
A Modeling Framework for Decision Support: Bridging the Gap between Earth Science & Socio-Economics Robert G. Chamberlain, Jet Propulsion Laboratory, Pasadena, CA Farrokh Vatan, Jet Propulsion Laboratory, Pasadena, CA Climate change is a global issue. Assessment of the effects of plans, policies, and actions demands a model that encompasses the entire Earth System, including anthropogenic factors. Physics-based climate models of the factors that drive global temperatures, rainfall patterns, and sea level are necessary but not sufficient to guide decision making. Small changes in climate parameters may cause large changes in the availability of arable land, agricultural water, drinking water, and other natural resources. Coupling these changes with actions taken by farmers, industrial entities, environmentalists, politicians, and other policy makers will result in changes to economic revenues, international relations, food production, disease vectors, and beyond. These consequences will not be felt uniformly around the globe or even across a given region. Policy models must comprehend all of these considerations.

Given the inherent uncertainties in both the natural and societal regimes, any model used for decision support must include the capability to exercise different scenarios and assess the range of potential outcomes. In addition to natural processes, the system model must also encompass human attitudes, demographics, and economics. It must consider the effects of education and the role of the media. It must address how people make group decisions. Recent advances in military modeling and simulation for stability and reconstruction operations can be applied to models that address all these areas of concern.

Combining physics-based models of the Earth’s climate and biosphere with societal models of population dynamics, economics, and politics is a grand challenge with high stakes.

Bio: Chamberlain, Robert G. Jet Propulsion Laboratory, Pasadena, CA Mr. Chamberlain graduated from the California Institute of Technology (Caltech) in 1960 and 1961 and is now a Principal at Caltech’s Jet Propulsion Laboratory. He has published over a hundred professional papers and has participated in international conferences. He has contributed to studies of systems involving space, the U.S. national infrastructure, energy, combat, transportation, criminal justice, health, manufacturing, and management control. He created the Solar Array Manufacturing Industry Costing Standards and the Space Station Design Tradeoff Model. He has been a major contributor to the Corps Battle Simulation and the Joint Non-lethal Effects Model. He co-authored the NASA Systems Engineering Handbook in 1995 and was the contributing editor of the “20/30 Hindsight” feature in the journal Interfaces for 21 years. He is a member of INFORMS and Sigma Xi and is a registered Professional Engineer. Vatan, Farrokh Jet Propulsion Laboratory, Pasadena, CA Dr. Vatan
is a Senior Member of the technical Staff in the Reasoning, Modeling, and Simulation Group at JPL. He received his PhD in Computer Science from the University of Illinois at Chicago in 1996. He joined JPL in February of 2001 and before that he worked in the Electrical Engineering Department of UCLA as a member of the research staff. His research interests include modeling, model-based diagnosis, prognosis, sensor optimization and analysis, and discrete mathematics. He has authored/co-authored over 40 articles in archival journals and conference proceedings.