
Notes and References

1Here’s an excellent book-length treatment of this topic, with a focus on cell biology, free online [Link]:
Milo R, Phillips R. Cell biology by the numbers. Garland Science; 2015

2Although the Human Genome Project was declared complete in 2003, about 10% of the genome was unsequence-
able at that time. The first truly complete human genome sequence was reported in 2021 and published the following
year:

Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a human genome.
Science. 2022;376(6588):44-53

3As with some other complicated topics, for the sake of brevity we will generally simplify important points relating
to sex, gender and familial relationships, except when the complexities are specifically relevant. For example it’s con-
venient to refer to XX and XY individuals as female and male respectively. We do so despite the fact that (i) biological
sex is not entirely binary – some individuals have physical characteristics of both sexes due to mutations in sex-determination
genes, unusual karyotypes such as XXY, or other causes not all of which are currently understood; (ii) biological sex does
not necessarily correspond to gender; gender is actually more relevant than biological sex for many aspects of our lived
experiences – even though it is generally less connected to the core topics of this book; (iii) familial relationships do not
always imply genetic relationships – for example in the case of parents of adopted children.

4During our lives, our bodies produce about a light-year of DNA: [Link].
5For more on DNA storage systems see eg:
Erlich Y, Zielinski D. DNA Fountain enables a robust and efficient storage architecture. Science. 2017;355(6328):950-

4

Kim J, Bae JH, Baym M, Zhang DY. Metastable hybridization-based DNA information storage to allow rapid and
permanent erasure. Nature Communications. 2020;11(1):1-8

6Improbable Research’s video of Eric Lander’s 24 second and 7 word descriptions of the human genome: [Link]
7In 2021 the AlphaFold team reported huge progress on computational prediction of protein folding, thereby help-

ing to transform this field:
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure predic-

tion with AlphaFold. Nature. 2021;596(7873):583-9
8 An important set of exceptions to the standard genetic code is found in the mitochondrial genome. The mitochon-

drion is thought to have evolved from an endosymbiotic prokaryote, and it still retains a very small genome of its own.
This genome is so small that rare minor changes in the genetic code have been tolerated by natural selection. Specifically,
the genetic code in vertebrate mitochondria differs from the conventional code at four triplets: AGA and AGG are stop
codons instead of arginine; TGA codes tryptophan instead of stop; and ATA codes methionine instead of isoleucine.

9There are various categories of genes in which the RNA itself is functional. For example, in females one copy of the
X chromosome is inactive in each cell; this is achieved in part by transcribing an RNA called Xist off one of the two X
chromosomes. The Xist transcript coats that X chromosome and prevents transcription from most other genes. Xist is
an example of what is known as a long noncoding RNA (lncRNA). In addition to lncRNAs, other functional RNA genes
categories include microRNAs, transfer RNAs, ribosomal RNAs, and piRNAs.

10Another important exception to the Central Dogma is that some viruses use RNA as their genetic material, and then
use an enzyme called reverse transcriptase to make a DNA copy for replication. Reverse transcriptase is also used in the
lab to make DNA copies of RNA when we want to sequence RNA.

11The fact that the introns are so very long is probably not functionally important in most cases, and instead reflects
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a tendency for genomes to accumulate noncoding junk, as we will discuss below.
12There is some uncertainty about exactly how much alternative splicing is functionally important. One approach that

is often used to evaluate functional importance of biological features is whether a feature is maintained (conserved) over
evolutionary time, or whether it evolves rapidly, suggesting malleability and (usually) lower functional importance. Cu-
riously, alternative splicing patterns (specifically, exon skipping events) are not very conserved across species – and are
less conserved than overall expression levels. However interpretation of this is not entirely clear:

Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, et al. The evolutionary landscape of alter-
native splicing in vertebrate species. Science. 2012;338(6114):1587-93

Merkin J, Russell C, Chen P, Burge CB. Evolutionary dynamics of gene and isoform regulation in Mammalian tis-
sues. Science. 2012;338(6114):1593-9

Li YI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, Im HK, et al. Annotation-free quantification of RNA
splicing using LeafCutter. Nature Genetics. 2018;50(1):151-8

13There’s been quite a bit of interesting work on the sequence controls of splicing; these include both high-throughput
experimental approaches as well as machine learning methods to learn highly complex rules from genome sequence data
or experiments. See for example:

Rosenberg AB, Patwardhan RP, Shendure J, Seelig G. Learning the sequence determinants of alternative splicing
from millions of random sequences. Cell. 2015;163(3):698-711

Jaganathan K, Panagiotopoulou SK, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from pri-
mary sequence with deep learning. Cell. 2019;176(3):535-48

Zeng T, Li YI. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biology. 2022;23(1):1-18

14For example Down Syndrome occurs in individuals who have an extra copy of Chromosome 21. Chromosome-level
changes in copy number change the expression levels of the genes on that chromosome relative to the genes on other chro-
mosomes. It’s interesting to note that cells can often tolerate duplication of the entire genome better than duplication
of a single chromosome, as whole-genome duplication maintains the relative proportions of genes. Somewhat similarly,
many monogenic diseases are due to defects in the core transcriptional machinery, leading to broad transcriptional dys-
regulation rather than disruption of specific biological pathways; see Table 6.2 of

Calof AL, Santos R, Groves L, Oliver C, Lander AD. Cornelia de Lange syndrome: Insights into neural development
from clinical studies and animal models. In: Neurodevelopmental Disorders. Elsevier; 2020. p. 129-57

For example, Cornelia de Lange Syndrome is due to mutations that disrupt the cohesin complex; these cause minor
disruptions of many genes leading to diverse developmental disorders.

15Muniz L, Nicolas E, Trouche D. RNA polymerase II speed: a key player in controlling and adapting transcriptome
composition. The EMBO journal. 2021;40(15):e105740.

16Technically, the direct copy of DNA is called a pre-mRNA. This must be spliced to produce the mature mRNA. Most
splicing occurs at the same time as transcription.

17Expression (i.e., mRNA levels) of any given gene depend on the rate of transcription in the relevant cell type (de-
fined as the number of new mRNAs synthesized per unit time), and the mRNA decay rate. For most genes, control of
gene expression acts mainly on synthesis.

18An exception is that several proteins called General Transcription Factors are components of the Pre-Initiation Com-
plex and lack DNA binding domains.

19Most of the genome is bound by nucleosomes, and TF binding requires nucleosome removal. This can be much more
stable if multiple TFs can bind within the same nucleosome-free region.

20There’s a large, growing body of work using machine learning approaches to predict enhancer regulatory activity,
e.g.,

Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning–based sequence model. Na-
ture Methods. 2015;12(10):931-4

Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the accessible genome with deep convolutional
neural networks. Genome Research. 2016;26(7):990-9

Avsec Ž, Weilert M, Shrikumar A, Krueger S, Alexandari A, Dalal K, et al. Base-resolution models of transcription-
factor binding reveal soft motif syntax. Nature Genetics. 2021;53(3):354-66

21One famous example of long-range looping occurs at the FTO locus:
Sobreira DR, Joslin AC, Zhang Q, Williamson I, Hansen GT, Farris KM, et al. Extensive pleiotropism and allelic het-
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erogeneity mediate metabolic effects of IRX3 and IRX5. Science. 2021;372(6546):1085-91

22For empirical work on predicting enhancer-promoter interactions see e.g.,
Fulco CP, Nasser J, Jones TR, Munson G, Bergman DT, Subramanian V, et al. Activity-by-contact model of enhancer–

promoter regulation from thousands of CRISPR perturbations. Nature genetics. 2019;51(12):1664-9
23This number is a bit rough because we still don’t have a complete accounting of functional regulatory sequences in

all cell types. But around 10% of the genome shows signals of evolutionary conservation. This provides an estimate of
what fraction of the genome is functional – in the sense that changes in the DNA sequence have consequences for or-
ganismal fitness.

Ward LD, Kellis M. Evidence of abundant purifying selection in humans for recently acquired regulatory functions.
Science. 2012;337(6102):1675-8

Rands CM, Meader S, Ponting CP, Lunter G. 8.2% of the human genome is constrained: variation in rates of turnover
across functional element classes in the human lineage. PLoS Genetics. 2014;10(7):e1004525

24For statistics about gene sizes see
Piovesan A, Caracausi M, Antonaros F, Pelleri MC, Vitale L. GeneBase 1.1: a tool to summarize data from NCBI gene

datasets and its application to an update of human gene statistics. Database (Oxford). 2016;2016.
25Many of these regions are transcribed but not translated; as noted above, these are referred to as long noncoding RNA

(lncRNA) genes. Some lncRNA genes play essential roles, but most show limited evolutionary conservation and only
a tiny fraction are currently associated with putative functions, suggesting that most lncRNAs are likely nonfunctional:

Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nature
Reviews Molecular cell biology. 2018;19(3):143-57

Ponting CP, Haerty W. Genome-wide analysis of human long noncoding RNAs: a provocative review. Annual Re-
view of Genomics and Human Genetics. 2022;23

26See for example L1 silencing mechanisms:
Liu N, Lee CH, Swigut T, Grow E, Gu B, Bassik MC, et al. Selective silencing of euchromatic L1s revealed by genome-

wide screens for L1 regulators. Nature. 2018;553(7687):228-32.
27For examples in which TEs have been co-opted by their host genomes see

Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retro-
viruses. Science. 2016;351(6277):1083-7

Bartonicek N, Rouet R, Warren J, Loetsch C, Rodriguez GS, Walters S, et al. The retroelement Lx9 puts a brake on
the immune response to virus infection. Nature. 2022:1-9

28Mitosis and meiosis are complicated and deeply studied processes, and it’s impossible to do them justice here. We’ll
touch on a few of those complexities later in the book as they become relevant.

29To be more precise, meiotic recombination events can be resolved either with crossover or non-crossover events. Non-
crossovers involve copying of a small region (average 30–40bp in mice) from one chromosome to the other.

Li R, Bitoun E, Altemose N, Davies RW, Davies B, Myers SR. A high-resolution map of non-crossover events reveals
impacts of genetic diversity on mammalian meiotic recombination. Nature Communications. 2019;10(1):3900

While non-crossovers are very common they are difficult to detect in data. However the term “recombination” is of-
ten used in human genetics synonymously with crossovers.

30Some of the major resources, such as the human genome and 1000 Genomes Project data sets are freely download-
able. Other data sets such as the UK Biobank contain personal information about research subjects, albeit anonymized,
and can only be used by qualified researchers who agree to certain conditions for appropriate use of the data. However
in all these cases, researchers have a large amount of flexibility in how they use the data for their own analyses.

31Open science: [Link].
32For example, the prominent journal Nature writes on their website: “It is a condition of publication that authors de-

posit their data in an appropriate repository, and agree to make the data publicly available without restriction, except-
ing reasonable controls related to human privacy or biosafety.” [Link], accessed 10/01/2021.

33Roberts (2001) wrote “Sydney Brenner of the MRC facetiously suggested that project leaders parcel out the job to pris-
oners as punishment–the more heinous the crime, the bigger the chromosome they would have to decipher.”

Lewontin R. The dream of the human genome: doubts about the Human Genome Project. The New York review
of books. 1992;39(10):31-40
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Roberts L. The Human Genome. Controversial from the start. Science. 2001;291:1182-8
34This was in a White House ceremony in 1989 to award the National Medal of Honor to Stan Cohen and Herbert Boyer

who developed recombinant DNA technology; as recalled by Carol Ezzell in Scientific American, July 2000 [Link].
35There was a great deal of acrimony between the two groups, not least because Celera’s build incorporated data that

the Human Genome Project was releasing into the public domain on a daily basis (in part to prevent attempts to patent
genes). Some of the back-and-forth can be found here: HGP critique

Waterston RH, Lander ES, Sulston JE. On the sequencing of the human genome. Proceedings of the National Academy
of Sciences. 2002;99(6):3712-6;

Celera reply: Myers EW, Sutton GG, Smith HO, Adams MD, Venter JC. On the sequencing and assembly of the hu-
man genome. Proceedings of the National Academy of Sciences. 2002;99(7):4145-6

36Flagship papers on the Human Genome Sequence:
International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Na-

ture. 2001;409(6822):860-921

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Sci-
ence. 2001;291(5507):1304-51

International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome.
Nature. 2004;431(7011):931-45

37There have been occasional calls to change the reference to remove rare alleles, but such large changes to the refer-
ence genome would create all kinds of compatibility issues and in this case the medicine may be worse than the disease.

Ballouz S, Dobin A, Gillis JA. Is it time to change the reference genome? Genome Biology. 2019;20(1):1-9
38[Link] and p 146 of the supplementary information of

Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the Neandertal genome.
Science. 2010;328(5979):710-22

39Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a human genome.
Science. 2022;376(6588):44-53

40The HGDP was started at Stanford in the early 1990s by two of my mentors, Luca Cavalli-Sforza and Marc Feldman.
This project pioneered the concept of collecting cell lines from diverse human populations as permanent resources for
studies of genetic diversity, a concept later adopted by HapMap and 1000 Genomes. The HGDP was used for limited
genotyping in the 1990s, genomewide genotyping in the 2000s and, ultimately, whole genome sequencing in the 2010s.

Rosenberg NA. Standardized subsets of the HGDP-CEPH Human Genome Diversity Cell Line Panel, accounting
for atypical and duplicated samples and pairs of close relatives. Annals of human genetics. 2006;70(6):841-7

Hellenthal G, Busby GB, Band G, Wilson JF, Capelli C, Falush D, et al. A genetic atlas of human admixture history.
science. 2014;343(6172):747-51

Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, et al. The Simons genome diversity project: 300 genomes
from 142 diverse populations. Nature. 2016;538(7624):201-6

41Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic vari-
ation in 60,706 humans. Nature. 2016;536(7616):285-91

Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum
quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-43

42Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature. 2016;538(7624):161-4
43To be more precise, the vast majority of SNPs only have two alleles at any appreciable frequency. However, as we

discuss below, virtually every possible allele that is one step away from the reference genome exists somewhere in the
world (excluding alleles that would be incompatible with life).

44You can imagine that there are pros and cons to each naming system. The reference allele is rather arbitrary, because
it depends on whether the allele happens to match the individual who was sequenced at that position for the Human
Genome (and sometimes that individual had a super rare allele). The minor allele label is particularly useful for rare al-
leles, but it can lead to inconsistent labeling across different samples if the allele frequency is near 0.5. The derived allele
label is attractive in having a clearer evolutionary interpretation, but it involves an inference about which allele is an-
cestral that may be uncertain or even incorrect for some SNPs.

45For autosomal loci, one generation of random mating (i.e., random with respect to the SNP in question) immediately
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restores HW proportions regardless of the starting allele frequencies. This means that a process like selection must be
implausibly strong to drive meaningful departures from HWE. Note that X-linked loci do not reach HWE immediately
(but do converge within a few generations).

46Genotyping issues that lead to departures from HWE can occur for various reasons, and the details depend a bit on
the specific technology. One common reason for errors is that the sequence surrounding a putative SNP is duplicated
elsewhere in the genome and so the sequencing reads or genotyping assay contain a mixture of DNA fragments from
two different locations. Suppose that these two duplicated versions of this region differ at exactly one position, and this
position has been inferred incorrectly as a SNP. Then all individuals would appear to be heterozygous.

47Edwards A. Anecdotal, Historical and Critical Commentaries on Genetics: GH Hardy (1908) and Hardy–Weinberg
Equilibrium. Genetics. 2008;179(3):1143.

48Genomes of “identical” (monozygous) twins are in fact nearly identical: the genomes of a monozygous pair differ
by only ∼5 early developmental mutations in non-repetitive sequences, as well as presumably additional STRs and other
more-mutable sequences that are more difficult to measure:

Jonsson H, Magnusdottir E, Eggertsson HP, Stefansson OA, Arnadottir GA, Eiriksson O, et al. Differences between
germline genomes of monozygotic twins. Nature Genetics. 2021;53(1):27-34

49We can generalize the concept of heterozygosity to consider the expected heterozygosity under random mating. The
expected heterozygosity is useful if we don’t have access to individual-level genomes, and the estimator also has lower
variance. For example, if we know the allele frequency ps at every SNP s in a region of size L, then we can compute the
expected heterozygosity as

1
L ∑

s
2ps(1 − ps).

(Note that in practice the formula above is slightly biased since we only have estimates of ps rather than true values; an
unbiased formula can be derived by computing the heterozygosity summed over all pairwise comparisons.)

50
1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526(7571):68

51Large sequencing studies continue to find many more novel, rare SNPs: for example the gnomAD Project identified
230M high confidence variants – nearly one every 10 bp – by sequencing about 16,000 genomes. Note that the gnomAD
Project had higher sequencing depth than 1000 Genomes, and this accounts for why they detected more new variants
per individual. gnomAD Project:

Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum
quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-43

52We’ll return to questions about divergence among the great apes in Chapter 2.2.
Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, et al. Insights into hominid evolution from the

gorilla genome sequence. Nature. 2012;483(7388):169-75

53This was laborious work that relied on PCR amplifying regions of interest, followed by Sanger sequencing. Anna
Di Rienzo’s lab, at the University of Chicago, also did important work in this area at around the same time.

Frisse L, Hudson R, Bartoszewicz A, Wall J, Donfack J, Di Rienzo A. Gene conversion and different population his-
tories may explain the contrast between polymorphism and linkage disequilibrium levels. The American Journal of Hu-
man Genetics. 2001;69(4):831-43

Carlson CS, Eberle MA, Rieder MJ, Smith JD, Kruglyak L, Nickerson DA. Additional SNPs and linkage-disequilibrium
analyses are necessary for whole-genome association studies in humans. nature Genetics. 2003;33(4):518-21

54Bhangale TR, Rieder MJ, Livingston RJ, Nickerson DA. Comprehensive identification and characterization of di-
allelic insertion–deletion polymorphisms in 330 human candidate genes. Human Molecular Genetics. 2005;14(1):59-69;

Montgomery SB, Goode DL, Kvikstad E, Albers CA, Zhang ZD, Mu XJ, et al. The origin, evolution, and functional
impact of short insertion–deletion variants identified in 179 human genomes. Genome Research. 2013;23(5):749-61

55VNTRs are also sometimes known as minisatellites, while STRs are also microsatellites.
56Sudmant PH, Mallick S, Nelson BJ, Hormozdiari F, Krumm N, Huddleston J, et al. Global diversity, population strat-

ification, and selection of human copy-number variation. Science. 2015;349(6253):aab3761

57Stefansson H, Helgason A, Thorleifsson G, Steinthorsdottir V, Masson G, Barnard J, et al. A common inversion un-
der selection in Europeans. Nature Genetics. 2005;37(2):129-37

Salm MP, Horswell SD, Hutchison CE, Speedy HE, Yang X, Liang L, et al. The origin, global distribution, and func-
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tional impact of the human 8p23 inversion polymorphism. Genome Research. 2012;22(6):1144-53.
One effect of inversions is that they disrupt local recombination in heterozygotes. In some species this enables the

evolution of co-adapted gene clusters, but there are no clear examples in humans: Inversion coadapted complexes
Wellenreuther M, Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends in Ecology & Evo-

lution. 2018;33(6):427-40.
58The main exceptions where a synonymous variant has a phenotypic effect are usually due to some regulatory func-

tion that overlaps with the same positions – for example that the variant is contained with a transcription factor bind-
ing site or exonic splicing enhancer.

59For a good account of the genetic testing, with quite a bit of historical and forensic context see
Coble MD, Loreille OM, Wadhams MJ, Edson SM, Maynard K, Meyer CE, et al. Mystery solved: the identification

of the two missing Romanov children using DNA analysis. PloS One. 2009;4(3):e4838.
60Rogaev EI, Grigorenko AP, Faskhutdinova G, Kittler EL, Moliaka YK. Genotype analysis identifies the cause of the

“royal disease”. Science. 2009;326(5954):817-7
61Mukamel RE, Handsaker RE, Sherman MA, Barton AR, Zheng Y, McCarroll SA, et al. Protein-coding repeat poly-

morphisms strongly shape diverse human phenotypes. Science. 2021;373(6562):1499-505

62The most relevant studies test for a depletion of LOF mutations compared with a neutral background. If this is de-
tected it implies that there is at least some degree of selection against heterozygous LOFs. The effects of haploid gene
deletions should be roughly functionally similar to haploid LOFs.

Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic vari-
ation in 60,706 humans. Nature. 2016;536(7616):285-91

Agarwal I, Fuller ZL, Myers S, Przeworski M. Relating pathogenic loss-of function mutations in humans to their
evolutionary fitness costs. bioRxiv. 2022

63Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, et al. Diet and the evolution of human amylase gene
copy number variation. Nature Genetics. 2007;39(10):1256-60 CITE NOVEMBRE TOO

64While the main form of variation at Amylase1 is variation in copy number, it turns out that there is also additional
complex structure within the region, as the gene copies appear in several slightly different forms that are variable across
individuals:

Usher CL, Handsaker RE, Esko T, Tuke MA, Weedon MN, Hastie AR, et al. Structural forms of the human amy-
lase locus and their relationships to SNPs, haplotypes and obesity. Nature Genetics. 2015;47(8):921-5

65Pajic P, Pavlidis P, Dean K, Neznanova L, Romano RA, Garneau D, et al. Independent amylase gene copy number
bursts correlate with dietary preferences in mammals. Elife. 2019;8:e44628

66It’s interesting to note that polyploidy (usually 3 or 4 copies of all chromosomes) can be less deleterious than ane-
uploidy of a single chromosome. Many species, across the tree of life, have evolved polyploid genomes, and it’s believed
that our own ancestors went through two rounds of whole genome doubling in early tetrapod evolution. Moreover, some
human tissues, including liver, placenta, and heart are polyploid. This indicates that problem with aneuploidy is that
changes the relative proportions of genes (stoichiometry) relative to one another, not the absolute changes in expression
of specific genes.

67Torres EM, Williams BR, Amon A. Aneuploidy: cells losing their balance. Genetics. 2008;179(2):737-46

68These mainly fall into three categories: (1) There is a pair of pseudo-autosomal regions, containing a total of 3 Mb of
DNA and 20 genes, that are shared between the X and Y chromosomes and are important for proper chromosomal pair-
ing during meiosis and mitosis; (2) Secondly, there are about 25 genes with essential roles in gene and protein regula-
tion, that have homologs on the X and Y chromosome. These genes have evolved to escape X-inactivation because both
XX and XY individuals have two functional copies; (3) genes that are not particularly dosage-sensitive. For estimates of
the number of genes that escape X inactivation see Balaton 2015 [Link]

69For a more detailed discussion of this see
Posynick BJ, Brown CJ. Escape from X-chromosome inactivation: an evolutionary perspective. Frontiers in Cell and

Developmental Biology. 2019;7:241

For analysis of X-Y homologs and their functions see:
Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Cho TJ, et al. Mammalian Y chromosomes retain widely

expressed dosage-sensitive regulators. Nature. 2014;508(7497):494-9
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70Ferguson-Smith MA, Trifonov V. Mammalian karyotype evolution. Nature Reviews Genetics. 2007;8(12):950-62

71Yunis JJ, Prakash O. The origin of man: a chromosomal pictorial legacy. Science. 1982;215(4539):1525-30

Ventura M, Catacchio CR, Sajjadian S, Vives L, Sudmant PH, Marques-Bonet T, et al. The evolution of African great
ape subtelomeric heterochromatin and the fusion of human chromosome 2. Genome Research. 2012;22(6):1036-49

72Carbone L, Harris RA, Vessere GM, Mootnick AR, Humphray S, Rogers J, et al. Evolutionary breakpoints in the gib-
bon suggest association between cytosine methylation and karyotype evolution. PLoS Genetics. 2009;5(6):e1000538

Carbone L, Alan Harris R, Gnerre S, Veeramah KR, Lorente-Galdos B, Huddleston J, et al. Gibbon genome and the
fast karyotype evolution of small apes. Nature. 2014;513(7517):195-201

73There are rare examples of balanced translocations that are inherited within families, but I’m not aware of any chro-
mosomes fusions or fissions.

74Chmátal L, Gabriel SI, Mitsainas GP, Martínez-Vargas J, Ventura J, Searle JB, et al. Centromere strength provides
the cell biological basis for meiotic drive and karyotype evolution in mice. Current Biology. 2014;24(19):2295-300

75This phrasing is borrowed from Shendure et al (2017); that paper is a great source for history and technology of se-
quencing:

Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, et al. DNA sequencing at 40: past, present
and future. Nature. 2017;550(7676):345-53. Another useful review is:

Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies.
Nature Reviews Genetics. 2016;17(6):333-51

76[Link]
77Sanger sequencing is convenient for quick-turnaround applications in lab-work like checking that a plasmid has been

constructed correctly, checking genome edits, or confirming that a PCR product contains the expected sequence.
78Cost of the Human Genome Project: [Link]
79One potential competitor is Beijing’s BGI Genomics which has acquired and refined a technology called nanoball

sequencing, originally from Complete Genomics.
80Background on Illumina technology, see eg [Link].
81Dohm JC, Peters P, Stralis-Pavese N, Himmelbauer H. Benchmarking of long-read correction methods. NAR Ge-

nomics and Bioinformatics. 2020;2(2):lqaa037. Note that PacBio’s HiFi approach reads the same molecule multiple times,
thereby lowering error rates to be competitive with Illumina.

82A 2022 paper considered the application of ultra-rapid genome sequencing in critical settings. They showed that it’s
possible to obtain extremely rapid (same-day) clinical-grade genome sequences on the Nanopore platform at a cost of
about $5000 per sample.

Gorzynski JE, Goenka SD, Shafin K, Jensen TD, Fisk DG, Grove ME, et al. Ultrarapid nanopore genome sequenc-
ing in a critical care setting. New England Journal of Medicine. 2022;386(7):700-2

83Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a human genome.
Science. 2022;376(6588):44-53

84Illumina has achieved near-monopoly status in the US in genome sequencing. In general monopolies lead to higher
prices and lower rates of innovation in industries dominated by a single player: [Link].

85For one ambitious current effort in this direction see [Link].
86A 2018 paper estimated Illumina error rates at 0.24% per base pair

Pfeiffer F, Gröber C, Blank M, Händler K, Beyer M, Schultze JL, et al. Systematic evaluation of error rates and causes
in short samples in next-generation sequencing. Scientific Reports. 2018;8(1):1-14

87Teissandier A, Servant N, Barillot E, Bourc’his D. Tools and best practices for retrotransposon analysis using high-
throughput sequencing data. Mobile DNA. 2019;10(1):1-12.

88Lee H, Schatz MC. Genomic dark matter: the reliability of short read mapping illustrated by the genome mappa-
bility score. Bioinformatics. 2012;28(16):2097-105

89Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644-
56
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90Gates KS. An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and
reactions with radicals. Chemical Research in Toxicology. 2009;22(11):1747-60

91See Tubbs et al (2017), above.
92This paragraph touches on several complex topics. In most cases, natural selection pushes mutation rates to be as

low as possible; exceptions include so-called ’mutator strains’ in bacteria, as well as cancers, which generally evolve high
mutation rates. There is presumably some molecular or physiological limit to how low mutation rates can be (it’s also
been argued that there may be a metabolic cost to having arbitrarily accurate DNA repair). However, Michael Lynch has
argued that multi-celled organisms are generally not close to any fundamental limit because natural selection becomes
ineffective when the mutation rate is low-enough. For reasons we’ll explain in Chapter 2.6, this means that mutation rates
are mainly determined through an interaction between selection and effective population size.

Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. Drift-barrier hypothesis and mutation-rate evolution. Pro-
ceedings of the National Academy of Sciences. 2012;109(45):18488-92

93I should also point out that it’s an over-simplification to say that evolution does not act on long-term effects. As a
thought experiment, imagine a species with a magical repair pathway that lowers the mutation rate to zero. In the short
term, this new repair pathway would presumably be favored, as there would be no fitness cost due to mutations. But
in the long term, this species could not adapt to changing environments, and would likely eventually go extinct.

94In practice, when we do genome sequencing, we’re actually sequencing from a somatic tissue (usually blood). So
this study-design potentially over-estimates the de novo mutation rate by including somatic mutations in the child. We
can get a more accurate estimate by sequencing 3-generation pedigrees: we know that 50% of germline mutations should
be transmitted to a grandchild in the third generation. It turns out that the 2- and 3-generation estimates are quite sim-
ilar as few mutations occur early enough in somatic development to appear as heterozygous sites in sequencing of bulk
tissue while not contributing to the germline.

95Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, Shannon PT, et al. Analysis of genetic inheritance in a family
quartet by whole-genome sequencing. Science. 2010;328(5978):636-9;

Ségurel L, Wyman MJ, Przeworski M. Determinants of mutation rate variation in the human germline. Annu Rev
Genomics Hum Genet. 2014;15(1):47-70

96Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the im-
portance of father’s age to disease risk. Nature. 2012;488(7412):471-5

Jónsson H, Sulem P, Kehr B, Kristmundsdottir S, Zink F, Hjartarson E, et al. Parental influence on human germline
de novo mutations in 1,548 trios from Iceland. Nature. 2017;549(7673):519-22

97Agarwal I, Fuller ZL, Myers S, Przeworski M. Relating pathogenic loss-of function mutations in humans to their
evolutionary fitness costs. bioRxiv. 2022

98Great thread about how amazing DNA replication is: [Link].
99E.g., Amos van Baalen writes about medieval copying errors; in one cited example: In his Latin poem ‘On Scribes’, the

English scholar Alcuin of York (c. 740–804) admonishes scribes to “take care not to insert their silly remarks” and that “their hands
not make mistakes through foolishness”. [Link].

100Weinberg W. Zur vererbung des zwergwuchses. Arch Rassen-u Gesel Biolog. 1912;9:710-8
Crow JF, Denniston C. Mutation in human populations. Advances in Human Genetics 14. 1985:59-123

Risch N, Reich E, Wishnick M, McCarthy J. Spontaneous mutation and parental age in humans. American Jour-
nal of Human Genetics. 1987;41(2):218

101It was also inferred from studies of sequence evolution of the X, Y and autosomes, that mutation rates are higher in
males; eg

Shimmin LC, Chang BHJ, Li WH. Male-driven evolution of DNA sequences. Nature. 1993;362(6422):745-7
102Gao Z, Moorjani P, Sasani TA, Pedersen BS, Quinlan AR, Jorde LB, et al. Overlooked roles of DNA damage and ma-

ternal age in generating human germline mutations. Proceedings of the National Academy of Sciences. 2019;116(19):9491-
500

103About 70% of the variance in de novo mutation count is explained by parental age
Kaplanis J, Ide B, Sanghvi R, Neville M, Danecek P, Coorens T, et al. Genetic and chemotherapeutic influences on

germline hypermutation. Nature. 2022;605(7910):503-8.

188

https://twitter.com/JedMSP/status/967879091121807361
https://leidenmedievalistsblog.nl/articles/medieval-copying-gone-wrong


104Structural variation: Belyeu JR, Brand H, Wang H, Zhao X, Pedersen BS, Feusier J, et al. De novo structural muta-
tion rates and gamete-of-origin biases revealed through genome sequencing of 2,396 families. The American Journal
of Human Genetics. 2021;108(4):597-607. STRs: Mitra I, Huang B, Mousavi N, Ma N, Lamkin M, Yanicky R, et al. Pat-
terns of de novo tandem repeat mutations and their role in autism. Nature. 2021;589(7841):246-50

105One emerging theme in cancer biology is that most aging tissues are susceptible to clonal expansions of specific cell
lineages with proliferative advantages. An example where this contributes to aging is through clonal expansions in im-
mune cells and their link to CAD:

Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atheroscle-
rotic cardiovascular disease. New England Journal of Medicine. 2017;377(2):111-21

106Kennedy SR, Schmitt MW, Fox EJ, Kohrn BF, Salk JJ, Ahn EH, et al. Detecting ultralow-frequency mutations by Du-
plex Sequencing. Nature Protocols. 2014;9(11):2586-606

107Abascal F, Harvey LM, Mitchell E, Lawson AR, Lensing SV, Ellis P, et al. Somatic mutation landscapes at single-molecule
resolution. Nature. 2021;593(7859):405-10

108To put this in context, the highest mutation rate of nearly 60 per year implies around 1 mutation per 100 million base
pairs.

109See again Abascal et al (2021)
110Single nucleotide variation: Kong et al (2012), Jonsson et al (2017); Indels: Jonsson et al (2017); Structural variation:

Belyeu et al (2021); STRs: Sun et al (2012), Mitra et al (2021), Steely et al (2021), Kristmundsdottir et al (2023). Mitochon-
drial DNA: Fu et al (2013)–converted from rate per year assuming a generation time of 30 years. References not given
previously:

Sun JX, Helgason A, Masson G, Ebenesersdóttir SS, Li H, Mallick S, et al. A direct characterization of human mu-
tation based on microsatellites. Nature Genetics. 2012;44(10):1161-5

Steely CJ, Watkins S, Baird L, Jorde L. The Mutational Dynamics of Short Tandem Repeats in Large, Multigener-
ational Families. bioRxiv. 2021

Kristmundsdottir S, Jonsson H, Hardarson MT, Palsson G, Beyter D, Eggertsson HP, et al. Sequence variants affect-
ing the genome-wide rate of germline microsatellite mutations. Nature Communications. 2023;14(1):3855

Fu Q, Mittnik A, Johnson PL, Bos K, Lari M, Bollongino R, et al. A revised timescale for human evolution based on
ancient mitochondrial genomes. Current Biology. 2013;23(7):553-9

111Fontana GA, Gahlon HL. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nu-
cleic Acids Research. 2020;48(20):11244-58

112Fu et al (2013), cited above.
113Sun et al (2014), cited above
114Gymrek M, Willems T, Guilmatre A, Zeng H, Markus B, Georgiev S, et al. Abundant contribution of short tandem

repeats to gene expression variation in humans. Nature Genetics. 2016;48(1):22-9
115Carvalho C, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nature Reviews

Genetics. 2016;17(4):224-38

116The second major class of mechanisms is due to errors in DNA replication and repair. These are much more com-
plicated than NAHR, and involve a variety of different pathways. These include mis-templating of repetitive regions dur-
ing DNA replication, or during repair of replication errors. See Carvalho and Lupski (2016) and see:

Ottaviani D, LeCain M, Sheer D. The role of microhomology in genomic structural variation. Trends in Genetics.
2014;30(3):85-94

117These mechanisms involve non-homologous end joining or micro-homology mediated end joining. See:
Kidd JM, Graves T, Newman TL, Fulton R, Hayden HS, Malig M, et al. A human genome structural variation se-

quencing resource reveals insights into mutational mechanisms. Cell. 2010;143(5):837-47

118I cannot find a rate estimate, but the prevalence of CMT is about 1/2500 births, and the 17p11.2 locus is reported to
be responsible for nearly half of cases.

119Hereditary Neuropathy with Liability to Pressure Palsies
120The Charcot-Marie Tooth locus was the first genetic disorder to be found that is usually due to structural variation,
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in 1992:
Roa BB, Garcia CA, Pentao L, Killian JM, Trask BJ, Suter U, et al. Evidence for a recessive PMP22 point mutation

in Charcot–Marie–Tooth disease type 1A. Nature Genetics. 1993;5(2):189-94

An interesting footnote to the story is that the PMP22 gene was discovered by a team led by James Lupski. Lupski,
a pioneer in studies of structural variation, is himself affected by Charcot-Marie Tooth syndrome; however Lupski’s genome
sequence showed that his own symptoms are due to mutations in a different gene: described here: [Link], and here:

Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio Deiros D, Chen DC, Nazareth L, et al. Whole-genome sequencing in
a patient with Charcot–Marie–Tooth neuropathy. New England Journal of Medicine. 2010;362(13):1181-91

121Porubsky D, Höps W, Ashraf H, Hsieh P, Rodriguez-Martin B, Yilmaz F, et al. Recurrent inversion polymorphisms
in humans associate with genetic instability and genomic disorders. Cell. 2022;185(11):1986-2005

122Key recent work on this problem comes from Molly Przeworski’s lab: Gao et al (2019), cited above, and:
Gao Z, Wyman MJ, Sella G, Przeworski M. Interpreting the dependence of mutation rates on age and time. PLoS

biology. 2016;14(1):e1002355

Wu FL, Strand AI, Cox LA, Ober C, Wall JD, Moorjani P, et al. A comparison of humans and baboons suggests germline
mutation rates do not track cell divisions. PLoS Biology. 2020;18(8):e3000838,

de Manuel M, Wu FL, Przeworski M. A paternal bias in germline mutation is widespread across amniotes and can
arise independently of cell divisions. bioRxiv. 2022

123Wu et al (2020) and de Manuel et al (2022), cited above.
124The ratio is around 3:1 in mammals and 2:1 in birds and reptiles: de Manuel et al (2022) [Link]
125Vraneković J, Božović IB, Grubić Z, Wagner J, Pavlinić D, Dahoun S, et al. Down syndrome: parental origin, recom-

bination, and maternal age. Genetic Testing and Molecular Biomarkers. 2012;16(1):70-3
126Kuliev A, Zlatopolsky Z, Kirillova I, Spivakova J, Janzen JC. Meiosis errors in over 20,000 oocytes studied in the prac-

tice of preimplantation aneuploidy testing. Reproductive biomedicine online. 2011;22(1):2-8
127Gruhn et al (2019), from which the figure is taken, proposes that the small uptick at younger ages is a real effect, and

is due to a distinct signature of Meiosis 1 errors that declines with age; however this a very weak signal compared to the
primary signature of increased aneuploidy at older ages.

Gruhn JR, Zielinska AP, Shukla V, Blanshard R, Capalbo A, Cimadomo D, et al. Chromosome errors in human eggs
shape natural fertility over reproductive life span. Science. 2019;365(6460):1466-9

128Greaney J, Wei Z, Homer H. Regulation of chromosome segregation in oocytes and the cellular basis for female mei-
otic errors. Human Reproduction Update. 2018;24(2):135-61

129This section greatly simplifies a complex field. For more on this, you can start with: Greaney et al (2018), cited above;
Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Na-

ture Reviews Genetics. 2012;13(7):493-504

Webster A, Schuh M. Mechanisms of aneuploidy in human eggs. Trends in cell biology. 2017;27(1):55-68

130Zielinska AP, Holubcova Z, Blayney M, Elder K, Schuh M. Sister kinetochore splitting and precocious disintegra-
tion of bivalents could explain the maternal age effect. Elife. 2015;4:e11389

Patel J, Tan SL, Hartshorne GM, McAinsh AD. Unique geometry of sister kinetochores in human oocytes during
meiosis I may explain maternal age-associated increases in chromosomal abnormalities. Biology Open. 2016;5(2):178-
84

131One interesting aspect of this is that cross-overs play an important role in tethering the sister chromatids. Even though
the crossovers (i.e., recombination events) are set up during fetal development, it turns out that children of older moth-
ers have more maternal crossovers. This suggests that oocytes with more cross-overs are more likely to be non-aneuploid,
and thus to produce successful pregnancies.

Wang S, Hassold T, Hunt P, White MA, Zickler D, Kleckner N, et al. Inefficient crossover maturation underlies el-
evated aneuploidy in human female meiosis. Cell. 2017;168(6):977-89

132Wang et al (2017), cited above.
133So C, Menelaou K, Uraji J, Harasimov K, Steyer AM, Seres KB, et al. Mechanism of spindle pole organization and

instability in human oocytes. Science. 2022;375(6581):eabj3944

Bennabi I, Terret ME, Verlhac MH. Meiotic spindle assembly and chromosome segregation in oocytes. Journal of
Cell Biology. 2016;215(5):611-9
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134Centromeric drive:
Zwick ME, Salstrom JL, Langley CH. Genetic variation in rates of nondisjunction: association of two naturally oc-

curring polymorphisms in the chromokinesin nod with increased rates of nondisjunction in Drosophila melanogaster.
Genetics. 1999;152(4):1605-14

Malik HS. The centromere-drive hypothesis: a simple basis for centromere complexity. Centromere. 2009:33-52

Kursel LE, Malik HS. The cellular mechanisms and consequences of centromere drive. Current opinion in cell bi-
ology. 2018;52:58-65

Lampson MA, Black BE. Cellular and molecular mechanisms of centromere drive. In: Cold Spring Harbor sym-
posia on quantitative biology. vol. 82. Cold Spring Harbor Laboratory Press; 2017. p. 249-57

Hurst LD. Selfish centromeres and the wastefulness of human reproduction. PLoS Biology. 2022;20(7):e3001671

135This model notes that aneuploidy can increase the gap between successive children to allow greater maternal care
for each child, and to reduce fertility in older women who might otherwise care for their existing children or grandchil-
dren. In this view, incomplete crossovers are a feature, not a bug of the system. It’s hard to rule out this type of expla-
nation, but it strikes me as a rather clumsy physiological mechanism to regulate fertility. Wang et al (2017), cited above.

136In practice the size of your cash holdings over time when gambling in a casino is more analogous to the drift of a
deleterious variant, since casino betting is set up to favor the house. We’ll describe drift of deleterious alleles in Chap-
ter 2.5.

137The counts would be different for sex chromosomes: there are N/2 Y chromosomes, and 3N/2 X chromosomes, as-
suming equal numbers of males and females.

138You can read more about Pitcairn Islands here: [Link] and specifically about the mutiny here [Link]. The peak pop-
ulation size was 250 inhabitants in 1936.

Another example of an extremely isolated population is Tristan da Cunha. This is a tiny island in the south Atlantic–
at 1700 miles west of Cape Town in South Africa it is the most remote inhabited island in the world. Tristan da Cunha
is currently home to about 270 people who descend mainly from 8 men and 7 women from Europe and the US who set-
tled the island in 1816:

Soodyall H, Nebel A, Morar B, Jenkins T. Genealogy and genes: tracing the founding fathers of Tristan da Cunha.
European Journal of Human Genetics. 2003;11(9):705-9

139Sewall Wright, RA Fisher, and a third scientist JBS Haldane, are often credited as developing many of the key ideas
of modern population genetics, mainly in the first half of the 20th Century. This formed a key component of the so-called
Modern Synthesis, which united Darwin’s theory of evolution with the growing understanding of heredity started by
Mendel.

140It’s outside our scope here, but techniques for studying frequency changes in known pedigrees are referred to as gene
dropping. For an excellent example see

Chen N, Juric I, Cosgrove EJ, Bowman R, Fitzpatrick JW, Schoech SJ, et al. Allele frequency dynamics in a pedigreed
natural population. Proceedings of the National Academy of Sciences. 2019;116(6):2158-64

141Binomial sampling. The probability of getting k successes is

n!
k!(n − k)!

pkqn−k, (5.75)

where the function n! is pronounced “n factorial” and calculated as n × (n − 1)× (n − 2)× · · · 3× 2. For more on the
binomial see [Link].

142Here we approximate the sampling distribution as binomial, assuming that the size of the poll is much smaller than
the number of voters. The standard deviation of the binomial proportion is

√
p(1 − p)/n where p is the true proportion

and n is the number of voters that we phoned (instead of 2N for number of allele). The true estimate will lie within +/−
two standard deviations about 95% of the time.

143These example are meant as illustrations, but in practice, the biggest challenge in election polling is not binomial sam-
pling error but getting a representative sample of the voting population. In particular, it may be more difficult to reach
some types of likely voters than others. For this reason, analysis of polling data usually involves techniques to reweight
the samples to better reflect the expected demographic and political composition of likely voters.

144Remember that only about 0.1% of sites are common SNPs so this is a very useful approximation for most applica-
tions within species. However the assumption breaks down in analyses of very large sample sizes, especially at hyper-
mutable CpG sites. It also doesn’t work well for phylogenetic models of distantly related species as over longer timescales
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a larger fraction of the sites have accumulated substitutions.
Harpak A, Bhaskar A, Pritchard JK. Mutation rate variation is a primary determinant of the distribution of allele

frequencies in humans. PLoS Genetics. 2016;12(12):e1006489.
145About 8% of the men in central Asia carry a single Y chromosome haplotype that is estimated to descend from a com-

mon ancestral haplotype 1000 years ago. The age and geographic distribution of the haplotype suggest that it was likely
spread by Genghis Khan and his male relatives:

Zerjal T, Xue Y, Bertorelle G, Wells RS, Bao W, Zhu S, et al. The genetic legacy of the Mongols. The American Jour-
nal of Human Genetics. 2003;72(3):717-21

Balaresque P, Poulet N, Cussat-Blanc S, Gerard P, Quintana-Murci L, Heyer E, et al. Y-chromosome descent clus-
ters and male differential reproductive success: young lineage expansions dominate Asian pastoral nomadic populations.
European Journal of Human Genetics. 2015;23(10):1413-22

146When population size fluctuates rapidly over generations, the effective population size is given by the harmonic mean.
Long-term changes in N are less-well modeled by a simple change in Ne.

147I’m rounding here since all the other numbers are somewhat rounded (and in any event heterozygosity varies across
the genome and across populations). Given these particular numbers, the precise value of Ne would be 19,230.

148The harmonic mean.
149It’s difficult to fully interpret effective population size estimates. Humans have extremely low heterozygosity (and

hence Ne) compared to a wide range of other species. Although chimpanzees and gorillas now have very small popu-
lations, they actually have higher long-term Ne than humans. Meanwhile, Neanderthals were even less diverse than mod-
ern humans, as are a few contemporary species with very small populations, such as lynx and wolverines. Although Ne
can be difficult to interpret, it still provides a powerful tool for modeling patterns of genetic variation, especially if we
allow Ne to vary over time as is typical in more advanced models.

Leffler EM, Bullaughey K, Matute DR, Meyer WK, Segurel L, Venkat A, et al. Revisiting an old riddle: what deter-
mines genetic diversity levels within species? PLOS Biology. 2012;10(9):e1001388

150We want to run the simulation long enough to ensure that the simulation can reach a stationary distribution with
respect to the amount of genetic variation (and so the starting point is no longer relevant). One way to think about this
is that the population MRCA in the final generation (see the next chapter) should exist within the simulation. On aver-
age, the time to the MRCA is 4N generations, so we would want to run this for at least 4N, and probably more like 10N
generations to be safe.

151The way I’m writing this it’s actually finite sites mutation, instead of the infinite sites model alluded to earlier. The
finite sites model is a bit more intuitive here.

152We can also convert this into an infinite sites model by representing the mutated position using a real number on
the interval [0,1]. Derived alleles will be represented by 1.

153Messer PW. SLiM: simulating evolution with selection and linkage. Genetics. 2013;194(4):1037-9
Haller BC, Messer PW. SLiM 3: forward genetic simulations beyond the Wright–Fisher model. Molecular Biology

and Evolution. 2019;36(3):632-7
154Credit for finding this quote goes to the late Paul Joyce: [Link].
155We’ll talk more about these early data in Chapter 2.7, along with the other major conceptual development of the 1970s

and 80s, the Neutral Theory.
156Inspiration for the coalescent was motivated in part by developments in population genetics during the 1970s. John

Kingman (later Sir John Kingman) was a mathematician at the University of Oxford with particular interest in stochas-
tic processes. He came to this problem after conversations with a group of Australian population geneticists: Pat Moran,
Warren Ewens, and Geoff Watterston. In a trio of papers published in 1982, Kingman framed the process in highly math-
ematical terms and published in mathematical journals; in one of these he coined the term “coalescent” (hence the oc-
casional name “Kingman Coalescent” for this model). Kingman only worked in population genetics for a couple of years.
Despite the huge impact of the coalescent work, Kingman commented to me many years later (2022) that “Coalescent
theory is very far from the thing I am most proud of”, preferring instead his contributions in queuing theory (which later
became important in the development of the internet [Link]), and perhaps his role as a university administrator, includ-
ing as head of the University of Bristol (England) starting in 1985.

Meanwhile, Richard (Dick) Hudson was a PhD student at the University of Pennsylvania and at UC Davis. He pub-
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lished a pair of papers a year after Kingman (but unaware of Kingman’s work) that describe–almost as an afterthought–
the nuts and bolts of the basic coalescent model, as well as important extensions to handle the coalescent with recom-
bination, all for the purpose of performing highly efficient simulations. He later went on to develop extensive tools for
coalescent simulation.

The third key person, Fumio Tajima, a Japanese scientist then at the University of Texas Houston, published a 1983

paper that outlines the structure of genealogies and the coalescent and showed how this can be used to derive impor-
tant sample statistics in population genetics. Published in the same year as Hudson’s work, in some ways Tajima’s pre-
sentation is the most modern in flavor (and is the paper in which I first encountered the coalescent as a graduate stu-
dent, some ten years later).

Kingman JFC. The coalescent. Stochastic processes and their applications. 1982;13(3):235-48,
Kingman JF. Origins of the coalescent: 1974-1982. Genetics. 2000;156(4):1461-3,
Hudson RR. Testing the constant-rate neutral allele model with protein sequence data. Evolution. 1983:203-17,
Hudson RR. Properties of a neutral allele model with intragenic recombination. Theoretical Population Biology.

1983;23(2):183-201,
Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983;105(2):437-60

157Early, highly readable reviews of the coalescent were written by Dick Hudson and Magnus Nordborg. (You can find
online versions of the book chapters via Google Scholar: for Hudson 1990 see [Link]; for Nordborg 2000 see [Link])

Hudson RR. Gene genealogies and the coalescent process. Oxford surveys in evolutionary biology. 1990;7(1):44

Hudson R. The how and why of generating gene genealogies. Mechanisms of molecular evolution. 1993:23-36

Nordborg M. Coalescent theory. Handbook of Statistical Genomics: Two Volume Set. 2019:145-30 .
158Differences between the geometric and exponential only arise in very special settings: for example when the sam-

ple size is large compared to the total population, and also in problems looking at coalescence within relatives.
159At the time of writing there have been two major earthquakes at Stanford (in 1906 and 1989) since its founding in

1885. So a simple-minded estimate of λ for major earthquakes would be ∼4× 10−5 per day. For an entirely gratuitous
picture of a smashed car outside Stanford’s Old Chem Building in 1989 see [Link]. USGS data: [Link].

160The mean of the exponential distribution with rate parameter λ is given by∫ ∞

t=0
t · λe−λt dt = λ−1. (5.76)

161Estimates for long-term average generation times are in the 25-30 year range. I chose 25 here to make round num-
bers, and that’s roughly balanced by using a population size on the high end for human populations.

162The Poisson Distribution is a widely used model for the (random) number of rare events that occur in a specified
time – for example the random number of earthquakes in a 100-year period. It depends on a single parameter, which
gives the expected number of events. To read more see [Link].

number of mutations ∼ Poisson(µLbi) (5.77)

163 We want to compute the expected number of pairwise differences, m, between two samples under a constant pop-
ulation size model. Note that m is distributed as Poisson(2µLT), where µ is the mutation rate per base pair per gener-
ation, L is the length of the region in base pairs, and T is the realized coalescent time of the two samples. We use Pr[T]
to denote the probability density function for T (i.e., the exponential distribution with mean 2N). Then we have:

E[m] =
∫ ∞

0
E[m|T] Pr[T]dt (5.78)

=
∫ ∞

0
(2µLT) Pr[T]dt (5.79)

= 2µL
∫ ∞

0
T Pr[t]dt (5.80)

= 2µL E[T] (5.81)

= 2µL2N = 4NµL (5.82)

or simply 4Nµ per base pair.
164The mean is actually a bit older than this even, because there’s an additional ascertainment effect in which the dis-

tribution of coalescent times at sites with variation is older than the unconditional mean.

193

https://www.cs.cmu.edu/~epxing/Class/10810/readings/hudson.pdf
https://cseweb.ucsd.edu/classes/sp05/cse291-a/doc/nordborg_coalescent.pdf
https://125.stanford.edu/the-loma-prieta-legacy/
https://pubs.usgs.gov/fs/2016/3020/fs20163020.pdf
https://en.wikipedia.org/wiki/Poisson_distribution


165For a proof of the θ/i result, by Richard Hudson, see
Hudson RR. A new proof of the expected frequency spectrum under the standard neutral model. Plos One. 2015;10(7):e0118087

166Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL. Support from the
relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa.
Proceedings of the National Academy of Sciences. 2005;102(44):15942-7

167Waldman S, Backenroth D, Harney É, Flohr S, Neff NC, Buckley GM, et al. Genome-wide data from medieval Ger-
man Jews show that the Ashkenazi founder event pre-dated the 14th century. Cell. 2022;185(25):4703-16

168The classic paper on exponential growth is
Slatkin M, Hudson RR. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially grow-

ing populations. Genetics. 1991;129(2):555-62

169Tennessen JA, Bigham AW, O’connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution and functional impact of rare
coding variation from deep sequencing of human exomes. Science. 2012;337(6090):64-9

170I’m highlighting this work because it illustrates our major points. There is a long history of papers in this area, with
sample sizes and genome coverage generally increasing over time.

171The slight uptick at the right occurs because the data are plotted in terms of the minor allele frequency instead of
derived allele frequency.

172This argument is not entirely rigorous, and the classic results on this use forward-in-time diffusion theory.
173Here is a link to some similar sample code by Goncalo Abecasis [Link]. When I get time I expect to post a file that

follows this code more closely.
174For a short but fascinating history of Kreitman’s seminal paper, see Casey Bergman’s blogpost here: [Link]. The pa-

per itself is:
Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature.

1983;304(5925):412-7
175The terms recombination and crossover are often used interchangeably in the human genetics literature; however

many recombination events result in local exchange of material (known as gene conversion) without crossing over. The
non-crossover events are difficult to detect from genetic variation data.

176Genetic distances (cM) are defined in terms of the expected number of crossovers. This is a sensible way to define
the distances so that they add together in a sensible way. However in a lot of practical contexts we actually want the prob-
ability of ≥ 1 crossovers. Luckily for short distances – up to about 10 cM, say – these are almost exactly the same (since
double crossovers are unlikely) and we can ignore the distinction.

177Halldorsson BV, Palsson G, Stefansson OA, Jonsson H, Hardarson MT, Eggertsson HP, et al. Characterizing mu-
tagenic effects of recombination through a sequence-level genetic map. Science. 2019;363(6425):eaau1043

178Measures of LD and significance of r2 for tag SNPs:
Pritchard JK, Przeworski M. Linkage disequilibrium in humans: models and data. The American Journal of Hu-

man Genetics. 2001;69(1):1-14;
LD scores and LD score regression:
Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, of the Psychiatric Genomics Consortium SWG, et al. LD

Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics.
2015;47(3):291-5.

179We define c as the probability that the two alleles passed into a gamete both came from the same parent (i.e., both
from the mother, or both from the father). This has the result that the maximum of c is 0.5 (and not 1 as might seem in-
tuitive). Suppose that two SNPs are on different chromosomes, then they are transmitted independently, as predicted
from Mendel’s laws. In these cases the pairing of alleles is like a coin toss, so c reaches its maximum, c = 0.5. This is
also true for SNPs on opposite ends of the same chromosome, though it is less obvious as it depends on the mechanics
of chromatid pairing in meiosis.

180The ARG was first developed (but not really described as such) by Richard Hudson
Hudson RR. Properties of a neutral allele model with intragenic recombination. Theoretical Population Biology.

1983;23(2):183-201

A short but clear description of the ARG is presented by Nordborg 2001 [Link].
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181Thus the number of lineages, k, forms a Markov chain over time. Since the rate of increases in linear in k, and the
rate of decreases is quadratic in k, this will eventually converge to a single ancestor, known at the Ultimate Ancestor (UA).
Since the UA likely predates the marginal MRCAs everywhere in the sequence, this is of mathematical but not practi-
cal interest.

182McVean GA. A genealogical interpretation of linkage disequilibrium. Genetics. 2002;162(2):987-91

183For a review of the state of the art in 2001 see Pritchard and Przeworski 2001, cited above.
184Pedigree studies are also greatly limited by the number of families analyzed. In this case, the authors measured re-

combination in 1257 meioses, or in other words, an average of 12 recombination events per cM. This means that they could
get adequate estimates at Mb scale, but even with more markers they would not have been able to get a higher resolu-
tion map. In general, LD-based maps have higher resolution because they average over many more meioses (i.e., past
meioses in the history of population) compared to pedigree-based maps.

185I’m slightly oversimplifying the historical narrative here. A few early papers suggested the presence of specific re-
combination hotspots based on LD data, starting as early as 1984:

Chakravarti A, Buetow K, Antonarakis S, Waber P, Boehm C, Kazazian H. Nonuniform recombination within the
human beta-globin gene cluster. American Journal of Human Genetics. 1984;36(6):1239. Meanwhile, Alec Jeffreys (most
famous for inventing DNA fingerprinting) and colleagues provided compelling experimental evidence for a small num-
ber of hotspots in a series of papers around 2000:

Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombination in the class II region of the major his-
tocompatibility complex. Nature Genetics. 2001;29(2):217-22

But the fact that LD patterns are mostly dictated by hotspot locations was not fully evident until a series of papers
in 2001-2005.

186Later in the chapter I’ll give some intuition for one method to estimate this, based on the Li and Stephens model.
These plots used a different approach based on McVean 2002 (cited above)

187McVean GA, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P. The fine-scale structure of recombination rate
variation in the human genome. Science. 2004;304(5670):581-4

Myers S, Bottolo L, Freeman C, McVean G, Donnelly P. A fine-scale map of recombination rates and hotspots across
the human genome. Science. 2005;310(5746):321-4.

188Myers et al (2005), cited above. The originally-reported motif was CCTCCCT, although this is modified in later pa-
pers. Myers 2006.

189This paradox was first pointed out by Rosie Redfield and colleagues in a 1997 paper, motivated by observations from
yeast.

Boulton A, Myers RS, Redfield RJ. The hotspot conversion paradox and the evolution of meiotic recombination. Pro-
ceedings of the National Academy of Sciences. 1997;94(15):8058-63

190Hotspot selection reference
191Ptak SE, Hinds DA, Koehler K, Nickel B, Patil N, Ballinger DG, et al. Fine-scale recombination patterns differ be-

tween chimpanzees and humans. Nature Genetics. 2005;37(4):429-34

Winckler W, Myers SR, Richter DJ, Onofrio RC, McDonald GJ, Bontrop RE, et al. Comparison of fine-scale recom-
bination rates in humans and chimpanzees. Science. 2005;308(5718):107-11

192Coop G, Wen X, Ober C, Pritchard JK, Przeworski M. High-resolution mapping of crossovers reveals extensive vari-
ation in fine-scale recombination patterns among humans. science. 2008;319(5868):1395-8

Note: to be fair to these earlier papers, several of them invoked the possibility of an unknown trans-acting factor that
might be variable within or between species, thereby explaining both varied hotspot use and a solution to the hotspot
paradox. For example, Coop et al noted that “A single change in the recombination machinery could create many new
hotspots in the genome, counteracting the removal of individual hotspots from the population by biased gene conver-
sion”.

193Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, et al. PRDM9 is a major determinant of meiotic
recombination hotspots in humans and mice. Science. 2010;327(5967):836-40,

Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, et al. Drive against hotspot motifs in primates
implicates the PRDM9 gene in meiotic recombination. Science. 2010;327(5967):876-9,

Parvanov ED, Petkov PM, Paigen K. Prdm9 controls activation of mammalian recombination hotspots. Science.
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2010;327(5967):835-5,
Berg IL, Neumann R, Lam KWG, Sarbajna S, Odenthal-Hesse L, May CA, et al. PRDM9 variation strongly influ-

ences recombination hot-spot activity and meiotic instability in humans. Nature Genetics. 2010;42(10):859-63

194Hinch AG, Tandon A, Patterson N, Song Y, Rohland N, Palmer CD, et al. The landscape of recombination in African
Americans. Nature. 2011;476(7359):170-5

195Myers et al (2010).
196Recent work suggests that PRDM9 has to bind the same hotspots on both homologs for efficient crossover. For this

reason, it’s particularly bad to lose the hottest hotspots, as these are the ones most likely to have double binding. More-
over, these sites are precisely the ones that are lost most rapidly through biased gene conversion. For more on this model
see

Baker Z, Przeworski M, Sella G. Down the Penrose stairs: How selection for fewer recombination hotspots main-
tains their existence. bioRxiv. 2022:2022-09.

197The ARG is “exact” in the sense that if we make a bunch of assumptions – a version of WF dynamics, a mutation,
and recombination model – then it’s possible to derive the ARG. But of course, any mathematical model of the world
is an approximation of a more-complex reality, so you can think of the ARG as corresponding exactly to our best (but
approximate) model of population genetics.

198There are infinitely many ARGs that can produce any given data set, and it’s very difficult to compute, or even ap-
proximate, basic statistical quantities such as the likelihood.

199Elsewhere in the literature this model is also referred to as Li and Stephens or, following the original paper, the PAC-
likelihood (for “product of approximate conditionals”).

200Li N, Stephens M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide
polymorphism data. Genetics. 2003;165(4):2213-33

201Perspective piece by Yun Song:
Song YS. Na Li and Matthew Stephens on modeling linkage disequilibrium. Genetics. 2016;203(3):1005-6.

202The Copying model can be thought of as a generative model: i.e., a specific model for the evolutionary process that
generates the data. In this way it is analogous to the ARG, which is also a generative model but far more complicated.

203The modeling for θ is a bit complicated. The notation is motivated by the tradition definition of θ in population ge-
netics 4Neµ. But here, the expression is intended as a slightly heuristic model of the mismatch probability, and may de-
pend on the nature of the data. For example, if we are looking at ascertained SNPs, we do know that there should be
at least 1 mutation per site, somewhere within the observed genealogy, and Li and Stephens suggest scaling θ by the ex-
pected genealogy length. Furthermore, θ here is implicitly doing some extra work: it should also be able to incorporate
sequencing errors, gene conversions, and other types of deviations from the copying model. You can read more about
this in Li and Stephens (2003).

204We do this only if s < S
205HMMs are beyond the scope of this book but some googling will lead you to plenty of tutorials of different flavors,

eg [Link].
206

1000 Genomes Project: [Link];
Haplotype Reference Consortium Consortium" THR. A reference panel of 64,976 haplotypes for genotype impu-

tation. Nature Genetics. 2016;48(10):1279-83

207For already-phased haplotypes, the run-time is proportional to the size of the reference panel K. If we need to per-
form phasing at the same time, then each individual traces two paths through the reference panel, and the run-time is
proportional to K2. In practice this gets rather slow for large panels. Consequently, there has been a great deal of meth-
ods development that uses these (or similar) ideas to develop much faster algorithms.

208Biddanda A, Rice DP, Novembre J. A variant-centric perspective on geographic patterns of human allele frequency
variation. Elife. 2020;9:e60107

209Nicholson G, Smith AV, Jónsson F, Gústafsson Ó, Stefánsson K, Donnelly P. Assessing population differentiation
and isolation from single-nucleotide polymorphism data. Journal of the Royal Statistical Society Series B: Statistical Method-
ology. 2002;64(4):695-715
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210Motivation for the Nicholson-Donnelly Approximation. The variance due to drift in a single generation of the WF
model is p(1− p)/2N (using standard properties of binomial sampling). For a sum of independent random variables,
the variance of the sum equals the sum of the variances. This rule doesn’t really apply here, because the drift is a func-
tion of pt, which depends on the drift in the previous generations. However, if we make the approximation that the drift
variance in each generation is constant, and determined by the ancestral frequency, pA, then the variance over T gen-
erations is simply T times the variance in the first generation. This approximation works best for small values of T/2N
(for which the allele frequencies don’t drift very far from pA.

211Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, et al. Sequencing of 50 human exomes reveals adapta-
tion to high altitude. Science. 2010;329(5987):75-8

212There’s also a second fascinating aspect to this story: the selected EPAS1 haplotype is highly divergent from other
human haplotypes at this locus, and is believed to have entered the human population by gene flow from a species of
archaic hominid known as the Denisovans, which were related to Neanderthals:

Huerta-Sánchez E, Jin X, Asan, Bianba Z, Peter BM, Vinckenbosch N, et al. Altitude adaptation in Tibetans caused
by introgression of Denisovan-like DNA. Nature. 2014;512(7513):194-7), in a process known as adaptive introgression. We’ll
come back to this when we cover human history.

213Recall that coalescent times are exponentially distributed with parameter 1/2N. The cumulative distribution of the
exponential at time T is therefore given by 1 − e−T/2N ; see e.g., [Link].

214Here I’m assuming that T/2N since the out-of-Africa migration is around 0.15 time units.
215This is calculated using the formula above to compute the expected time to go from m = 1000 lineages down to

K = 13 lineages. You can compute this formula in R using
f <- function(n) { 2/(n*(n-1))}
sum(f(14:1000)).
For simplicity I’m ignoring recent population growth and the out-of-Africa bottleneck. Both events would change

the distribution of times but not the overall intuition.
216My treatment of this problem is a bit simplistic, for ease of exposition. However there is an extensive literature on

the number of lineages at time t, for example:
Jewett EM, Rosenberg NA. Theory and applications of a deterministic approximation to the coalescent model. The-

oretical population biology. 2014;93:14-29

Slatkin M. Allele age and a test for selection on rare alleles. Philosophical Transactions of the Royal Society of Lon-
don Series B: Biological Sciences. 2000;355(1403):1663-8

and references therein.
217When there is migration, we can keep track of the number of lineages in each population at any given time (let’s call

this k1 and k2, respectively). Then, going backward in time, migration events from population 1 to population 2 are ex-
ponentially distributed at rate mk1, and mk2 for the reverse direction. A migration event from 1 to 2 decreases k1 by one,
and increases k2 by one. Meanwhile, coalescent events occur within populations: e.g., within population 1 at rate k1(k1 −
1)/2, as usual. We can simulate the next event (coalescence in population 1 or 2, or migration from 1 or from 2) as a pro-
cess of competing exponentials. Lastly, we can generalize this model to include more populations with an arbitrary ma-
trix of migration rates between populations i and j in each generation.

218I’m illustrating the split-plus-migration model here because this is relevant to many human populations. But there’s
a simpler, classic, model in population genetics called island migration in which the populations never merge together,
and are subject to migration going back infinitely far in time. In this model, provided that the migration rate is >0 it’s
guaranteed that eventually the ancestral lineages will happen to collect in one population so that they can merge together.
You could motivate the island model by considering populations (for example birds on islands, or butterflies on discon-
nected systems of serpentine grasslands) that have occupied the same geographic space for a very long time – since long
before the joint MRCA of all the populations.

219Such as SLiM [Link].
220FST was one of three measures of genetic structure known as Wright’s F-statistics. Wright’s other F statistics, FIS and

FIT , measure inbreeding of individuals relative to the sub- and total populations, and are less widely used nowadays.
221Wright S. The genetical structure of populations. Annals of eugenics. 1949;15(1):323-54

222There are various reviews of FST . I suggest Nicholson et al (2002, cited above) and Bhatia et al (2013), which I relied
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on for this section
Bhatia G, Patterson N, Sankararaman S, Price AL. Estimating and interpreting FST: the impact of rare variants. Genome

Research. 2013;23(9):1514-21;
as well as:
Barton N. Identity and coalescence in structured populations: a commentary on ‘Inbreeding coefficients and coa-

lescence times’ by Montgomery Slatkin. Genetics Research. 2007;89(5-6):475-7
Holsinger KE, Weir BS. Genetics in geographically structured populations: defining, estimating and interpreting

FST. Nature Reviews Genetics. 2009;10(9):639-50

223To be more precise, this is the variance if there are many subpopulations, each fixed for allele 0 or 1 with probabil-
ity 1− pA and pA respectively or, equivalently, the expected squared difference for each population between its actual
allele frequency and the expected value pA.

224We can see that FST converges to 1 as follows. Eventually every subpopulation either loses the allele (with proba-
bility 1 − pA) or fixes (with probability pA). So eventually Var(pk) is given by (1 − pA)p2

A + pA(1 − pA)
2 = pA(1 −

pA)(pA + 1 − pA) = pA(1 − pA). This cancels with the denominator implying that FST ultimately converges to 1.
225Nicholson et al 2002

226One advantage of this framing is that it doesn’t assume a particular evolutionary model (i.e., population splitting),
and is equally applicable for any scenario with structure, such as migration-only models.

227 To keep this simple we’ll consider the frequency in a particular subpopulation ps as a random variable, and the an-
cestral or total frequency pA and pT , respectively, as fixed parameters. The numerator of Equation 2.47 is E[(ps − pA)

2]
by the definition of a variance. Then, noting that E[ps] = pA we have:

FST =
E[(ps − pA)

2]

pA(1 − pA)
=

E[p2
s ]− 2E[ps pA] + E[p2

A]

pA(1 − pA)
=

E[p2
s ]− E[p2

A]

pA(1 − pA)
.

For Equation 2.49 we note that Hb = 2pt(1− pt) and Hs = 2ps(1− ps), similar to the logic for Hardy-Weinberg. Then

F′
ST =

2pt(1 − pt)− 2E[2ps(1 − ps)]

2pt(1 − pt)
=

E[p2
s ]− E[p2

t ]− E[ps − pt])]

pt(1 − pt)
=

E[p2
s ]− E[p2

t ]

pt(1 − pt)

228See Equations 6 and 8 in Slatkin, M. (1991):
Slatkin M. Inbreeding coefficients and coalescence times. Genetics Research. 1991;58(2):167-75

229From Slatkin (1991):

FST =
t − tw

t
where t is the mean coalescent time for two random samples from the total population and tw is the mean coalescent
time for two random samples from the same subpopulation.

230Bhatia et al (2013)
231A classic paper by Maryellen Ruvolo (1997) discussed incomplete lineage sorting in the human-chimpanzee-gorilla

divergence, reporting that 11 out of 14 genomic data sets support the (human, chimpanzee) grouping (see her Table 1):
Ruvolo M. Molecular phylogeny of the hominoids: inferences from multiple independent DNA sequence data sets.

Molecular biology and evolution. 1997;14(3):248-65

232This section draws heavily on work by
Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, et al. Insights into hominid evolution from the

gorilla genome sequence. Nature. 2012;483(7388):169-75

See also
Hobolth A, Christensen OF, Mailund T, Schierup MH. Genomic relationships and speciation times of human, chim-

panzee, and gorilla inferred from a coalescent hidden Markov model. PLoS genetics. 2007;3(2):e7

Hobolth A, Dutheil JY, Hawks J, Schierup MH, Mailund T. Incomplete lineage sorting patterns among human, chim-
panzee, and orangutan suggest recent orangutan speciation and widespread selection. Genome research. 2011;21(3):349-
56

Prado-Martinez J, Sudmant PH, Kidd JM, Li H, Kelley JL, Lorente-Galdos B, et al. Great ape genetic diversity and
population history. Nature. 2013;499(7459):471-5
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233The trees at individual genomic regions are known as gene trees (although this is a misnomer, since the trees don’t
correspond to genes per se).

234There’s still quite a bit of uncertainty in these models. One issue is potential changes in mutation rate over time:
Amster G, Sella G. Life history effects on the molecular clock of autosomes and sex chromosomes. Proceedings

of the National Academy of Sciences. 2016;113(6):1588-93

235In these models, the alleles compete against each other, but we assume that the population size is fixed by exoge-
nous factors–perhaps food or other resources–and that selection at the variant in question does not directly drive pop-
ulation growth. This is referred to as “soft selection”, and the genotype fitnesses are measured relative to one another.
In contrast, in hard selection models, the genotypes have absolute fitness values, and this means that the population can
grow, or grow faster, as fitter alleles increase in frequency. Soft selection models are theoretically more tractable, and usu-
ally a good approximation in humans where fitness gains from any single variant tend to be very small. Hard selection
may be relevant in other situations–for example in modeling growth of E. coli on antibiotics, where an antibiotic resis-
tance allele can allow a dramatic increase in growth rate.

236You’ll often see this model parameterized slightly differently, denoting the fitness of each genotype by w with a sub-
script: i.e., wAA, wAa, waa. But in the soft selection case what matters is the fitness of each genotype relative to the oth-
ers, so we set the ancestral homozygote to be a reference group, and divide all three fitnesses by wAA. Now the fitnesses
are 1, wAa/wAA, waa/wAA, which we rewrite as 1, 1+ hs, 1+ s. (We can do this provided that we don’t have the spe-
cial case of symmetric balancing selection wAA = waa ̸= wAa).

237First, recall that we want to compute ∆p = E[p′]− p where

E[p′] =
pq(1 + sh) + p2(1 + s)

q2 + 2pq(1 + sh) + p2(1 + s)
(5.83)

We simplify the notation by using w in place of the denominator (pronounced w-bar, and referred to as “mean fitness”),
and simplifying:

w = q2 + 2pq(1 + sh) + p2(1 + s) (5.84)

= q2 + 2pq + 2pqsh + p2 + p2s (5.85)

Noting that p + q = 1 and q2 + 2pq + p2 = 1 we simplify this to

w = 1 + 2pqsh + p2s (5.86)

Now we’re ready to start calculating ∆p as follows:

∆p =
pq(1 + sh) + p2(1 + s)

w
− p × w

w
(5.87)

= [pq(1 + sh) + p2(1 + s)− p[1 + 2pqsh + p2s]/w (5.88)

= p[q(1 + sh) + p(1 + s)− 1 − 2pqsh − p2s]/w (5.89)

= p[q + qsh + p + ps − 1 − 2pqsh − p2s]/w (5.90)

= p[qsh + ps − 2pqsh − p2s]/w (5.91)

= ps[qh + p − 2pqh − p2]/w (5.92)

= ps[qh + pq − 2pqh]/w (5.93)

= pqs[h + p − 2ph]/w (5.94)

= pqs[h(1 − 2p) + p]/w (5.95)

= pqs[h(q − p) + p]/w (5.96)

= pqs[p(1 − h) + qh]/w (5.97)

which gives us the desired result.
238We assume that h is in the range of [0, 1]; in the next chapter we’ll discuss balancing selection, which can happen when

h is outside the range [0, 1]. Also note that w is positive under reasonable conditions.
239Overview of card counting: [Link], and an example of a card-counting technique: [Link]. And a classic movie scene

about counting cards from Rain Man: [Link].
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240To be more precise, if the allele is at frequency p, selection would add or remove 2Nsp copies in expectation. So for
a common allele this is of order 1.

241A second intuition for why 2Ns = 1 represents the lower bound for selection is that the expected change in allele
frequency (E(∆p) due to selection is on the order of sp(1− p), while the variance in allele frequency due to drift (Var(∆p)
is p(1 − p)/2N. So the expected change due to selection trumps the change in variance when 2Ns >> 1.

242A nice description of the math for the haploid case is given by Otto and Whitlock (1997). Otto and Whitlock also point
out that the fixation rate of new mutations is much higher in growing populations, and this is probably important in some
ecological settings. See also Pritchard et al (2010) for further discussion of these issues:

Otto SP, Whitlock MC. The probability of fixation in populations of changing size. Genetics. 1997;146(2):723-33

Pritchard JK, Pickrell JK, Coop G. The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adap-
tation. Current Biology. 2010;20(4):R208-15

243Kimura M. Some problems of stochastic processes in genetics. The Annals of Mathematical Statistics. 1957:882-
901

Kimura M. On the probability of fixation of mutant genes in a population. Genetics. 1962;47(6):713

244For strong positive selection, if the alleles are lucky enough to reach more than a handful of copies then the deter-
ministic dynamics take over, and this randomness at very low numbers is independent of N. In fact the dynamics at very
low sample numbers are often modeled as branching processes, ignoring the total population size. When s > 0, the branch-
ing process either goes extinct quickly or goes to infinity (i.e., fixation).

245You may be wondering what happened to the distinction between census population size N and effective popula-
tion size Ne. I’ve been focusing on the ideal Wright-Fisher model where they are the same. For more general models both
can matter: the initial frequency of a mutation depends on N (i.e., it is 1/2N), but the rate of the drift depends on Ne.
It’s worth noting that Ne is a useful hack that gives us insight into complicated models, while not always being a per-
fect approximation. For example, fixation probabilities of advantageous alleles can be dramatically different with pop-
ulation size changes in a way that is not modeled by the neutral Ne. You can see this by noting that exponential growth
(which is not well-modeled by a single Ne) gives new mutations a big boost; the same will be true to a smaller extent even
with fluctuating population sizes (where Ne is traditionally computed as the harmonic mean of N); see Otto and Whit-
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Next, let’s consider the cases where p ̸= 0 and p ̸= 1. We further assume that s ̸= 0. (The 1, 1 + hs, 1 + s parameteri-
zation used in this book has a slight oddity in that it does not allow the heterozygote to have a fitness different than 1
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Note that this equilibrium for p is outside [0, 1] and thus not relevant for an allele frequency, unless either h < 0 or h >
1. This is a stable equilibrium (i.e. balanced polymorphism) if hs > 0 and otherwise an unstable equilibrium.
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tein evolution: for example we can expect higher substitution rates in populations with smaller effective population sizes.
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sic idea. One weakness of the original MK test is that it ignores the fact that deleterious variants are much more likely
to be polymorphic than to be substitutions: this in turn reduces power to detect an excess of nonsynonymous substitu-

208
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