At the word level,
there is a single set of detectors for each word in a list of 1179 four-letter
words taken from the word list of Kucera and Francis (1967). The set

WORD
LEVEL

LETTER
LEVEL

FEATURE
LEVEL

VISUAL INPUT

FIGURE 1. The basic architecture of the interactive activation model. (From "An Interactive
Activation Model of Context Effects in Letter Perception: Part 1. An Account of Basic Find-
ings" by J. L. McClelland and D. E. Rumelhart, 1981, Psychological Review, 88, 375-407.
Copyright 1981 by the American Psychological Association. Reprinted by permission.)

210 THE INTERACTIVE ACTIVATION MODEL

FIGURE 2. The Rumelhart-Siple letter fornt usé?i By the interactive activation model. (From
"Process of Recognizing Tachistoscopically Presented Words” by D. E. Rumelhart and P. Siple,

1974, Psychological Review, 81, 99-118. Copyright 1974 by the American Psychological Associ-
ation. Reprinted by permission.)

includes all the words with frequencies of two or more per million, exclud-
ing proper names, contractions, abbreviations, and foreign words that crept
into the count. '

Each unit can be taken as representing the hypothesis that the entity it
stands for—feature, letter, or word—is present in the input. The activa-
tions of the units are monotonically related to the strengths of these
hypotheses, according to a function that will be described later.

Connections

The connections among the units are intended to encode the mutual con-
straints among hypotheses about the possible contents of a four-letter
display. The overall framework allows excitatory connections between units
on different levels that are mutually consistent and allows inhibitory con-
nections between units on different levels that are mutually inconsistent.
For example, T in the first letter position is mutually consistent with all
words beginning with T these units therefore have mutually excitatory con-
nections. To simplify matters, some of these connections are left out of
the model: First, there are no feedback connections that are inhibitory.
Second, there is no feedback at all from the letter level to the feature level.
This leaves the following sets of between-level connections:

® Feature-to-letter excitation. Feature units have excitatory connec-
tions to all the letter units in the same spatial position that contain
the feature. Thus, the presence unit for a horizontal bar at the top

7. MODELING COGNITIVE PROCESSES 211

of a letter position is connected to all the letters in this same posi-
tion that have this feature.

® Feature-to-letter inhibition. Feature units have inhibitory connec-
tions to all of the letter units in the same spatial position that do
not contain the feature. Thus each feature unit, when active,
excites some of the letters and inhibits all the others.

® [Letter-to-word excitation. Each letter unit has excitatory connections
to each of the units standing for a word that contains the letter in
the appropriate position. Thus the unit for T in the first position
excites TAKE but not CART.

® [Letter-to-word inhibition. Each letter unit has inhibitory connections
to each of the units standing for a word that does not contain the
letter in the appropriate position. Thus the unit for T in the first
position inhibits all words that do not begin with 7T, including
CART, STOP, and so on.

® Word-to-letter excitation. Each word unit has excitatory connections
to the units for all of the letters in the word. Thus, there is an
excitatory connection from TAKE to T in the first position, to 4 in
the second, and so on.

In addition to these between-level connections, there are also within-level
connections. These are exclusively inhibitory and are used to implement
competition among mutually exclusive interpretations of the same portion
of the input. All of the units for letters in the same spatial position are
mutually inhibitory; and at the word level, all of the word units are mutu-
ally inhibitory.

The Concept of a Trial

In the IA model, we simulate trials from psychological experiments. A
trial consists of a sequence of fields presented one after the other for pro-
cessing. Before the trial, network activations are reset to baseline levels,
and the cycle number is set to 0. The first field is presented at the begin-
ning of cycle 1, followed by the second field, if any, at some later time, and
so on. The last field is assumed to stay on until after a response occurs.
Note that it is possible to present a field of blanks, if this is desired.

During processing, interactive activation processes govern the activations
of units in the network. In addition, a readout process is assumed to be
operating concurrently with the processing activity itself. The results of this
readout process are assumed to be available for overt report.

212 THE INTERACTIVE ACTIVATION MODEL

After the processing of the sequence of fields has gone on for some
chosen number of cycles, there may be a two-alternative forced-choice test
of the kind used by Reicher and others; that is, the model may be con-
fronted with a position cue and two letters, with the task of indicating
which had actually occurred in the corresponding letter position.

Input to the Model

The inputs to the model—the contents of the fields presented during the
processing trials—consist of specifications of which feature-level units
should be turned on. This turning on may be deterministic (i.e., all
features specified may be turned on) or it may be stochastic (specified
features may be "detected" by the model with some probability). This
probability can vary from field to field to allow for the possibility that the
display is more or less legible in different cases.

Processing in the Model

Processing in the model occurs via the interactive activation and competi-
tion mechanisms discussed in Chapter 2. For simplicity, however, the
feature units are treated as binary. Each feature unit is turned on or off by
external input, and none of the feature units receive any input from any
other units.

Letter and word units are activated according to the IAC equations given
in Chapter 2. We show them again here for convenience. The net input to
each unit is given by

net; = Lw;0;. “ (D
J

Recall that o;, the output of unit j, is equal to the extent to which the

activation of the unit exceeds its threshold (aj—-tj), or 0if a;<¢t;. The

net input acts as a force that drives the activation of the unit upward if the

net input is excitatory and downward if it is inhibitory:

If (net;>0),
Aa; = (max — a;)netinput; — decay (a; — rest).

Otherwise,
Aa; = (a; — min)netinput; — decay (a; — rest).

7. MODELING COGNITIVE PROCESSES 213

Readout From the Model

Readout from the model is thought of as a separate process that
integrates the activations of the units over time to assess the response
strength of each unit. The response strength is defined to be the model’s
measure of the strength of the hypothesis that the entity a unit stands for is
present in the input. The readout process chooses one of the units proba-
bilistically, based on its response strength relative to the strength of other
units.

The response strength of each unit is given by

s, (t) = ekE,-(t) i 2
where k is a scale factor and where g;, the running average of the activation
of unit 7, is given by -

a; (¢) = (orate)a; (t) + (1 — orate)a; (¢t — 1). 3

(Initially or when the model is reset, @;(0) = g, (0) = rest;, the resting
activation of unit i.) Following Luce’s (1959) choice model, the probability
of choosing a particular item i as the response at time ¢ is simply

10 @
P =55

JjeC

This probability is called the response probability of response i at time t.
Here, C is the set of competing alternatives (all letters in the same position
for letter responses; all words for word responses), including unit i itself.
Note that this response choice rule has the effect of ensuring that the
response probabilities always sum to 1 for each set of competing alterna-
tives.

The Forced-Choice Test

In simulating what happens in the forced-choice test, we first made the
assumption that choices were based on responses read out from the letter
level only. Under this assumption, the word superiority effect is due to the
feedback from the word level to the letter level.

Because the choice alternatives appear after the target display has been
replaced by the mask, we assumed that readout from the network had to
occur without regard to the alternatives. That is, we assumed that the sub-
jects did their best to identify all the letters in the target display following

214 THE INTERACTIVE ACTIVATION MODEL

the response choice assumptions described above, and only after doing so
did they consult the forced-choice alternatives.

The determination of response probabilities in the model is complicated
by the fact that the response strengths on which they are based rise and fall
with time. Some assumptions must be made about the timing of readout.
We assumed that subjects chose a time after onset of the target display that
optimized their probability of choosing correctly. In practice, this means
that readout occurs just before the onset of the postdisplay mask, if there is
one. When no mask is used, readout is assumed to occur after activation
and response strengths reach their asymptotic values.

Once readout has occurred, the rule for making choices is very simple:
If the response letter chosen for the target position matches one of the
alternatives, that alternative is chosen; otherwise, the choice is a random
guess. From this rule, the probability of correctly choosing the target letter
is the probability that this letter was chosen by the response readout pro-
cess, plus 0.5 times the probability that neither the correct nor the incorrect
alternative was chosen by the readout process.

Although the readout process is assumed to be stochastic, we do not
actually simulate the probabilistic choice between alternatives. We calculate
the probability of reading out the correct and incorrect alternatives and use
these probabilities to calculate the probability correct in the forced choice.

Parameters

Here we discuss the parameters of the interactive activation model.
There are parameters that influence the internal processing dynamics,
parameters that reflect assumptions about the input, and parameters that
influence the assignment of response probabilities during the readout pro-
cess. The list of parameters of the model is rather long, but the majority
are fixed at rather arbitrary values. The main parameters modified to cap-
ture the basic experimental effects we wished to account for are the excita-
tory and inhibitory strength parameters, alpha and gamma. However, in
keeping with our philosophy of allowing users the greatest degree of control
over the programs as possible, we have made all of the following parame-
ters modifiable, as we shall see later.

alpha and gamma }
The excitatory and inhibitory connection strength parameters, alpha
and gamma, respectively, depend only on the processing levels of
the units in question. This means, for example, that the strengths
of the excitatory connections from feature units to letter units are
the same for all such excitatory connections. The model has a
separate parameter for feature-to-letter excitation, another for

decay

7. MODELING COGNITIVE PROCESSES 215

letter-to-word excitation, and another for word-to-letter excitation,
as well as parameters for feature-to-letter inhibition, letter-to-letter
inhibition, letter-to-word inhibition, and word-to-word inhibition.
In our simulations, these parameters were subject to tuning, with
the goal of obtaining the best possible fit to the entire ensemble of
experimental data we were considering. The values we settled on

in this process are shown in Table 1.

The model provides separate parameters for the rate of decay, at
both the letter and the word levels. In practice, however, the decay
parameters were both set to the same value (0.07) at a fairly early
point in our simulations, and then were left at this value for the
remainder of our experiments with the model. This value was
chosen because it seemed to be the largest value that would
nevertheless allow the model to settle smoothly to a target pattern
of activation. With larger values the activations of units can start to
oscillate wildly from cycle to cycle.

threshold

The model provides separate parameters for the output thresholds
of units at the letter and word levels. In fact, at the word level
there are separate threshold values for output to the letter level and
for inhibitory output to other words. These thresholds were gen-
erally left at 0, except during our simulations of the contextual
enhancement effect in pronounceable nonwords (see Ex. 7.4).

max and min

The model also provides separate parameters for the maximum and
minimum activations units are allowed to have at the letter and
word levels. We have always left the maximum activations at 1.0.

TABLE1

DEFAULT VALUES FOR THE ALPHA AND
GAMMA PARAMETERS USED IN THE JA MODEL

Excitation parameters (aipha):

feature to letter 0.005
letter to word 0.07
word to letter 0.30

Inhibition parameters (gamma):

feature to letter 0.15
letter to word 0.04
word to word 0.21

letter to letter 0.00

216 THE INTERACTIVE ACTIVATION MODEL

We did, however, experiment with different values for the
minimum, settling on —0.20 for both the letter and the word levels.

rest and fgain
The model provides separate parameters for the resting activation
levels of units at the letter and word levels. After some experi-
mentation, the resting levels were generally left at 0. However, in
‘the case of words, it should be noted that the value of the word-
level resting activation parameter was not 0 for all units, but was
offset downward from 0 depending on the word’s frequency. The
most frequent word known to the model was that, which was
assigned a resting activation offset of 0.00. Other words were given
resting activation offsets ranging between —0.92 and —0.01, accord-
ing to a function that assigned offsets proportional to the log of the
frequency of the word, subtracted from the log of the frequency of
that. The model multiplies these offsets by the value of a
frequency-scale parameter, fgain, and subtracts the result from O.
Throughout the simulations we used a value of 0.05 for fzain.
Thus, the resting levels of words actually ranged from 0.00 to
nearly —0.05.

oscale
This parameter corresponds to the parameter k in Equation 2. The
model provides separate parameters for scaling the output strengths
of units at the letter and word levels. A larger value of oscale is
needed at the word level to compensate for the fact that there are
more competitors at this level of processing, even though most of
them usually are assigned highly negative activation values by the
model. We recommend that the user keep the given values of 10.0
for letter-level output and 20.0 for word-level output.

Jdprob
For each display field the user wishes to present, it is possible to set
a separate value for the probability that features are detected from
the input. By default, fdprob is set to 1.0, which means that all of
the features of the input are detected. However, this parameter can
be set to a lower value to simulate the effects of degraded visual
presentation.

estr
Many experiments find that end letters are perceived more accu-
rately than letters internal to a word. To accommodate this, we
provide separate parameters for the strength of feature-level activa-
tions for each letter position. By default, these parameters are set
to 1.0, and we recommend that users leave them at these values
unless they specifically wish to explore these positional differences.

orate
This last parameter determines the rate of accumulation of activa-
tion for the purpose of determining response strength. Its default

7. MODELING COGNITIVE PROCESSES 217

value is 0.05. Generally, we have not found the value to be. terri-
bly critical, although we have generally assumed that it is small so
that activations are translated into outputs only gradually.

Processing Under Different Visual Display Conditions

In our simulations, we tended to lump visual display conditions used in
different experiments into two categories, based on the different conditions
used by Johnston and McClelland (1973). One condition was called the
bright-target/ pattern-mask condition and -the other was called the dim-
target [blank-mask condition.

For the bright-target/pattern-mask condition we assumed that the target
display was bright and clear enough so that all visual features of the display
were detected and that the same applied to the patterned masking stimulus
that followed the target. We further assumed that the effect of the mask
was to quickly clear out the pattern of activation at the letter level, replac-
ing it with a new pattern.

These assumptions led us to assume that the feature-to-letter inhibition
was very strong, so that features of the mask would quickly inhibit letter
activations that had been produced by the target display. A side effect of
this was that no letters received net bottom-up excitatory input unless they
were consistent with all of the features in a particular display position. As a
result, under bright-target/pattern-mask conditions, only the letter actually
displayed ever became activated on the basis of bottom-up information.
Therefore, we found that we had little need for letter-to-letter inhibition.
Consequently, though the model provides for the possibility of such inhibi-
tory influences, we set the letter-to-letter inhibition parameter to 0.

Given that all the features of the display are detected, why is it that per-
formance is less than perfect in the forced-choice test? The answer is sim-
ply that it takes time for activation to build up and be read out. The role of
feedback is to enhance the activation of letters and, therefore, to increase
the probability of correct read out from the letter level.

For the dim-target/blank-mask conditions, we assumed that the temporal
brightness summation between the target and the blank mask operated so
that the display was approximately equivalent to a very low-contrast, and
hence degraded, input. In this situation, we assumed that visual feature
information could only be detected imperfectly. The trial is simulated as a
single display of letters with a feature detection probability considerably less
than 1. The effect of this is that several letters generally are consistent
with the detected features in each letter position. Under these conditions,
the role of feedback from the word level is to selectively enhance the
activations of units at the letter level that fit together with active letters in
other positions to form words or to activate groups of words.

218 IMPLEMENTATION

IMPLEMENTATION
Data Structures

The implementation of the interactive activation model in the ia program
is similar to the implementation of the IAC model, although it differs from
it in many details. One important difference is that the connections among
the units are not in fact specified in a connection matrix. Instead, they are
determined by table look-up. There are two relevant tables: the word table
and the uc table. '

The word table, as its name implies, contains a list of all of the words
known to the model, stored as a sequence of four lowercase ASCII charac-
ters. To determine whether a particular letter unit should activate a partic-
ular word, the model checks to see if the letter is in the word in the
appropriate position. We do not, of course, assume that activation in the
mind is actually done by table look-up.

The uc table contains a list of all the features of the letters. The table is
called uc to remind the user that the model only knows one alphabet and
that is the uppercase Rumelhart-Siple alphabet shown in Figure 2. Each
row of the uc table consists of fourteen 1s and Os, indicating whether the
corresponding character does or does not have the corresponding segment
from the Rumelhart-Siple font in it. For example, the row corresponding
to the letter 4 is

1,1,1,1,1,0,1,0,1,0,0,0,0

The exact arrangement of the features will be described when we explain
the use of the program. The table also contains several special, nonletter
characters, in addition to the uppercase letters. These will be described
later.

The uc table is used both to specify the set of input features, given a
display specification consisting of a sequence of letters entered by the user,
and to determine which letter units should be activated when a particular
feature unit is activated.

One other important data structure is the #rial data structure. This is sim-
ply a list of field onset times and their contents. This information is speci-
fied via the trial command, which will be described in the section on using
the program.

Processing

As in the iac program, processing is controlled by the cycle routine. Here
is what it looks like: -

7. MODELING COGNITIVE PROCESSES 219

cycle() {
for (cyc = 0; cyc < ncycles; cyc++) {
cycleno++;
if (cycleno == ftime{tt]) {

setinput () ;
}
interact ();
wupdate () ;
lupdate () ;
update_out_values();
update_display ()

}

The setinput routine is called when each new field is scheduled for presenta-
tion; it first zeros the activations of all of the feature units, then sets them
to the new values dictated by the new input. If fdprob (the probability of
feature detection) for the present input is less than 1, then input units are
turned on only if the value of a random number returned by the random
number generator is less than the value of fdprob. The detected input
feature activations are stored in an array called dinput, with indexes for
the feature value (absent or present), the feature (0-13), and the position
(0-3).

The interact routine is responsible for the excitatory and inhibitory
interactions between units on different levels; as we shall see, the inhibi-
tory interactions between units on the word and letter levels are handled in
the wupdate and lupdate routines. The interact routine has three separate
parts: one for the letter-to-word interactions, one for the word-to-letter
interactions, and one for the feature-to-letter interactions. For complete-
ness we show all three portions of the routine:

interact () {

/* letter -> word */
for (pos = 0; pos < WLEN; pos++) {
for (In = 0; 1n < NLET; 1ln++) {
out = l[pos][(1ln] - t[LU];
if (out > 0) {
for (wn = 0; wn < NWORD; wn++) {

if (In == (word[wn][pos] - 'a'))
ew[wn] += alphalLU] * out;
else

iw[wn] += gamma[LU] * out;

220 IMPLEMENTATION

/* word -> letter */
for (wn = 0; wn < NWORD; wn++) {
out = wa(wn] - t[WD];
if (out > 0) {
for (In = 0; ln < NLET; ln++) {
for (pos = 0; pos < WLEN; pos++) {
if (In == (word[wn][pos] - 'a'))
elf{pos]l[1n] += alpha[WD] * out;
}
}
}
}

/* feature -> letter */
for (pos = 0; pos < WLEN; pos++) {
for (fet = 0; fet < LLEN; fet++) {
for (val = 0; val < NFET; val++) {
out = dinput({val] [fet] [pos];
if (out > 0) ¢
for (In = 0; 1ln < NLET; 1ln++) {
/* 0th line of table is 'A' */

if (val == uc[ln + 'A'][fet])
el[pos][ln] += estr([pos]*alpha[FU]*out;
else

il[pos][1n] += estr([pos]*gamma [FU] *out ;

The letter-to-word and word-to-letter portions are quite similar; we discuss
just the first of these. In the letter-to-word portion, the model cycles
through all the letters in each letter position. If the output of the letter
unit (that is, its activation minus the letter-level threshold) is greater than
0, then the program searches through all of the words. For each word, if
the word contains the letter in question in the appropriate position, then
the excitation of the word is increased by the output of the unit times the
letter-to-word excitation parameter; otherwise, the inhibition of the word is
increased by the output of the unit times the letter-to-word inhibition
parameter.

The feature-to-letter portion of interact is a bit different. Here, the pro-
gram cycles through each of the 14 features for each letter position, first
checking the absence unit (indexed by va/ = 0) for that feature, then check-
ing the presence unit (indexed by va/=1). For each such unit, if it is on,
the program scans through the letter table, incrementing the excitatory

7. MODELING COGNITIVE PROCESSES 221

input to the letter units that have this feature and incrementing the inhibi-
tory input to letter units that do not have this feature.

The Update Routines

The two update routines, wupdate and lupdate, are nearly identical; we
will go through wupdate because it is slightly simpler—it does not have to
loop separately through each of the four pools of letter-level units. The
routine is as follows:

wupdate () {
sSs = sum;
prsum = sum = 0;
tally = 0;

for (i = 0; 1 < NWORD; i++) {
/* word -> word inhibition */
if (wal[i] > t[W])
iw[i] += g[W] * (ss - (wa[i] - t[W]));
else
iw[i] 4= g[W] * ss;
/* now compute net input and update */
net = ew[i] - iw[i];
if (net > 0)
effect = (max([W] - wal[i]) * net;
else
effect = (wa[il - min[W]) * net;
wall] += effect - decay[W]*(wa[i] - wr([i]);
if (wali] > 0) {

if (wali] > max([W]) wa[i] = max[W];
}
else {
if (wali] < min[W]) wa{i] = min[W];
}
if (wali] > t[W])
sum += wal[i] - t[W];
/* take running average for readout */
ow[i] = ow[i] * (1 - outrate) + wa[i] * outrate;
/* then zero arrays for next cycle */
ewl[i] = iw[i] = 0;

}

The only thing that is different about this routine compared to the update
routine in the iac program is that the inhibition is handled in a way that is
more efficient. Since each word unit inhibits every other word unit, the
inhibitory input to a word unit i/ can be determined from the summed

222 RUNNING THE PROGRAM

outputs of all the word units, less the output of word unit i. The inhibitory
input to word unit / is then simply this difference times the word-level in-
hibition parameter gammalW].

On each sweep through the wupdate routine, the summed output of the
word units from the previous cycle is used to determine the inhibitory input
to each unit for the current cycle. At the same time, the output of all of
the word units is accumulated for use on the next pass through the update
routine.

RUNNING THE PROGRAM

The use of the ia program is much like the use of the other programs
described in this book. Its main differences are the way inputs are indi-
cated to the model and there are more parameters and more units than in
most other models.) -

Trial and Forced-Choice Specifications

Trials are specified by entering the tria/ command to the ia: prompt;
details for using this command are given in the "New Commands" section.
A separate command, called fcspec, is used to specify the position and alter-
natives to be tested in the forced choice.

Screen Displays

The program has far too many units to display all their activation values
on the screen at once. To compensate for this, the program keeps track of
summary information about the activations in the network, as well as a
display list of units for display to the screen.

The summary information consists of the current cycle number, the
number of active units at the word level and in each letter position at the
letter level, and the summed activation of all the active units at the word
level and in each position at the letter level. An active unit is defined to be
a unit whose activation is greater than 0.

The display list is a list of units whose activations are to be displayed.
This list can be specified by the user, using the get/ dlist command. Alter-
natively, the program will compute its own display list at the end of each
processing cycle. In this case, the display list consists of all of the units

g

7. MODELING COGNITIVE PROCESSES 223

whose activation exceeds the values of the dthresh/ word and dthresh/ letter
parameters, up to 15 letters in each position and up to 30 words.

New Commands

The ia program introduces only a small number of new commands:

Jfespec
Allows the user to specify a forced-choice test for the simulation,
much as Reicher did in his experiments. The command first
prompts for a position (enter 0, 1, 2, or 3) followed by a pair of
letters, the first of which is the correct alternative and the second
of which is the incorrect alternative. When a pair of choice alterna-
tives has been specified, at the end of each cycle, the program will
compute the probability that each would be chosen in a two-
alternative forced-choice test. '

print
Allows the user to inspect the activations of each of the letter and
word units and to inspect the response probability values associated
with each letter unit. The command responds with a print words?
prompt. If the user enters a string beginning with y, the program
prints a screen full of words and their activations, and then presents
the p to push /b to break /<cr> to continue: prompt. Responses
of p and b have the usual effects; return causes the next screen of
words and activations to appear. After finishing with the words,
the program then prompts print letters? If the answer is yes, the
activations of all of the letter units are presented for all four posi-
tions. Next, the command prompts print letter resp-probs? If the
answer to this is yes, then for each letter, the probability that the
letter would be given as the model’s response in each position is
displayed. Since this display would be overwritten by the top-level
menu, the program prompts for a return before returning to the top
level. ’

trial
Allows the user to specify a sequence of fields, each containing an
onset time and a field specifications. After the command is
entered, the program presents a series of prompts of the form:

field #N: time:

Here N is the ordinal number of the field. To the first such
prompt, the user enters the time for field 0, which is usually cycle
1, followed by the field specification. (A prompt for the field
specification is provided if the cycle number is followed by a

224 RUNNING THE PROGRAM

return.) The program then prompts for the next time-specification
pair. When all the desired fields have been specified, enter end or
type an extra return. Note that the times must be strictly increasing
and that the time for field 0 must be 1 or greater. If the time for
field N is less than or equal to the time for any preceding field, the
program will never move on to field N. The last field encountered
is just left on indefinitely, as is the case in most experiments. The
field specification itself consists of a sequence of four characters.
Allowable characters, and their meanings, are as follows:

Letters Letters are translated into the feature specifications of the

corresponding uppercase letter as found in the Rumelhart-
Siple font. Letters may be entered either in uppercase or
lowercase.

Specifies the mask character, which is formed by turning on
all the features that are present in either an X or an O.

Question mark requests a random feature array; the random
number generator is consulted to determine whether, for
each feature, the presence or the absence unit should be
on.

The underscore character is used for blanks; it requests that
neither presence nor absence units be turned on in the
corresponding position.

The period character turns on all of the absence features
and turns off all of the presence features; not to be con-
fused with "_" above.

The asterisk sets up the input array with the set of features
common to the letters K and R, leaving both the presence
and absence units off for the features that distinguish these
two characters in the Rumelhart-Siple font.

The double quote character informs the program that you
wish to specify exactly which presence and which absence
units should be turned on manually. You are prompted to
supply these specifications immediately after entering the
specification string containing this character. You are first
prompted to specify which presence units should be turned
on, then prompted to specify which absence units should be
turned on. Each specification is given as an uninterrupted
string of 0Os and 1s. The indexes of the features in the
Rumelhart-Siple font are as follows:

7. MODELING COGNITIVE PROCESSES 225

-
~
w

5
Thus, the letter R is designated by the presence specifica-
tion:

11110010100010
and the absence specification:

00001101011101

disp/ opt/ lthresh

disp/ opt/ wthresh
Allow the user to set the minimum activation required for letters
and words to be entered in the display list when the list is being
generated automatically by the program; these variables have no
effect when the display list is entered manually using the get/ dlist
command. These commands can be useful when a large number of
units are activated, particularly at the word level, because of the
length limitations of the dlists.

get/ dlist
Allows the user to specify the display list or to clear one if a list has
previously been specified. In response to this command, the pro-
gram prompts:

enter words or — for dynamic specification:
Typing a "—" at this point will clear the old specification, if any, and
return to the command level; if this is done, the program will con-
struct a display list for each trial, as it does before a dlist is specified
by the user. Entering end or typing return will set up a specification
that specifies no words; any other strings are taken to be words.
The program looks up the string in the list of word-unit names, and
if the string is found, it is placed on the word display list. The pro-
gram then prompts for subsequent words. The "—" option is no
longer available at this point, but end or return can be given to end

226 RUNNING THE PROGRAM

the list of words. After the end of the word list, the program
prompts for letters for each of the four letter positions, starting
with position 0. The list of letters for each position is terminated
by end or an extra return. Due to limitations of screen space, the
display lists are limited to 30 words and 15 letters per position.

Variables

The ia program has no configuration or environment variables; it has
only one state variable, cycleno, and one mode variable, comprp. However,
it has a large number of parameters. In fact, the parameters tend to be
organized into parameter arrays, consisting of from two to as many as seven
separately specifiable parameter values. For example, there are three dif-
ferent between-level excitation parameters. These are called alpha/ f~>1,
alpha/ 1—->w, and alpha/ w—>1, for feature-to-letter, letter-to-word, and
word-to-letter excitation, respectively. All of the alpha parameters are
grouped together under the specifier alpha, under set/ param/. Thus, to
set alpha/ 1—>w to 0.01, you would enter

set param alpha I—>w 0.01
or, more compactly,
sepal(.01

The following list indicates all of the new or changed variables accessible
through the set and exam commands. When there is a parameter array, the
array name is followed by a slash and the names of the members are given
in {} after the slash.

Stepsize ,
Determines the frequency of screen updating and/or pausing as in
other programs. Available values are cycle and ncycles; by default
the value is ¢ycle.

mode/ comprp
When set to 1, enables the computation of response probabilities
for letter units. When set to 2, enables computation of response
probabilities for word units as well. The default value is 1 since,
typically, responses are assumed to be read from the letter level.

param/ alpha/ {f—>1, 1—>w, w—>1}
Feature-to-letter, letter-to-word, and word-to-letter excitation
parameters.

param/ beta/ {letter, word)
Decay parameters for units at the letter and word levels.

7. MODELING COGNITIVE PROCESSES 227

param/ estr/ {p0-p3}
Relative strength of the external input in each letter position.
These are set to 1.0 by default.

param/ fdprob/ {f0-f6)
For each field (f0-f6) specified in the trial command, the probabil-
ity that each feature specified in the field specxﬁcauon 1s in fact
detected. These are set to 1.0 by default.

param/ feain
The scale factor for setting frequency-based resting activation levels
for word units; larger values accentuate differences in resting levels
as a function of word frequency. Defaults to 0.05.

param/ gamma/ {f~>1 1—>1 I->w, w=> w—>w}
Inhibition parameters for feature-to-letter, letter-to-letter, letter-to-
word, word-to-letter, and word-to-word connections.

param/ max/ {letter, word)
Maximum activation parameters for letter and word units.

param/ min/ {letter, word)
Minimum activation parameters for letter and word units.

param/ orate
The rate of accumulation of the time-averaged activation used in
computing response strengths.

param/ oscale/ {letter, word}
Multipliers used in scaling the time-averaged activations of units to
obtain response strengths. Larger values produce larger differences
in probability for a given difference in degree of activation.

param/ rest/ {letter, word) _

‘ Resting activation levels for letter-level and word-level units. For
word-level units, this is the base resting activation; frequency-based
offsets are multiplied by the fgain parameter and then subtracted
from the base to obtain the true resting level.

param/ thresh/ {letter, w—>1, w—>w}
Output thresholds for letter-level and word-level units. The activa-
tion a unit passes to other units is equal to its activation minus its
threshold, or 0, whichever is larger. For word units, there are
separate values for outputs from words to other words and for out-
put from words to letters.

OVERVIEW OF EXERCISES

The exercises we will propose here allow you to explore the behavior of
the interactive activation model, using selected example stimuli. Generally,
we have chosen the same items that were used in the examples described in
McClelland and Rumethart (1981) and Rumethart and McClelland (1982).

228 EXERCISES

Ex. 7.1. Using Context to Identify an Ambiguous Character

The first exercise gives you the opportunity to simulate the role of
word-to-letter feedback in resolving ambiguity in visual input using the R-K
example from McClelland and Rumelhart (1981). To run this exercise, get
into the working directory you have set up for the ia program and enter

ia ia.tem ia.str

This sets up the display, and it results in the presentation of the ia: prompt
along with a list of available menu options.

To set up the program to run this example, you must use the tria/ com-
mand to indicate the input to the program. To display the string WOR*
where the * stands for a character that is ambiguous between R and K
enter:

trial 1 WOR* end

This indicates that at the beginning of cycle 1, the display designated by the
string WOR* should be presented. The word end indicates that no further
fields are to be specified. Thus the display is turned on and left on indefin-
itely by this trial command. If you just enter trial by itself, the program will
prompt you, first for a fleld time and then for field contents. Alternatively,
you can enter everything on a single line as we have shown. (As in other
programs, the end can be replaced with an extra rerurn.)

Note that the display specification given here consists of uppercase letters
and an asterisk. Lowercase letters may also be entered; they are treated as
equivalent to uppercase. The "*" is one of several characters that have spe-
cial meaning to the trial command, as described above; this one is specific
to this particular example since it specifies the ambiguous R-K character, as
shown in Figure 3.

FIGURE 3. The inputs specified by the field specification WOR* (From "An Interactive
Activation Model of Context Effects in Letter Perception: Part 1. An Account of Basic Find-
ings" by J. L. McClelland and D. E. Rumelhart, 1981, Psychological Review, 88, 375-407.
Copyright 1981 by the American Psychological Association. Reprinted by permission.)

7. MODELING COGNITIVE PROCESSES 229

Now that you have specified a display, you can begin the process of
simulating the perception of the display. Simply enter cycle. The program
will run for 10 cycles, since this is the number of cycles specified in the
ia.str file.

The display that you will see at the end of 10 cycles is shown in Figure 4.
At the top of the display area (below the command information) the
current cycle number is shown, followed by the number of active units and
their summed activation for each pool of letter units and for the word units.
Below this information are three fields: two smaller ones, labeled TRIAL
and CHOICE, and a larger, unlabeled one, which is used for displaying the
activations of units on the dlist. i

The diist field displays the activations and response probabilities of units
on the dlist. Since no fixed dlist has been specified, the units that are
displayed are those whose activations are greater than the values of the
display options Ithresh (for letters) and wrthresh (for words). There is a
separate column for each letter position, and room for two columns for
words, though in this instance only one of these is used. Within each of
these columns there are three subcolumns. The first contains an identifier
for each item, the second indicates its activation (in hundredths, so that
0.15 is given as 15 and 0.07 is given as 7), and the third gives the response
probabilities. .

An exception is made in the case of the word response probabilities.
These take a tremendous amount of time to compute, and since for the
moment we are focusing on context effects on letter perception and we are
not concerned with word response probabilities, these are neither computed
nor displayed. (If you wish to compute and display these probabilities, set
the comprp mode variable to 2 and the dlevel to 3.)

13
disp/ exam/ get/ sawve/ set/ clear cycle do fcspec log newstart print
quit reset run trial

cycle 10 letter 0 letter 1 letter 2 letter 3 word
num 1 num 1 num 1 num 2 rnum 5
sum 62 sum 62 sum 62 sum 71 sum 52

TRIAL | w 62 2 o 62 25 r 62 26 k 44 15 word 8
1 WOR* | r 27 12 wore 6
| work 32
| worm 0
| worn 4
!
|
|
CHOICE |
pos Q|
|- g 0}
- 0 0§
fca 0|

FIGURE 4. The state of theia program after 10 cycles processing WOR*.

230 EXERCISES

Since both Ithresh and wthresh default to 0, the items whose activations
exceed 0 are displayed in alphabetical order until the available display space
runs out; if the activation is between 0.00 and 0.01, a 0 is displayed. The
display area allows 15 letters in each position and 30 words. Thus, if more
than 30 words are activated (as indicated in the word num field in the upper
portion of the display), only the activations of the 30 words that come earli-
est in the alphabet will be displayed in the dlist display. If this ever happens
in a simulation, you might want to increase the value of wrhresh, which is
accessed by the disp/ opt/ wthresh command.

It is worth reiterating the meaning of the response probabilities. These
numbers are computed using the formulas given earlier in the "Readout"
section under the description of the model; they can increase or decrease
through the course of processing. What these numbers represent at any
given moment is the probability that the corresponding item would be
chosen as a response, if readout were to occur at the present moment.
Readout occurs at the end of processing when the display is degraded and is
not followed by a mask; for trials in which the target display is followed by
a mask, we assume readout occurs at the optimal time. This is fairly con-
stant across different displays and is mostly affected by the timing of the
onset of the mask field.

To the left of the main display area is the tral field. This simply indi-
cates the onset times and contents of the fields that have been specified in
the trial command. Below this is the choice field, which is not relevant in
this exercise.

To summarize what can be seen on the screen after 10 cycles, only one
letter is activated in each of positions 0, 1, and 2. In position 3 (the last
position) the letters k and r are both active; k is beginning to get stronger
than r because of feedback from the word level. At the word level, we can
see that the words word, wore, work, worm, and worn are all active to some
degree, although work is clearly most active.!

Now that the display has been explained, reinitialize the program (reset
and newstart are equivalent for this exercise because there is no element of
randomness), set single to 1, and step the program along, observing on each
cycle the build-up of activation at the letter and word levels. Run about 40
cycles.

Q.7.1.1 When does k start to gain an edge over r in activation? Why?
Even though k becomes more active, r is not suppressed. What
parameter controls this? Explain why the response probability for
r eventually does go down, even though its activation does not.
Also explain why the response probabilities for r and & tend to
pull apart more slowly than their activations.

1 We will follow the convention of indicating visual displays and choice alternatives in upper-
case and indicating unit names and activations in lowercase. Thus the display WOR* activates
the word unit work.

7. MODELING COGNITIVE PROCESSES 231

Ex. 7.2. Simulations of Basic Forced-Choice Results

In this exercise we will give you the opportunity to simulate some basic
experimental phenomena that we considered in McClelland and Rumelhart
(1981); in particular, we’ll examine the forced-choice advantage of letters
in words over letters in unrelated context and the fact that the word advan-
tage holds for letters in pronounceable pseudowords as well as actual words.

First simulate the advantage of letters in words over letters in unrelated
context, using as your example the letter ¥ in C4VE compared to the letter
Vin ZXVJ. Assume that the target display is presented at the beginning of
cycle 1, followed by a mask containing a sequence of mask characters,
appearing at the beginning of cycle 16. Assume that the forced choice tests
for the letter ¥ in position 2 (counting from 0) and that the incorrect alter-
native is the letter G.

The trial specification for CAVE is

trial 1 CAVE 16 #### end

The string #### specifies a string of mask characters (each consisting of
an X superimposed on an O). For the ZXVJ trial specification, simply
replace CAVE with ZXVJ. :

For this exercise, we introduce the fespec command and the choice field
of the display, which has thus far remained blank. To set up the choice
field, you must specify a letter position to test and a pair of choice alterna-
tives using the fespec command. For this exercise, the position to test is
position 2 (since we count from 0), the correct alternative is ¥, and the
incorrect alternative is G, so the following command specification should be
entered: :

Sespee 2 V G

You will now see the choice field in the lower left-hand corner of the
screen filled in with the information you have specified. This field con-
tains:

® The letter position specified in fespec, if any (defaults to 0).

n "

® The correct alternative (or "—" if none has been specified), its
activation, and its current choice probability.

® The incorrect alternative (or a "—" if none), its activation, and its
current choice probability.

® The forced-choice accuracy (labeled fea) that would result if pro-
cessing were terminated at this point.

232 EXERCISES

The current choice probability is the probability that the alternative would be
chosen if the forced choice were to be based on readout of letter activations
on the current cycle. The jforced-choice accuracy is the maximum value thus
far attained for the current choice probability of the correct alternative.
The value of this number at the end of the trial is taken to be the probabil-
ity that the model would make the correct forced-choice response.

To run these examples, you will probably want to run about 20 cycles for
each item. By cycle 16, the response probabilities will have peaked, so
additional cycles will have no effect on the forced-choice accuracy, but it is
sometimes interesting to watch letter- and word-level activations begin to
drop off again as the mask takes effect.

For this simulation it is also useful to specify a dlist so that you can see
the activation and response probability for the incorrect choice alternative
as well as for the correct response. The file cave.dli is useful in this regard.
It contains a get/ dlist command that specifies that the dlist should contain
cave plus all the other words that the model knows that have three letters in
common with CAVE, and that the letters displayed should be C in position
0, 4 in position 1, ¥V and G in position 2, and E in position 3. You can
leave the same dlist in place for the ZXVJ example since this one activates
no words. This command file is read in by using the do command:

do cave.dli 1

(the 1 indicates that the commands in this file are to be executed just
once).

Finally, the parameters you need to be aware of to understand the word-
level activations are the alpha and gamma parameters given previously in
Table 1.

Q.7.2.1. Describe the time course of activation of the unit for ¥ in posi-
tion 2 in each of the two cases, and explain how this is translated
into the forced-choice advantage for ¥V in CAVE over V in ZXVJ.
Also, consider what happens at ‘the word level. Why does the
string ZXVJ produce no word-level activations, given the parame-
ters of the model? Why do no word units other than cave achieve
substantial activation values when CAVE is presented?

Next we consider the processing of pseudowords—pronounceable non-
words such as MAVE or REAT. Experimentally, subjects perform almost as
well with these stimuli as with real words, and they show a considerable
advantage over single letters and letters in unrelated strings (Baron &
Thurston, 1973; Johnston & McClelland, 1977).

At first glance, we might not expect perceptual facilitation with pseudo-
words in the model, since it contains units only for real words. However,
as we shall see, the model does in fact replicate the pattern of human per-
formance. To see this, compare the model’s performance on the ¥ in

7. MODELING COGNITIVE PROCESSES 233

MAVE to the results you have already obtained with CAVE and ZXVJ.
Keep everything else the same as before.

The file mave.dli contains a useful dlist specification for this simulation.
It sets up the letters m,q,v,e, the alternative g, and all the words that have
three letters in common with MAVE. Read this file in with the command
do mave.dli 1 followed by reset. During the simulation runs, study the pat-
tern of activation at the letter and word levels.

Q.7.2.2. Explain why forced-choice accuracy for V in MAVE is almost as
good as for Vin CAVE.

Q.7.2.3. Study the word-level activations that are produced when the item
MAVE is shown. See if you can explain why the initial advantage
of have is amplified through the course of processing so that by
cycle 15 it is considerably more strongly activated than gave and
save. Also, try to explain why move shows less activation than
save, even though they have about the same frequency and there-
fore start out at the same resting level.

Hints. The fact that have is more active than gave or save after 15 cycles
is influenced by the resting level, however, your job is not to
explain simply why have starts out a bit higher; you have to say
why its advantage is amplified.

Q.7.2.4. Choosing another pronounceable nonword, study the pattern of
activation it produces and see if you can observe word-level
effects similar to those you observed with MAVE,

Ex. 7.3. Subtler Aspects of the Word Superiority Effect

This exercise allows you to go beyond the basic word and pseudoword
superiority effects, going more deeply into the accounts offered by the
interactive activation model for some of the detailed findings reported in
the literature on letter and word perception. In both parts of the exercise
you will see that it often requires a careful consideration of the inner work-
ings of the model as well as the characteristics of particular experiments to
understand why particular results were obtained. The model serves not
only to explain what often looks like a confusing pattern of results, but also
helps pinpoint which aspects of the experiments are responsible for the
findings obtained.

Bigram frequency effects. One surprising finding in the word superiority
effect literature is the apparent absence of effects of bigram frequency on
the size of the word superiority effect obtained in the Reicher paradigm

234 EXERCISES

(McClelland & Johnston, 1977). To test for an effect of bigram frequency,
McClelland and Johnston examined forced-choice accuracy of letters in
high bigram-frequency words (such as PEEL-PEEP) and pseudowords (such
as TEEL-TEEP) and in low bigram-frequency words (POET-POEM) and
pseudowords (HOET-HOEM). They found a slight advantage for words
over pseudowords, but no effect of bigram frequency either for the word or
for the pseudoword stimuli. These results are particularly surprising in
view of the fact that other studies have found effects that can be inter-
preted as supporting the notion that items of higher bigram frequency lead
to more accurate perception (Rumelhart & McClelland, 1982, Experiment
9). Here we explore what light the interactive activation model can shed on
these findings. '

To see what happens in the interactive activation model with stimuli of
the type used by McClelland and Johnston, run the ia program with the
items TEEL and HOET, testing the last position (position 3) in each case,
with P as the incorrect alternative on TEEL and M as the incorrect alterna-
tive on HOET. Set up the trial specifications as in the previous exercise,
so that the letter string is displayed on cycle 1 with the mask coming on
cycle 16. '

Q.7.3.1. Describe the results you obtain in these tests, and explain why the
forced choice comes out actually slightly favoring the low bigram-
frequency item.

As the examples used above illustrate, McClelland and Johnston made
up their stimuli according to the following procedure. They first con-
structed a set of high bigram-frequency word pairs like PEEL-PEEP and a
set of low bigram-frequency pairs like POEM-POET. Then they derived
high and low bigram-frequency pseudoword pairs from the word pairs by
changing one of the context letters from each pair. Thus TEEL-TEEP was
derived from PEEL-PEEP and HOET-HOEM was derived from POET-
POEM. .

Q.7.3.2. Try to explain why McClelland and Johnston’s procedure for con-
structing pseudoword pairs by changing nontarget letters in word
pairs may have prevented them from finding a difference between
high and low bigram-frequency items.

Hints. You might consider what would happen if the pseudowords
HOEM and HOET were used, testing performance on the H
rather than the final letter. You can use L as the forced choice
alternative.

In their Experiment 9, Rumelhart and McClelland (1982) report results
that look at first sight to be inconsistent with those of McClelland and
Johnston (1977); that is, Rumethart and McClelland found that forced-

7. MODELING COGNITIVE PROCESSES 235

choice performance on pseudowords did depend on a measure very closely
related to bigram frequency. However, the materials used by Rumelhart
and McClelland were not constructed from word pairs at all. Rather, all
possible pseudoword items were constructed and separate sets of pairs were
made from those having high and low letter-transition probabilities (a
measure highly correlated with bigram frequency). For these items, both
the experiment and the simulation obtained an advantage for the high tran-
sitional probability items.

Effects of contextual constraint. In the 1960s and 1970s, several studies
were carried out examining the role of contextual constraint in word recog-
nition. Contextual constraint refers to the degree to which the context a tar-
get letter occurs in restricts the possible identity of the target letter, based
on which letters form words with the context. Thus LUE is a relatively
constraining context, because only three letters (B, C, and G) make words
in this case;? whereas _AKE is much less constraining, since 10 letters can
fit with it to make a word. The results of the experiments (most impor-
tantly, those of Broadbent and Gregory, 1968, and Johnston, 1978)
presented a fairly complex picture. Effects of contextual constraints appear
to be obtained under conditions in which subjects are shown a visually dim
or degraded display with no patterned mask and are asked to give a free
report. However, these effects do not appear when subjects receive a brief,

masked presentation of the target word followed by a forced choice. The

interactive activation model appears to explain this pattern of results.

This section describes how you can explore the account of these effects
of contextual constraint using the ia program. Before we proceed further,
however, we will note that these simulations are rather computationally
intensive. Users who do not have a floating-point coprocessor and/or a lot
of time may want to skip this section.

For these simulations, we will use the target words CLUE and CAKE.
The forced choice (where applicable) will be applied to the letter C, with B
serving as the incorrect alternative. The example is carefully chosen:
CLUE and CAKE have about the same frequency and therefore the same
resting level in the model. Forced-choice performance is modeled as
before. For the free report, it is assumed that subjects read out their
response from the word level, timing the readout to achieve optimal perfor-
mance. .

To begin examining the effects of contextual constraint, present the
items CLUE and CAKE, using the same display conditions we have been
using, in which the word is presented at the beginning of cycle 1 and is fol-
lowed by the mask at cycle 16. Compare the forced-choice accuracy for
both items, as well as the response probability for each target word at the
word level. (To examine word-level response probabilities, you will need

2 We leave out the low-frequency word FLUE, which is not in the word list used by the IA
program.

RN

236 EXERCISES

to set the comprp mode variable to 2 and the dlevel variable to 3.) Note that
response probabilities build up very slowly at the word level and depend on
the persistence of activations of words beyond the onset of the mask, so
you will want to run about 32 cycles of processing to get a good sense of
the probability of identifying the target word based on readout from the
word level.

Now repeat the above experiment, using display conditions intended to
simulate a visually dim or degraded display with no patterned mask. To do
this, use the command

set param fdprob f0 0.65

to set the probability of feature detection in field 0 of the trial sequence to
0.65. With this setting, the model will only detect 65% of the features in
the display, simulating the effects of visual degradation. Now give the trial
specification, simply presenting the target string at cycle 1. For example,
for CLUE the specification would be

trial 1 CLUE end

Run several runs with each target, letting processing go on for 50 cycles so
that word-level activations and response probabilities reach asymptotic lev-
els. Use the newstart command to reinitialize between runs to obtain a new
random set of features on each run.?

Q.7.3.3. Try to explain why effects of contextual constraint emerge in the
free report with dim target conditions, and why they do not occur
with the forced choice under bright-target/pattern-mask condi-
tions.

Ex. 7.4. Further Experiments With thé Ir_1teractive Activation Model

This set of exercises is based on material from Rumelhart and McClel-
land (1982). The first.part explores a prediction of the model that was ver-
ified by an experiment reported in that paper. The second part applies the
model to a variant of the word superiority effect called the contextual
enhancement effect. The last part considers how expectations might

3 Actually, after a few runs you will begin to get a feel for what happens with the response
probabilities. To speed things up, you can set the comprp mode variable to 1 or even 0 (elim-
inating computation of letter-level response probabilities) and just watch the activations of the
units.

7. MODELING COGNITIVE PROCESSES 237

influence processing. These exercises are rather specialized and are pro-
vided for readers with a particular interest in further exploration of the IA
model and the phenomena of word perception.

Facilitation effects with unpronounceable nonwords. In Rumelhart and
McClelland (1982), we predicted that the perceptual facilitation for letters
in pronounceable nonwords should also occur with letters in a class of
unpronounceable nonwords that were made up specifically to have several
"friends"; that is, that were made up so that they had three letters in com-
mon with several words, even though they were not pronounceable. An
example is SLNT, with a forced choice between L and P. As predicted, we
found roughly the same forced-choice advantage for such items as for items
like SLET, compared to random strings like JLOX.

In this exercise, explore the model’s handling of the items SLNT and
SLET compared to JLQX, using the display conditions of Ex. 7.2. Then
consider the following question:

Q.7.4.1. Why does the model predict roughly equal facilitation for the L in
SLNT as for the L in SLET? What characteristics of the items
appear to be critical? Do simulations with other selected items to
see if you are correct.

The contextual enhancement effect. Rumelhart and McClelland (1982)
reported a phenomenon called the contextual enhancement effect. This is
the finding that letters are perceived better when the confext they are in is
enhanced by presenting it for a longer time. This effect is demonstrated in
experiments using trial sequences in which the context is presented before
the target letter is shown, as in this trial specification:

1
1 _HIP |
13 SHIP
25 #4444

Here the subject is given a forced choice between S and W for letter posi-
tion 0. Forced-choice accuracy is greater when the context is presented
before the full target field than in a control condition in which there is no
preview of the context:

1l SHIP
13 #4#4 |
|
The effect can be obtained both with words and with pronounceable non-
words like SHIG. In the experiments, the context boosted accuracy about
8% for both kinds of materials; there was an advantage for words, both with
and without a preview of context, of about 4%.

238 EXERCISES

For this exercise, simulate the context enhancement effect, with both
SHIP and SHIG. That is, run trials with and without a preview for both
SHIP and SHIG.

Q.7.4.2. Describe how well the model does at accounting for the contex-
tual enhancement with words and pseudowords. See if you can
explain the results that you observe.

In answering Q.7.4.2 you will have discovered that the model does not
produce an enhancement effect with the pseudoword SHIG when the
default parameters are in effect. This item is typical of most pseudowords.
After considerable exploration, we were able to find a new set of parame-
ters that did allow us to accommodate the context enhancement effect with
pseudowords. The file pwcee.par contains commands that will produce the
required modifications to the parameters. These commands can be exe-
cuted using the command do pwcee.par 1. You may use these parameters,
or (if you really want a challenge) you may come up with a set of your own
that works. (As a hint, we will note that the modifications that are neces-
sary have more to do with resting levels and thresholds than with excitation
and inhibition parameters.)

Q.7.4.3. Using either the parameters in pweee.par or your own parameters,
simulate the context enhancement effect with pseudowords.
Explain why the modifications work.

Expectation effects. Carr, Davidson, and Hawkins (1978) reported an
interesting finding on the role of subjects’ expectations in perceiving letters
in words, pseudowords, and random-letter strings. They set up their sub-
jects to expect either words, pseudowords, or random letters to be
presented, and then, using a small number of trials of other types surrepti-
tiously included in their materials, they were able to assess the advantage
for words and pseudowords in each of these three expectation conditions.
Their results are shown in Table 2. '

Basically, what they found is that there was a word advantage over ran-
dom letters, regardless of the subject’s expectations, but that there was a
pseudoword advantage over random letters only if the subjects were actually
expecting pseudowords to be shown. Try to figure out for yourself whether
the interactive activation model can account for these results, assuming that
subjects are able to exert strategic control over one or more parameters of
the model.

In simulations for this exercise, it is sufficient to use a single word, a sin-
gle pseudoword, and a single random letter item to study these effects; for
example, CAVE, MAVE, and ZXVJ will do. Use the standard parameters
and set up trial specifications with the mask coming at cycle 16 as usual.

7. MODELING COGNITIVE PROCESSES 239

TABLE 2

EFFECT OF EXPECTED STIMULUS TYPE ON THE
WORD AND PSEUDOWORD ADVANTAGE OVER RANDOM LETTERS

Expectation
Target Word Pseudoword Random letters
Word 0.15 0.15 0.16
Pseudoword 0.03 0.11 -0.02

Note. From "Perceptual Flexibility in Word Recognition: Strategies Affect Ortho-
graphic Computation but not Lexical Access” by T. H. Carr, B. J. Davidson, and
H. L. Hawkins, 1978, Journal of Experimental Psychology: Human Perception and
Performance, 4, 674-690. Copyright 1978 by the American Psychological Asso-
ciation. Reprinted by permission.

Q.7.4.4 Experiment with different parameters of the model and see which
ones can produce the effects of Carr et al. Describe each change
you made, indicate how well it worked, and tell why it had the
effects that it had.

Our answer to this question involved control over one of the excitation or
inhibition parameters (we will not say which). Perhaps if you change other
parameters you could obtain some or all of the same effects.

