

Energy Disaggregation

Carrie Armel
Precourt Energy Efficiency Center, Stanford

December 2011

What is Disaggregation?

Disaggregation allows us to take a whole building (aggregate) energy signal, and separate it into appliance specific data (i.e., plug or end use data). A set of statistical approaches are applied to accomplish this.

Overview

- 1. Why is appliance specific data useful?
- 2. Disaggregation algorithm requirements
- 3. Smart meters constraints
- 4. Recommendations for using the algorithms with smart meters

Appliance-Specific Feedback

Annual Energy Savings

(Top 4 bars from Ehrhardt-Martinez, Donnelly, & Laitner, 2010)

Appliance Feedback Augmented

Benefits of Appliance-Specific Energy Use Data

Domain	Explanation
Residential Energy Reductions	40+ studies on feedback reducing energy use, with limited appliance-specific work showing greater energy reductions
	Provides clear recommendations and detection of malfunctions; households can then be channeled into specific programs (e.g., audits, appliance replacements)
	Enables new behavioral approaches
Program Evaluation	Improved sensitivity to detect change from programs, and iteratively improve programs.
Targeted Marketing	Strategic, specific, energy efficiency segmentation & marketing
Economic Models and Policy Recs	Economic models can be improved through specificity to better inform policies, such as funding allocations
Commercial Energy Reductions	Large untapped savings
Building Research and Design	End use specific information could clarify why predicted (i.e., modeled) and actual building energy use are discrepant, to guide future improvements.

Hardware Options for **Getting Appliance-Specific Data**

	Sensing Technology	Cost to Consumer	Installation Effort	Adoption
Hardware Disaggregation	Plug Level Hardware Monitors (e.g., Kill-A- Watt, EnergyHub)	\$30-\$50/plug; \$300-600/home	Most plugs – Med 240V plugs - Hard	Low; in existence for past 7-8 years
	Smart Appliances	\$100+ additional compared to non- Smart appliances	Easy	10-15 years after introduction for mass adoption
Software Disaggregation	House Level Current Sensor (example - TED, Blueline, Egauge etc.)	\$200+/house	Very Hard	Low (high cost + high effort)
	Smart Meter	None	None	Very High & fast (installed by utilities)

Smart Meter is the lowest-cost & lowest installation effort sensor for consumers

Disaggregation Algorithm Data Requirements

Smart Meter Hardware Capabilities

Hardware Options for **Running** the Algorithms

Recommendations

ORD JUNIOR COMMENT

Research

• Improve disaggregation algorithms

To improve robustness and accuracy of the algorithms, while reducing frequency, processing, and training requirements. Priorities are: 1min-1sec, 10Hz-2KHz, 10-15KHz

Develop a common data set

That captures variability over appliances as well as operating conditions and make it available to developers – currently, a dearth of data is limiting dev't

- Organize a competition using this data set
 As with prior algorithms, this would foster algorithm development at universities
- Establish definitions of accuracy

To enable comparison of algorithms, and answer critical questions

Establish testing facilities for evaluating algorithms in realistic environments

Determine real algorithm & smart meter capabilities by probing various components etc. Collaboration between universities and industry is useful here

Smart Meters

Leverage Existing Smart Meters

- Upgrade firmware to make reactive power available in addition to active
 This allows algorithms to disaggregate more devices
- Upgrade firmware to support compression of data

Transmitting events/transitions instead of raw load profiles could significantly improve the frequency of data available to HAN devices, as band-with is currently a bottleneck

Revise Future Smart Meter Specs

- Support up to 15KHz of sampling frequency
 - Costs a few dollars and enables the next class of disaggregation algorithms
- Explore using low-power WiFi instead of ZigBee
 - Enables consumers to receive data from the Smart Meters without purchasing additional hardware
- Support disaggregation inside the Smart Meters
 - To avoid AMI or HAN network being the bottleneck in transmitting data out of Smart Meter
- Add a serial port on meter to allow consumer owned device to directly access their load profile
 - Already being done in Europe to maximize the potential of energy savings for consumers

- Mandate enabling of ZigBee radios soon, at least in pilots
 - HAN activation & data would accelerate the development of disaggregation algorithms
- Mandate that Utilities share the data collected during HAN Pilots anonymously with research institutes
 - Lack of real life data has been one of roadblocks for algorithm developers
- Mandate that Utilities select HAN devices that allow consumers to access or share their data with any third party
 - Fosters innovation since small businesses can now sell directly to consumers and invest time into developing superior disaggregation solutions
- Approve a rebate to make ZigBee gateways effectively free to consumers
 - No different from a \$100 rebate available for an Energy Star refrigerator disaggregation can provide much higher savings than a refrigerator alone

Commercial Solutions

- 1. High Energy Audits
- 2. MyEnerSave, PlotWatt
- 3. Desert Research Institute, Navetas
- 4. GE, Intel, Belkin

Collaborators

Abhay Gupta, MyEnerSave Adrian Albert, Stanford Gireesh Shrimali, CSLI Zico Kolter, MIT

kcarmel@stanford.edu

The Benefits

- 1. Provide automated diagnostics/personalized recs
- 2. Motivate action with specialized behavioral techniques
 - Novel incentives & rate structures, Feedback, Markets,
 Competitions, Data visualization
- **3. Create the best programs** with speed, ease, cost, and scale
- **4. Transform evaluation** by incentivizing utilities & encouraging diversification of behavioral programs
- **5. Improve segmentation** for energy efficient marketing
- 6. Improve building, and also appliance, research and design
- **7. Inform policy** with improved economic models
- → We believe these benefits will be significantly augmented with "Appliance-Specific" (or End-Use) Data

Recommendations

Leveraging Existing Smart Meters

- 1. Mandate enabling of the HAN soon, at least for pilots
- 2. Develop firmware upgrades to provide reactive power to HAN devices
- 3. Encourage HAN devices that allow consumers to access or share their data with any reputable third party, and provide rebates to make these free
- 4. Foster algorithm development to determine whether 10s-1min can give sufficient appliance recognition

Shaping Future Smart Meters

- 1. Explore using WiFi instead of ZigBee
 - Enables consumers to get data from Smart Meters without purchasing additional hardware
- 2. Support up to 15KHz of sampling frequency
 - Costs a few dollars and enables the next class of disaggregation algorithms
- 3. Support disaggregation inside the Smart Meters
 - To avoid AMI or HAN network to be the bottleneck in transmitting data out of Smart Meter

Research

Research

Develop a common data set

that captures variability over appliances as well as operating conditions and make it available to researchers

Support algorithm development

With test facilities, evaluations, collaboration between industry and universities.

Organize a competition

as has been done previously with algorithm development, as this would utilize the dataset and foster algorithm development at universities and beyond.

Establish definitions of accuracy

to enable comparison of algorithms, and to assess the usefulness of higher sampling frequencies.

The Benefits

- 1. Provide automated diagnostics/personalized recs
- 2. Motivate action with specialized behavioral techniques
 - Novel incentives & rate structures, Feedback, Markets,
 Competitions, Data visualization
- **3. Create the best programs** with speed, ease, cost, and scale
- **4. Transform evaluation** by incentivizing utilities & encouraging diversification of behavioral programs
- **5. Improve segmentation** for energy efficient marketing
- 6. Improve building, and also appliance, research and design
- **7. Inform policy** with improved economic models
- → We believe these benefits will be significantly augmented with "Appliance-Specific" (or End-Use) Data