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ABSTRACT 

Much policy attention has been given to promote fledgling energy technologies that 

promise to reduce our reliance on fossil fuels. These policies often aim to correct market 

failures, such as environmental externalities and learning-by-doing (LBD). We examine 

the implications of the assumption that LBD exists, quantifying the market failure due to 

LBD. We develop a model of technological advancement based on LBD and 

environmental market failures to examine the economically efficient level of subsidies in 

California’s solar photovoltaic market. Under central-case parameter estimates, including 

nonappropriable LBD, we find that maximizing net social benefits implies a solar subsidy 

schedule similar in magnitude to the recently implemented California Solar Initiative. 

This result holds for a wide range of LBD parameters. However, with no LBD, the 

subsidies cannot be justified by the environmental externality alone. 

KEY WORDS: market failures, solar, learning-by-doing, diffusion, induced 

technological change, optimal policy, California Solar Initiative 



 

 2 

1. INTRODUCTION 

In light of the increasing scientific consensus on global climate change and the 

desire for greater energy security, many governments have recently set ambitious targets 

to increase the share of renewable energy in the total energy mix. To meet these targets, 

policymakers are deploying a variety of policy instruments, including technology 

subsidies. Along with wind, solar energy has been one of the largest beneficiaries of these 

policies, particularly in Germany, Japan and California. Appropriately assessing the 

economic efficiency of such policies is important as many other governments are 

planning on following suit.  

This paper models the optimal photovoltaic (PV) solar subsidy policy in 

California, and compares this policy to one of the largest PV energy incentive programs 

in the world, the recently implemented California Solar Initiative (CSI). 

Economic arguments for policies to promote renewable energy often include an 

assertion that the renewable energy technology will substitute for fossil fuel technologies 

that have important environmental externalities, in particular externalities associated with 

the atmospheric release of carbon dioxide. Although this argument is qualitatively 

correct, as will be discussed at a later point, it is not quantitatively correct for PVs: the 

externality appears to be far smaller than the proposed subsidy. Thus the current 

externality alone cannot justify large subsidies for renewable energy, including for PVs. 

A second argument is based on an appropriability market failure if the production 

of the new technology may have spillover benefits from learning by doing (LBD). 

Learning by doing characterizes technical progress for a technology as related to the 

cumulative experience with the technology: costs may decrease as cumulative experience 

increases. With LBD, a positive externality occurs because increased output (e.g., of solar 

panels) by one firm today contributes to a lower production cost in the future, benefiting 

that firm as well as other firms or consumers in the market. As firms cannot appropriate 

this entire spillover effect, the private market under-provides the product of interest.  

Such a LBD externality could provide an economic justification for a subsidy. 

The individually optimal production level of a firm would take into account the impact on 

future cost reductions for that firm alone. The socially optimal production level of that 

firm would take into account the impact on future cost reductions for all firms together, 
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an amount that could be expected to be many times higher in a competitive industry 

characterized by substantial LBD. The question, however, remains whether such an 

externality is quantitatively consistent with the proposed subsidies. 

Weighing the benefits of fostering a fledgling technology against the costs of the 

policy is complicated by difficulties of modeling the technology policy in inducing 

technological change. There is an extensive literature on the modeling of induced 

technological change in energy technologies, which tends to fall into the following 

camps: direct-price induced technological change, research and development (R&D)-

based technological change, and learning-by-doing. Modeling technological change as 

directly price-induced assumes that price increases of an input, such as energy, induce 

technological change that economizes use of that input. Modeling technological change 

as R&D-based assumes a specified relationship between R&D investment and improved 

technology (Clark and Weyant, 2002; Edmonds, et al., 2000; Loschel, 2002). 

The literature on technological change in solar energy primary focuses on 

learning-by-doing, with numerous studies empirically estimating the learning rate (LR), 

or the percent decrease in costs with a doubling of cumulative experience, where 

experience is often modeled simply as the capacity installed. Williams and Terizen 

(1993) estimate that solar photovoltaic (PV) module (i.e., solar panel) prices on the global 

market followed a learning rate of 18% between 1976 and 1992. Watanabe (1999) finds a 

20% learning rate in installation costs in the Japanese market between 1981 and 1995.  

IEA (2000) and van der Zwaan and Rabl (2004) update the global learning rate with more 

recent data and both find a learning rate of around 20%. 

McDonald and Schrattenholzer (2001) bring together estimates in the literature of 

learning rates in a wide range of energy technologies, including solar. Not surprisingly, 

they find that solar technology has had a relatively high rate of learning, especially when 

compared to mature fossil energy technologies. This result corresponds with Jamasb 

(2007), who finds that mature technologies such as coal-fired electricity generation and 

large hydropower have had much lower learning rates than “evolving” technologies such 

as nuclear power, waste to electricity, and wind power. Solar photovoltaics in California 

are arguably also an “evolving” technology. 
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Of course, such characterizations of LBD summarize all of factors associated with 

cost reductions into one simple functional relationship between the capacity installed and 

unit cost. This simple characterization leads to a common criticism: the lack of a “natural 

law” forcing such a relationship or theory explaining it (Junginger, et al., 2005). The 

intuition for learning described in the seminal paper on LBD by Arrow (1962) is that 

knowledge can be gained by hands-on experience with a problem and that learning 

occurs through action. But while the functional relationship between experience and costs 

may be an empirical observation, attributing all of the cost reductions to learning neglects 

any other sources of cost reduction (Clark and Weyant, 2002).  

This criticism can also be expected to apply to the global solar PV module 

market. Nemet (2006) examines learning in the global PV market and finds that learning 

only weakly explains cost reductions in the most important factors in the cost of solar PV 

modules. Papineau (2004) finds that the effect of cumulative experience on total solar PV 

cost reductions is highly significant, but becomes insignificant when a time trend is 

added. However, the effect of R&D on total solar PV cost reductions is less significant 

than the effect of experience. 

Duke, Williams, and Payne (2005) and Duke (2002) suggest a feature of the solar 

PV market that may provide an explanation: learning-by-doing in solar PV module costs 

is a global phenomenon, but learning-by-doing in solar PV balance-of-system (BOS) 

costs is a local phenomenon. The solar PV BOS costs include all of the costs of a solar 

PV system installation except for the cost of the PV module (i.e., the cost of labor, the 

inverter, management, and marketing). Learning in the cost of PV modules is usually 

assumed to be based on global experience, since most modules are manufactured and sold 

around the world in a global market. In contrast, learning that occurs in the cost of 

installing solar PV systems, marketing, and managing the installations and supply chain 

appears to build knowledge and lower costs at a much more local level. 

Just as Joskow and Rose (1985) suggest that experience appears to have lowered 

construction costs for building coal-burning electricity generation plants through the 

repetitive design of technological similar plants and repetitive management of 

construction, Duke (2002) suggests that in the solar PV market experience has lowered 

BOS costs at a local level by repetitive design of technologically similar installations and 
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management of installations. Furthermore, in both cases, the authors suggest that some of 

this learning may accrue to individuals or individual firms, but at least some of it is likely 

to be “general” or “industry-wide” knowledge that can not appropriated by individual 

firms, due to employees changing firms and firms copying the best-practices of other 

firms. 

The recent evidence by Nemet (2006) and Papineau (2004) can be viewed in light 

of this intuition. Nemet’s finding that evidence for learning in the module cost is weak 

can be viewed as suggesting that R&D or other factors play a larger role in solar PV 

module cost reductions. Papineau’s finding that learning is not significant when a time 

trend is included may confound the lack of learning in module costs from learning in 

BOS costs. Duke (2002) finds that learning in the BOS cost in Japan has historically been 

greater than global learning in the PV module cost. 

This paper examines the implications of the assumption that LBD is a reasonable 

model of technological change in the BOS. We develop an economic model with LBD 

technological change to investigate optimal subsidy policy to correct for LBD and 

environmental market failures. Our model has broader applicability to any renewable 

energy technology with strong LBD potential, but is designed and parameterized to 

examine the efficient level of solar subsidies in California and investigate the efficiency 

of the CSI. Finally, we provide a sensitivity and robustness analysis of the optimal policy, 

including implications of the converse assumption – that LBD is insignificant. Results 

indicate that if LBD at even modest rates accurately describes future cost changes, the 

CSI is near optimal.  But if LBD is insignificant, then the CSI over-subsidizes solar 

relative to the social optimum. 

 

2. BACKGROUND ON SOLAR ENERGY POLICY IN CALIFORNIA 

Although solar energy makes up only 0.3% of the total electricity supply in 

California, solar PV has experienced rapid growth since 2000, with under 5 MW installed 

in 2000 and nearly 198 MW installed at the end of 2006 (CEC, 2005; CEC, 2007). This 

rapid growth is at least partly a result of two California government incentive programs: 

solar rebates (a dollar amount per installed Watt) and tax credits (a percentage of the 
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installation cost of a solar system paid by the state).1 Figure 1 indicates the connection 

between historic incentives and residential solar system installations in California. 

 

Figure 1. Historic Incentive Levels (Left) and Residential Solar System Installations 

(Right) in California 

 

 

In January 2004, Governor Schwarzenegger announced the “Million Solar Roofs 

Initiative,” setting the goal of one million solar homes in California by 2015. Key 

elements of this vision were promulgated by a California Public Utilities Commission 

(CPUC) rulemaking on January 12, 2006, as the “California Solar Initiative” (CSI). CSI 

provides the assurance of incentives over 11 years, a serious commitment on the part of 

California to solar energy (CPUC, 2007b). 

Most of California incentives are focused on residential and commercial PVs, 

rather than central generation solar, so our analysis follows suit. The largest market 

segment, PV Residential Retrofit, involves the installation of solar panels on rooftops of 

existing homes and small commercial buildings. The PV Residential New Construction 

segment installs solar systems during the construction of new homes. California has a 

strong commercial solar market, boosted by the Self-Generation Incentive Program. 

Since this program was merged with the CSI early 2007, we do not model it explicitly, 

                                                 
1 From January 1, 2006 to December 31, 2007, there is also a Federal tax credit for residential installations 
of 30% of the installation’s cost (up to $2,000). We do not model this credit due to its short-lived nature. 
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but instead include it in the PV Residential Retrofit category. Most commercial solar 

systems tend to be small and have similar economics to residential systems.  

The CPUC does not specify an exact incentive schedule for the CSI, but the 

program began at $2.50/Watt in 2006, with the incentives slated to be reduced by an 

average of approximately 10 percent annually (nominal dollars), and fully phased out by 

2017 (CPUC, 2006).  Figure 2 shows our interpretation of the planned incentive scheme.  

In August, 2006 the CPUC modified the incentive schedule so that reductions in subsidy 

would be a function of installed capacity rather than a pre-determined annual rate. This 

scheme results in subsidies very close to the incentives in Figure 2 when matched with 

the installed capacity of the CSI that we find in Section 5 of this paper (CPUC, 2007a).  

The CSI leaves the 7.5% tax credit in place until the end of the policy.  

 

Figure 2. Incentives Over Time in CSI (Nominal Dollars) 
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3. A MODEL TO ANALYZE CALIFORNIA SOLAR POLICY 

We develop a model to analyze the economic efficiency of solar subsidy policies 

in California, with the following key characteristics: 
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• Consumer choice – purchases of solar systems depend on both the net 

present value (NPV) of the benefits to the consumer and a diffusion process. Subsidies 

influence the NPV. 

• Learning-by-doing – costs of supply depend on the cumulative past 

production and installations. This assumption will be varied in order to test its 

implications. 

• Environmental externalities – there are externalities associated with the 

electricity production for which solar substitutes. 

• Economic efficiency as a policy goal – the goal is to set a time path of 

subsidies which maximizes the discounted present value of net social benefits – that is, it 

maximizes economic efficiency. 

 

3.1 Consumer Choice 

Consumer choice is modeled by a specification in which annual demand in 

California, qt, consists of a demand curve (a function of NPV and t) and diffusion. This 

specification involves an S-shaped demand curve, to allow for the eventual saturation of 

the market: 

max

max( ) t

t
t tbNPV

t t

a q
q diff

a q a e−
= +

+ −
,     (3.1) 

where at represents the demand curve parameter in year t, difft the diffusion in 

year t, qmax is the maximum annual market size, NPVt is the net present value, and b is a 

parameter. We chose this specification to capture the key drivers of solar demand and 

match historical evidence from solar installation data in California that demand has 

grown more than linearly with the NPV of a panel (This is shown more fully in Section 4, 

Figure 3). In Germany and Japan, although no such data are available, the growth of solar 

installations over time is consistent with this demand specification (IEA, 2007). Given 

the uncertainty involved in the specification of the demand curve, we perform a 

sensitivity analysis on the parameters a and b (Section 5). 
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The diffusion component suggests that the demand curve shifts outward over time 

as consumers learn about and gain confidence in residential PV technology.  More 

specifically, it is modeled as a logistic growth function, with the following specification: 

1
1

max

1 t
t t

q
diff q

q
γ −

−

 
= − 

 
,      (3.2) 

where γ is a diffusion coefficient. 

The demand curve parameter is adjusted each year by the amount of diffusion as 

follows: 

1 1
1

1

( )t t
t t

t

q diff
a a

q

− −
−

−

+
= .      (3.3) 

This adjustment serves to incorporate the previous year’s diffusion into the 

current year’s “base demand” (the first term on the right-hand side of (3.1)). 

Finally, a bottom-up engineering-based model is used to quantify the relationship 

between the subsidies and the NPV. More specifically, for each market we calculate the 

NPV of a “typical” system for a solar customer. The underlying premise is that 

investments in solar reduce the energy bill of consumers, resulting in a positive cash flow 

over the lifetime of the solar investment. Loan financing is assumed for solar 

investments,2 and loan payments are partly offset by tax deductions of interest. The net 

cash flows resulting from the utility bill and tax savings combined with loan payments 

and maintenance costs are then used to calculate NPV. A subsidy policy reduces the 

initial installation costs, and thus directly increases the NPV of the investment. 

 

3.2 Learning-by-Doing 

Following the literature indicating global learning for module costs and local 

learning for BOS costs, we model each of these costs separately: 

, 1 1
BOSM

t M G t BOS tP Q Q ββα α −−

− −= + ,      (3.4)  

                                                 
2 Many solar consumers do not take out loans specifically for solar, but often combine solar investments 
with refinancing of mortgages. 
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where Pt, the installation price per Watt of the PV system in year t, QG,t-1 is the 

global cumulative PV installations, Qt-1 is the cumulative PV installations in California, 

βM and βBOS are learning coefficients, and αM and αBOS are parameters. The number 2-β is 

often referred to as the progress ratio of a LBD system. The progress ratio indicates the 

strength of the learning effect, and is defined as 1 - LR, where LR is the learning rate 

discussed in Section 1. 

The cumulative installations in California (Qt-1) are determined by consumer 

choice, as discussed above. The cumulative global installations (QG,t-1) are determined 

exogenously, through an assumed growth rate – effectively implying that module costs 

are exogenously determined. 

 

3.3 Environmental Externalities 

We incorporate benefits from the avoided cost of environmental externalities 

directly included in the objective function, as described in the next section. We recognize 

that the production of a solar panel requires some energy itself. The energy payback time 

of solar panels with current technology is estimated to be three years over a total lifetime 

of 30 years, and one year for anticipated technology (Alsema, 1998; Kato, et al., 1997; 

Palz and Zibetta, 1991). Thus, using estimates from the literature of the size of the 

environmental externalities may slightly overestimate the benefits of solar. However, we 

believe that this is well within the range of the uncertainty of the size of the 

environmental externalities. 

 

3.4 Economic Efficiency as a Policy Goal 

Subsidies increase the NPV for the consumer, resulting in increased demand and 

cumulative installed capacity Qt.  Increased installed capacity provides both 

environmental benefits and, through LBD, lower future prices and hence a higher NPV 

for the consumer. The model is designed to solve for the time path of subsidies that 

maximizes the present value of these environmental and consumer benefits minus the 
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cost of the subsidies to the people of California. This dynamic optimization problem is 

summarized as 

( ) ( ) ( ){ } ( )
( )

∑
= +

−+
=

T

t
t

tttttttttt
t

I r

IIqeQINPVIqIXq
IPVSBMAX

t 1 1

,,
)( ,  (3.5) 

where PVSB is the present value of net social benefits, It the incentive (i.e., 

subsidy) in year t, X is the environmental externality accrued over the lifetime of an 

installed Watt, qt(⋅) the installed capacity (i.e., demand) in year t, Qt the cumulative 

installed capacity in year t, NPV(⋅) the net present value to the consumer per installed 

Watt, e the electricity price growth rate, and r the discount rate. 

The total benefits in a year t are proportional to the number of units installed in 

that year (qt) and include the environmental benefits plus the consumer benefits. 

Environmental benefits are assumed to be a fixed value X per Watt. Consumer benefits 

are the sum of the net value transfer to all solar customers, expressed as the product of 

NPVt and qt. The cost to taxpayers is the total cost of the subsidies (qt It). 

Rather than netting out the subsidy value, we include the subsidy in NPV and as a 

cost. This approach allows costs to taxpayers to be scaled by a deadweight loss factor, 

depending on how the incentive costs are raised. In California, the plan would impose a 

surcharge on electricity to fund solar subsidies. If electricity were underpriced due to a 

negative externality, there could be a double dividend (Goulder and Schneider, 1997).3 

However, in the tiered rate schedule of electricity pricing in California, some consumers 

pay more than the marginal social cost, implying there is a deadweight loss. We assume 

there are no efficiency losses or gains due to a tax to raise the subsidy revenue.  

 

4. MODEL IMPLICATIONS FOR CALIFORNIA SOLAR POLICY 

This section discusses the parameterization of our model, and then addresses the 

following key questions: (1) is solar currently financially attractive for consumers, (2) 

how economically efficient is CSI and (3) what would the “optimal” policy look like? 

                                                 
3 Raising electricity taxes also effectively decreases real income for households and acts as an implicit 
factor tax, lessening the double dividend (Goulder, 1995). 
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4.1 Parameterization 

4.1.1 Optimization Model Parameters 

This section provides a brief overview of the most important parameters used as 

baseline estimates in our model. Table 1 presents a list. The economic values are stated in 

terms of nominal dollars, since the incentives are determined in nominal dollars. 

 

Table 1. Baseline Parameter Values 

Parameter Description Value 

X Environmental externality benefit per installed Watt $0.015 per year 

2-βM Progress ratio for modules 0.9 

2-βBOS Progress ratio for balance of system 0.9 

gG Long-term global solar growth rate 10% 

aRR Demand curve parameter, residential retrofit 1,000 

bRR Demand curve parameter, residential retrofit 1.04 

qmax,RR Maximum yearly number of installations (res. ret.) 200,000 

aNC Demand curve parameter, new construction 212 

bNC Demand curve parameter, new construction 1.04 

qmax,NC Maximum yearly number of installations (new cons.) 75,000 

γRR Diffusion parameter, residential retrofit 0.15 

γNC Diffusion parameter, new construction 0.15 

 

An installed Watt of PV yields environmental benefits over its lifetime. These 

environmental benefits are estimated based on a $50/ton carbon externality in 2006, 

which makes up 70% of the total environmental benefits, with the remainder including 

damages from NOx, SO2, PM-10, and Mercury (Gillingham, et al., 2006). We assume that 

the carbon price increases over time but that the carbon dioxide released per marginal 

kilowatt hour of electricity decreases correspondingly over time, so that the nominal 

dollar value of the environmental externality remains constant at its year 2006 value.  

This approximation allows us to use an annuity formula with a 30 years lifetime and a 

discount rate of 7% to estimate an environmental benefit of $15 per kilowatt of new 

installed capacity ($0.015 per Watt). 
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Historically, the progress ratio for solar PV has been approximately 0.8 (IEA, 

2000; van der Zwaan and Rabl, 2004). The degree to which learning is appropriable and 

will continue into the future is highly uncertain, so for one estimate, we assume a 

progress ratio of 0.9 in the future, the highest (i.e., least learning) value typically 

observed in emerging technologies. Since we are testing the implications of LBD we vary 

LBD between 0.75 and 0.99 with the latter figure rendering LBD nearly insignificant. 

We estimate the demand curve parameters in Table 1 by fitting an S-curve from 

equation (3.1) through historical data from the California Energy Commission (2006) of 

residential retrofit solar installations and the NPV per Watt that the consumer faced at the 

time of purchase (Figure 3). The NPV per Watt is calculated using historical subsidies 

and installation costs. The data represent relatively low numbers of installations per year, 

so the curve looks exponential. Our PV residential new construction demand curve is a 

scaled down version of this demand curve. 

 

Figure 3. Yearly Installations of Residential PV Systems Versus NPV per Watt, and 

the Fitted Demand Curve 
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For purposes of simplicity, we base diffusion only on the number of solar 

customers in the previous year. To estimate a value for the diffusion coefficient, we 

shifted the above estimated demand curve such that it passes through the most recent data 

point (NPV/Watt, Installations) = (1.19, 7320). Over the data collection period of seven 

years, this implies a yearly diffusion of approximately 15% of last year’s demand. Hence, 

we chose γ = 0.15. A sensitivity analysis of the effect of these estimates is performed in 

Section 6. 

 

4.1.2 Parameters for NPV Calculation 

To calculate the consumer NPV, we use technical data from Akeena Solar (2005). 

Table 2 lists the most important parameter values for the residential retrofit market. New 

construction is very similar, but with a smaller average system size. 

 

Table 2. Parameter Values for the NPV Spreadsheet Model (Residential Retrofit) 

Parameter (technical) Value Parameter (economic) Value 

Average system size 5,520 DC rated Watts Discount rate 7% 
2003 net installation price 

per DC rated Watt 
$7.28 Residential borrowing rate 5% 

kWh savings per year 7,176 Marginal tax rate 32% 
Inverter replacement cost $3,600 Loan term 30 years 
Maintenance cost per year $10   
Time-of-use (TOU) factor 1.25   

Panel expected life 30 years   
Inverter expected life 10 years   

 

The TOU factor is included because solar systems produce much of their output 

during peak electricity-usage hours when the retail electricity price is higher, and sell 

their excess output back to the grid through net-metering.4 This implies about 25% higher 

electricity bill savings (Borenstein, 2005).  

An important input into model is the growth rate of nominal electricity prices, 

which directly influence the financial attractiveness of solar energy. The highly uncertain 

                                                 
4 Net metering is a system in which the module owner receives retail credit for at least a portion of the 
electricity they generate. 
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future electricity price has three components: natural gas fuel cost, transmission and 

distribution costs, and a historical surcharge due to the California electricity crisis. Gas 

prices until 2011 are based on NYMEX futures and grow at 3% per year afterwards 

(NYMEX, 2006). We assume the transmission and distribution costs increase at 1% per 

year and that the historical surcharges are paid off linearly over 10 years. Figure 4 shows 

the assumed baseline evolution of the average electricity price out to 2020. 

 

Figure 4. Projected Nominal Average Electricity Prices for Highest Rate Tier, with 

Linearly Decreasing Surcharges and 3% Natural Gas Price Growth After 2011 
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4.2 Current Financial Attractiveness of Solar 

With the above parameterization, we examine the financial attractiveness of solar 

in 2006 using the initial subsidy levels of the CSI: a $2.50 Watt rebate and a 7.5% solar 

tax credit for PV systems (Table 3). In addition, there is a third implicit federal subsidy 

for solar, assuming that solar panel owners finance their systems with a loan and make 

use of the federal tax deduction for home improvements. 
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Table 3. Summary of Financial Attractiveness of Solar Systems to Consumers 

Market 
Segment 

Price 
($000) 

Incentive 
($000) 

NPV 
no inc. 
($000) 

NPV 
with inc. 
($000) 

NPV/Watt 
with inc. 

($) 

PV Res Retrofit 36.9 14.3 -7.7 1.6 0.35 

PV Res New 12.5 5.3 -2.1 1.4 0.78 

 

Residential PV systems have a negative NPV prior to the CSI incentives, and a 

slightly positive one afterwards. The size of the incentive exceeds the difference between 

the NPV with and without incentives because the home improvement tax deduction is 

larger for higher loans.  

 

4.3 Economic Efficiency of CSI 

Given the CSI incentives (Figure 2) and our baseline assumptions, including a 0.9 

progress ratio, the model calculates that 145,700 PV residential retrofit solar systems are 

installed by 2018, representing 804 MW of capacity.5 When combined with PV 

residential new construction, this implies 215,100 residential PV systems by 2018, much 

less than the original policy aim of one million.6 Figure 5 presents the time path of all PV 

residential retrofit installations under CSI as well as the system installation costs. The 

LBD reduces the cost of installation over time. The price of a 5,520 Watt system equals 

$36,900 in 2006 and decreases to $28,100 by 2018 (decreasing further to $23,400 by 

2030). 

 

                                                 
5 Only 28,800 PV residential retrofit systems are installed if there are zero incentives. 
6 Note the original goal of one million solar systems by 2018 also included solar from other solar market 
segments, although cursory investigation suggests it is unlikely that the other market segments would 
provide nearly 0. 8 million systems without additional significant incentives 
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Figure 5. Total Yearly PV Residential Retrofit Installations (Left) and the 

Associated Installation Cost for New Systems under CSI (Right) 

 

 

Figure 5 indicates that under our baseline assumptions, CSI is successful at 

fostering a self-sufficient residential PV market, albeit with a period of decline from 2017 

- 2020 after the last incentives expire. 

We define the “present discounted value of CSI” (PDV) as the difference between 

the present value of net social benefits of solar installations (3.5) with the incentives (ICSI) 

minus the PDV of net benefits without any incentives (a no policy case): 

 

( ) ( )0CSIPDV PVSB I PVSB= −       (4.1) 

 

The PDV of CSI for residential retrofit turns out to be positive and quite 

significant— about $1.3 billion. Residential new construction adds another $0.3 billion to 

the PDV of net benefits. Figure 6 illustrates the PV residential retrofit undiscounted costs 

and benefits of CSI over time (relative to the no policy case). 
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Figure 6. Costs and Benefits of CSI for PV Residential Retrofit 
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These results allow us to quantify the two externalities. The PDV of CSI for 

residential retrofit ($1.3 billion) can be split up into the PDV of additional environmental 

benefits ($0.2 billion), the PDV of additional consumer benefits due to LBD ($1.7 

billion) and the PDV of incentive cost ($0.6 billion).7 This suggests that with a progress 

ratio of 0.9 the environmental externality is only about 10% the size of the LBD 

externality, an important result indicating that the primary motivation for solar subsidies 

depends on assumptions about LBD, rather than environmental externalities. 

This is underscored by the fact that the bulk of the benefits of the policy would 

occur many years after the costs of the incentive have been paid, and are predominately 

due to LBD raising the NPV of solar investments in these later years (consumer benefits). 

The discounted benefits level off around 2030, and soon afterwards decline. 

We conclude that, given our baseline assumptions, CSI has a positive net benefit 

and appears to be an economic efficiency-improving policy. 

 

                                                 
7 Adding in new construction brings the total cost of the CSI to just under $1 billion. 
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4.4 Optimal Solar Policy 

Table 4 below presents the time path of incentives that maximizes net benefits 

and compares it to CSI under our baseline assumptions.8 

 

Table 4. Optimal and CSI Incentives 

Year Optimal CSI Year Optimal CSI 

2006 $3.23  $3.10  2012 $1.82  $1.85 

2007 $2.96  $2.83  2013 $1.58  $1.70 

2008 $2.74  $2.59  2014 $1.34  $1.57 

2009 $2.52  $2.37  2015 $1.09  $1.46  

2010 $2.30  $2.18  2016 $0.78  $1.35 

2011 $2.06  $2.00  Average $2.04  $2.09 

 

Under our baseline assumptions, the two time paths of incentives are remarkably 

similar, with the optimal path being somewhat steeper. This is underscored by a nearly 

identical average of the incentives over the eleven years. Thus, it is not surprising CSI 

and the optimal subsidy lead to similar numbers of cumulative installations by 2018 

(Table 5). 

 

Table 5. Installations in 2018 for CSI, Optimal Policy and No Policy 

 

Given similar incentives and installations, the total incentive cost of CSI subsidy 

($1.2 billion) and the optimal policy ($1.1 billion) are also quite similar. Moreover, the 

                                                 
8 We show results for the PV residential retrofit market because it is the largest market that is being 
promoted in the CSI. We allow the incentives in the new construction segment to be different from 
residential retrofit, However, in the optimal solution, incentives for new construction are very similar to 
incentives for retrofit. 

 Systems in 2018, 
CSI 

MW Systems in 2018, 
Optimal Policy 

MW Systems in 2018,  
No Policy 

MW 

PV Res Retrofit 145,700 804 141,000 778 28,800 159 

PV Res New 69,400 146 80,500 169 3,700 20 

Total 215,100 950 221,500 947 32,500 179 
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time path of installations in the optimal subsidy is relatively close to that of CSI and is 

difficult to differentiate from Figure 5. The only notable difference between the time path 

of installations with the optimal subsidies and CSI is that the drop off in incentives in 

2017 is lessened, due to the smoother phasing out of incentives. 

Thus, under our baseline assumptions, including a progress ratio of 0.9, CSI is 

remarkably close to the economic efficiency-optimizing policy. The total installations in 

2018 would still fall short of the initial goal of one million solar homes, without 

considerable contributions from other solar market segments.9 Nevertheless, under these 

assumptions it appears there is an economic rationale for solar subsidies in California. 

 

5. SENSITIVITY ANALYSIS OF THE OPTIMAL POLICY 

A critical question is how robust this optimal policy (or CSI) is to different sets of 

assumptions, i.e., is the optimal policy still optimal if LBD is small or other assumptions 

are varied. Since the model is based on LBD-induced technological change, we first 

examine different assumptions about the progress ratio. The analysis above is based on a 

progress ratio of 0.9, which implies significant LBD (although less LBD than implied by 

the 0.8 value often used in the literature). Figure 7 shows that the average optimal 

residential retrofit incentives10 vary between $1 and $2/Watt under reasonable 

assumptions of long-term LBD in the range of 0.75 to just over 0.92. Average incentives 

are increasing with the progress ratio over this range because increasing LBD allows the 

solar market to become self-sufficient with less government intervention. However, if we 

assume very little LBD (e.g., a progress ratio much over 0.95), installations induced by 

government incentives have little effect on the long-run cost of solar systems. Thus the 

optimal policy involves very small incentives for solar – indicating that CSI could not be 

justified on efficiency grounds.  

 

                                                 
9 Interestingly enough, if we maximize the number of systems in 2018 subject to the constraint that the 
cumulative net benefits of the policy (until 2060) are greater than zero, we can achieve just over 725,000 
residential retrofit systems by 2018. 
10 The results in the sensitivity analysis are analogous for new construction. 



 

 21 

Figure 7. Average Incentives as a Function of the Progress Ratio, Holding All Other 

Parameters Constant 
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In addition to the LBD progress ratio, we also vary the values of other key 

parameters (Table 6). We vary each parameter individually, while keeping all other 

parameters at their baseline values. 

 

Table 6. Average Optimal Incentives with Different Parameters 

Discount rate 0.05 0.07 0.09 

     Average incentives ($) 2.05 2.04 1.84 

Residential borrowing rate 0.03 0.05 0.07 

     Average incentives ($) 0.99 2.04 2.72 

Natural gas price growth rate 0.01 0.03 0.05 

     Average incentives ($) 0.00 2.04 1.16 

Diffusion coefficient 0.10 0.15 0.20 

     Average incentives ($) 2.16 2.04 1.84 

Demand curve a parameter 500 1,000 1,500 

     Average incentives ($) 2.23 2.04 1.89 

Demand curve b parameter 0.52 1.04 1.56 

     Average incentives ($) 2.17 2.04 1.90 

Maximum annual market size 100,000 200,000 300,000 

     Average incentives ($) 1.81 2.04 2.16 
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An examination of Table 6 indicates that if we assume a LBD progress ratio of 

0.9, the optimal policy appears to be relatively robust to nearly all of the other key 

parameters we examined. Of course, with different values of these other parameters, we 

find considerable differences in the PDV of the net benefits of the policy ($1.3 billion in 

the baseline optimal case). For example, raising the discount rate to 9% reduces the PDV 

of the policy to $0.3 billion, while a lower discount rate of 5% increases the PDV of the 

policy substantially to $4.1 billion. Still, the most important conclusion is that if we 

believe in LBD at a level around 0.9, in most cases the optimal incentives remain 

relatively close to those of CSI.  

However, the optimal policy is the least robust to the natural gas price growth rate 

and, to a lesser degree, the residential borrowing rate. The natural gas price growth rate is 

one of the most uncertain parameters in the model, and it also appears have the most 

influence on the final results – far more even than the assumption about LBD. Our central 

estimate of 3% is derived from natural gas futures prices, but estimates ranging from 1% 

to 5% can all be considered within a reasonable range. 

Low natural gas prices imply low electricity prices, lowering the energy bill 

savings, and correspondingly, the NPV of the solar installation. Thus, solar PV would be 

sufficiently unattractive as an investment that incentives would induce few new solar 

customers although there would still be some rebate costs. The baseline policy has a 

negative PDV of net benefits (-$0.2 billion), and the optimal time path has zero 

incentives. With high growth in gas prices, the optimal policy is not successful at 

inducing as many additional solar systems, so the average optimal incentives are lower 

than the baseline result. However, the PDV of the baseline optimal policy ($1.3 billion) 

does not change much with much higher natural gas prices. Thus while the baseline 

optimal policy may not be optimal under different values of the natural gas price growth 

rate from our baseline, it is still efficiency-improving under a relatively wide range of 

natural gas price growth rates. 

The residential borrowing rate has varied in the recent past from 3% to 7%, 

depending on how consumers finance their purchase (Cinnamon, 2005). With low 

residential borrowing rates, solar becomes very financially attractive, both with and 
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without a policy. Thus, the policy is not as effective at inducing additional solar 

installations above the no policy case, and the optimal incentives are lower. With high 

residential borrowing rates (up to a certain point), the policy is more critical for inducing 

additional solar installations. In both cases the baseline optimal policy is still efficiency-

improving. 

One final assumption worth noting is the time horizon of the model. We find that 

the optimal incentives are quite robust to extending the time frame significantly beyond 

2060, for discounting implies that the net benefits from the policy after 2060 are 

negligible. 

 

6. CONCLUSION 

This paper develops an inter-temporal model that solves for the optimal solar 

subsidy policy in California. The policy internalizes externalities from avoided carbon 

emissions and firms’ unappropriated LBD benefits in BOS costs. Under our baseline 

assumptions, including nonappropriable learning, we estimate that the optimal subsidies 

lead to a substantial increase in economic efficiency, here estimated as $1.6 billion. 

Interestingly, only a small fraction of the policy benefits can be allocated to 

environmental benefits. The majority of the benefits can be attributed to a correction of 

the LBD externality. 

The baseline results suggests that subsidies should start out above $3 per installed 

Watt and drop down to $0 in 2017, a subsidy schedule very similar in magnitude to the 

CSI. These subsidies will lead to a self-sufficient market and approximately 200,000 

residential solar systems in 2018 if natural gas prices grow as we have assumed. This 

amount is much less than the one million envisaged by some politicians. Still, the 

advantages (export, energy security, consumer benefits) of having a self-sufficient solar 

market at the end of the next decade are potentially high, and should be of interest to 

California’s policy-makers. 

These results are robust to most key parameters. However, large differences in the 

natural gas growth and residential borrowing rates would lead to an optimal policy quite 
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different from the CSI – in most cases lower than the CSI. In addition, we find that the 

results do hinge on there being nonappropriable learning in the BOS cost of residential 

solar systems. If LBD at even modest rates accurately describes the future cost changes, 

then the CSI is near optimal. Over a broad range of assumed LBD, the average optimal 

incentives are increasing with less LBD, but when we assume very little LBD, the 

average optimal incentive declines sharply. If LBD is insignificant, then the CSI over-

subsidizes solar relative to the social optimum and could not be justified based on 

environmental benefits only.  

This result points to the importance of the nature of technological change in 

modeling solar policy. Future work to elucidate the origins of technological change in the 

renewable energy industries would greatly enhance our ability to accurately evaluate the 

economic efficiency of California’s solar policy, as well as national renewable energy 

policy in general. 
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