

UNIVERSITY OF CALIFORNIA Berkeley Transportation Sustainability RESEARCH CENTER

Public Bikesharing in North America: Early Operator and User Understanding

Elliot Martin, Ph.D. University of California, Berkeley Susan Shaheen, Ph.D. University of California, Berkeley

Adam Cohen University of California, Berkeley

Stanford University May 17, 2013

Overview

- Public bikesharing defined
- Public bikesharing: history
- Study methodology

- Bikesharing operations in North America
- N. American bikesharing impacts & developments
- Future innovations
- Summary

What is Public Bikesharing?

- Bikesharing organizations maintain fleets of bicycles in a network of locations
- Stations typically unattended, concentrated in urban settings and provide a variety of pickup and dropoff locations
- Allows individuals to access shared bicycles on an as-needed basis
- Subscriptions offered in short-term (1-7 Day) and long-term (30-365 Day) increments

Bikesharing Station Examples

Hubway

Source: Hubway

Bikesharing Generations

- 1st Generation: Free Bikes ("White Bikes")
 - Demonstration and provided increased mobility
- 2nd Generation: Coin-Deposit Systems
 - Emerged from a need to deter theft and incentivize return.
- 3rd Generation: Information Technology (IT) System
 - Provides real-time information; employs technology to assist in rebalancing demand.
- 4th Generation: Demand-Responsive, Multi-Modal Systems
 - Mobile docking stations; smartcard integration with public transit; bike redistribution innovations; GPS tracking, touchscreen kiosks, and electric bikes.

N. America: Historical Overview

- North America's first IT-based bikesharing system, Tulsa Townies, started operating in 2007 in Tulsa, OK
 - First solar-powered, fully automated docking-based system in the world; provides service free of charge.

• In Canada, first IT-based public bikesharing system, BIXI (BIcycle-TaXI), began operating in 2009 in Montreal

Study Methodology

• Literature review

- Operator interviews with all 19 North American IT-based programs operational as of April 2012
- Conducted 14 expert interviews with transportation personnel, transit operators, policymakers, and community bike coordinators
- Completed online survey with users of early public bikesharing systems in: Montreal; Toronto; Washington, D.C.; and the Twin Cities (Minneapolis and Saint Paul)
- Analyzed operational data from two American operators for 2011

Startup/Closures: 1994 - May 2012

Bikesharing: North America

As of January 2012, 19 IT-based programs:

• 216,422 users and 11,473 shared bicycles

As of May 2012, there were 21 IT-based based operations.

18 more planned in 2012-2013 (NYC, Chicago, LA, SF) Shaheen et al., 2012

Business Models

- 1. Non-Profit (e.g., Denver B-Cycle)
 - Start-up and operational funding commonly supported through grants, sponsorships and loans
- 2. Privately Owned and Operated (DecoBike)
- 3. Publicly Owned and Operated (Golden Community Bike Share)
- 4. Publicly Owned and Contractor Operated (e.g., Capital Bikeshare)
- 5. Street Furniture Contract (SmartBike DC—closed)
- 6. Third-Party Operated (e.g., Chicago B-Cycle)
 - Profit-sharing agreement operated with local business
- 7. Vendor Operated (Bike Nation)
 - Operated by the same company that designs/manufactures system equipment

Seasonal vs. Year-Round Operations

Business Models

Types of Funding/Revenue Sources

Type of Funding and Revenue

Optimum Distance Between Docking Stations

Optimum Distance From Public Transit

Docking Station Features

Shaheen et al., 2012

Bicycle Access

Bikesharing Impacts

	Data (Year)	Trips Per Day	KM Per Day	CO ₂ Reduction (Kg Per Day)	
BIXI Montreal	2011	20,000	50,000	8,760	
		Trips Per Year	KM Per Year	CO2 Reduction (Kg Per Year)	
Boulder B-Cycle	2011	18,500		47,174	
Denver B-Cycle	2011	202,731	694,942	280,339	
New Balance Hubway (Boston)	2011	140,000			
Madison B-Cycle	2011	18,500		46,805	
San Antonio B-Cycle	2011	22,709		38,575	

Member Survey: Overview Fall 2011/Early 2012

Program	Users	Bicycles	Stations	Sample Size
Capital Bikeshare (D.C.)	18,000	1,200	130	5,248
Nice Ride Minnesota (Twin Cities)	3630	960	116	1238
BIXI-Montreal	40,000	5,120	411	3,322
BIXI-Toronto	4,000	1,000	80	853

Basic City Statistics of Member Survey

Transit Facts	Washington, D.C.	Toronto	Montreal	Minneapolis-St.Paul	
Kilometers of Rail Track	341	373	122	40	
Number of Buses	1,495	1,811	1,600	885	
Number of Rail (or Metro) Cars	1,106	951	759	27	
Unlinked trips	418,125,650	477,357,000	388,600,000	78,048,647	
Population Facts	Washington, D.C.	Toronto	Montreal	Minneapolis-St.Paul	
	······				
Population	601,723	2,503,281	1,620,693	667,646	
Area (km ²)	177	630	365	288	
Population Density (pop/km ²)	3,400	3,972	4,439	439 2,317	
Year of Data	2010	2010 (transit) 2006 (population)	2010 (transit) 2006 (population)	2010	

Distribution of Key Demographics

4%

Bikesharing Trip Purpose Montreal Toronto

Minneapolis-St. Paul

Washington, D.C.

Commute Times in the United States

Commute Times in Canada

One-way and Round-trip

System Activity

CapitalBikeshare & NiceRide Minnesota

2011 System Data	Data Type	1st Quarter (limited data)	2nd Quarter	3rd Quarter	4th Quarter	Total
Capital Bikeshare (Washington, D.C.)	Total Trips	10,976†	374,203	405,450	313,001	1,103,630†
	Single-Station Round- Trips	584	24,240	23,643	13,553	62,020
	% of Single-Station Round-Trips	5.3%	6.5%	5.8%	4.3%	5.6%
Nice Ride Minnesota (Minneapolis- Saint Paul)	Total Trips	NA	60,785	117,219	39,526	217,530
	Single-Station Round- Trips	NA	5,840	11,237	2,827	19,904
	% of Single-Station Round-Trips	NA	9.6%	9.6%	7.2%	9.2%
t 1st Quarter 2011 Capital Bikeshare data released was a subset (7%) of total trips						

Trip Duration

Modal Shift Question Structure

As a result of my use of Nice Ride Minnesota, I use the bus...

- □ Much more often
- □ More often
- □ About the same (bikesharing has had no impact)
- □ Less often
- □ Much less often
- I did not ride the bus before and I do not ride the bus now.
- I have changed how I use the bus, but not because of Nice Ride Minnesota.

Change in Bicycling

As a result of my use of bikesharing, I ride a bicycle (any bicycle)...

Washington, D.C.

Change in Driving a Car

As a result of my use of bikesharing, I drive a car...

Washington, D.C.

Change in Taxi Use

As a result of my use of bikesharing, I use a taxi...

Change in Urban Rail

As a result of my use of bikesharing, I use urban rail...

Washington, D.C.

Change in Bus

As a result of my use of bikesharing, I use the bus...

Change in Walking

As a result of my use of bikesharing, I walk...

Washington, D.C.

Urban Rail Systems of Cities Surveyed

Perceptions of Bikesharing as Enhancing Transit

I think of BIXI as an enhancement to the Montreal public transportation system.

Bikesharing with Transit instead of Car

Neutral (no opinion)

Strongly agree

Agree

Disagree Strongly disagree

Reduction of Vehicle Ownership

Impact on Local Shopping

As a result of my use of bikesharing, I shop at locations near existing bike stations...

Much more likely Somewhat more likely Somewhat less likely Much less likely Not more or less

likely, no difference

Impact on Exercise

I get more exercise now that I am a member of BIXI. [Montreal]

Helmet Use with Public Bikesharing

Montreal

Toronto

Minneapolis-St Paul

Washington, D.C.

Future Innovations

Summary

- Rapid growth of IT-based programs in North America (2010ongoing)
 - Approximately 20 planned and existing launches for 2012
- Changing emphasis on business models
 - Profit-based models becoming more prevalent
- Broadly, user survey indicates modal shift away from all other modes (auto and transit)
- Modal shift away from transit may have occurred due to transit congestion at peak times and shorter, faster, or more direct routing with bikesharing
- Transit modal shift increase where service is more limited and less frequent

Acknowledgements

- Mineta Transportation Institute, San Jose State University
- California Department of Transportation
- Adam Cohen, Stacey Guzman, Rachel Whyte, and Cynthia Armour, TSRC, UC Berkeley
- North American public bikesharing organizations

N. American Public Bikesharing Report

transweb.sjsu.edu/project/1029.html

www.its.berkeley.edu/sustainabilitycenter

