California Clean Mobility Partnership

Rachel S. Finson

Transportation Sustainability Research Center
University of California Berkeley

Behavior, Energy & Climate Change Conference

November 19, 2008
California Clean Mobility Partnership

Team

- University of California (Berkeley and Irvine)
- California Air Resources Board
- Toyota
 - Toyota Engineering and Manufacturing North America
 - Toyota Motor Sales
- South Coast Air Quality Management District
- Bay Area Air Quality Management District
- Southern California Edison
- Horiba, Ltd.
Presentation Overview

- CCMP Overview
- Household Placements
 - Vehicle Usage Data Collection
 - Focus Groups
 - Surveys
 - Exit Interviews
- Technical Analysis Informed by Household Placements
CCMP Overview

- Assess Technical and Market Barriers and Opportunities for:
 - Plug-In Hybrid Electric Vehicles (PHEV)
 - Fuel Cell Hybrid Vehicles (FCHV)
 - Conventional Prius as “control”

- Drivers’ Comparative Responses to HEV (Prius), PHEV, and FCHV

- Trade-off Between Vehicle Characteristics, Environmental Impact and Vehicle Cost
Program Elements

- Household Placements (HEV, PHEV, FCHV)
- Energy Use and Cost Analysis
- Air Quality and GHG Emissions Analysis
- PHEV/Utility Grid Interaction
- PHEV Testing and Certification
- PHEV Technical Evaluation
- Education and Outreach Messages
Vehicle Characteristics and Fuels

HEV: Prius as Control Vehicle

PHEV:
- 500 + Mile Combined Electric and Gasoline Range
- Approx. 7 Mile Range and 4 Hour Charge Time (110v)
- Charge at Home and at Work

FCHV:
- Approx. 150 Mile Range With 3.5 kg of Hydrogen Fuel Storage (at 5,000 psi)
- Next Generation Vehicles with 10,000 psi Storage Will Have Double the Range
- Fuel at One Central Location
Household Placements

Screening and Placement

- Northern and Southern California
- Company and Individual Participation
- Consecutive exposure (4 weeks/vehicle)
 - HEV (Prius)
 - PHEV (Toyota modified Prius)
 - FCHV (Toyota Highlander)
- Drive as Normal Personal Car
Research Methodology

- Vehicles Equipped with ITS Technologies to Track Usage Patterns
- Focus Groups Before Exposure to Vehicles
- Longitudinal Survey at Two Week Intervals
- Exit Interviews
Participant Response to Vehicles

- Vehicle Attributes (Range, Performance, Drivability, Acceleration/Braking, Fueling)
- Specific to technology
- Comparative Among Technologies
- Ownership and Fueling Perceptions (Cost, New Fueling Arrangements)
- Attitudes Towards Environment
- Willingness to Consider Innovative Technologies
- Fueling patterns & perceptions
Energy Use and Economic Analysis

- Analyze Potential Energy Use, Environmental Impacts and Economics of Vehicle Types Based on Household Usage Patterns:
 - Criteria Pollutant Emission Analysis
 - GHG Emission Analysis (fuel cycle basis)
 - Assess Economics of Vehicle Operation
 - Understand Impacts of Economics on Driving Behavior
- Probe “Willingness-to-Pay” for Different Vehicle Types
Urban Air Quality Analysis

- Leverage the Experience and Capability from CEC/ARB/AQMD UCI Research on Assessment of the Impacts of Distributed Generation, Vehicle, and Fueling Scenarios on Urban Air Quality

- Establish PHEV and Distributed Generation Scenarios for the Selected Years of Analysis

- Collaborate with Local AQMDs to Assess Potential Emissions/AQ Impacts of PHEV Use
PHEV/Utility Grid Interaction

- Characterize Impact on Grid Capacity, Diurnal Demands
- Establish the Grid Emissions Associated with PHEV Charging
- Critically Analyze Scenarios for Grid Support through PHEV Connectivity
- Develop Grid Connection Scenarios and Draft Protocols for Managing and Controlling PHEV Charging and Storage Resources
PHEV Certification

- Evaluate Challenges of PHEV Certification Considering All Electric Range
- Identify Gaps Between Current Certification and Requirements for PHEV Certification
 - Define Appropriate Duty Cycles for PHEVs
 - Define All Electric Range for PHEVs
 - Evaluate Impacts Between All-Electric and “Blended” Hybrid Architecture
- Delineate Instrumentation and Testing Protocols
- Establish Factors that Influence Transient Bursts of Criteria Pollutant Emissions During Extended All-Electric Driving Mode
Technical Evaluation

Evaluate Technical Attributes of PHEVs:

- Battery Performance and “Health” Issues Related to Capacity, State of Charge, and Duty Cycles
- Benefits and Differences in Maximized All Electric Range Versus “Blended” Power
- Influence of Extended Electric-Mode Driving on the Release of Criteria Pollutants

Collect and Evaluate Data On:

- End-User Charging Behavior
- Driving Behavior
- Level 1, 2, and 3 Charging on PHEV Battery Life, PHEV Architecture Costs, and PHEV End-User Utility
- Sourcing of System Battery Components to Tier One or Third-Party Suppliers
Education and Outreach

Provide materials for future education and outreach campaigns that target key questions and issues that the public may have about advanced technology.
Project Team

University of California – Berkeley

Susan Shaheen, PhD (PI)
Timothy Lipman, PhD (Co-PI)
Caroline Rodier, PhD
Brett Williams, PhD
Rachel Finson
Elliot Martin

University of California – Irvine

Professor Scott Samuelsen, PhD (PI)
Adjunct Professor Jack Brouwer, PhD (Co-PI)
Professor Donald Dabdub, PhD
Tim Brown, PhD
Lorin Humphries
David Allgood
Karel Jansen

Toyota

Takehito Yokoo
Tatsuaki Yokoyama
Shimpei Miura
Justin Ward
Yusuke Kamijo
Vern Francisco
Bill Reinert
Jaycie Chitwood
Craig Scott
Rachel Finson
Project Manager
rfinson@tsrc.berkeley.edu