
2.1 Genetic Drift: What happens to alleles over time?

The two copies of your genome (one inherited from your mum and one from your
dad) differ at about 3 million SNPs. Each of these arose as a point mutation some
time in the past: about 70 are new mutations from your parents, while most of
them are inherited from very distant ancestors. In fact, most SNPs that you
carry arose as mutations in distant ancestors, hundreds of thousands of years
ago, living in sub-Saharan Africa. In this chapter, and the next one, I’ll explain
why.

Every generation, new mutations are introduced into the population
(around 70 per child). You can imagine tracking what happens to these
mutations over time. Most mutations are lost from the population within
a few generations, but sometimes a mutation can increase in frequency
by chance alone. The random changes in allele frequencies over time are
known as genetic drift a

a Until Chapter 2.5 we’ll assume that all
variation is neutral: i.e., that there is no
advantage to having one allele or the other.
This is a good assumption for the vast
majority of point mutations.

.

You can think about the spread of a new mutation as being like what
would happen if you walked into a casino with a dollar. You decide that
you are going to keep playing until you either go bust or you beat the
house. Most likely, you go bust pretty quickly, but if you have some early
luck, you might be able to build up your cash reserves and play for a
while. Very very rarely (theoretically at least) you might be able to play
long enough to bankrupt the casino 136.

This is how it is for a new mutation. Most mutations are lost from the
population within just a few generations (that’s like you going bust in
the casino). But a tiny fraction spread by chance to be common. And a
very few, eventually, spread throughout the entire population, so that the
newer allele reaches frequency 1 (that’s like you bankrupting the casino).
We refer to this situation as fixation; or we say that the new variant has
fixed.

Figure 2.1: The casino analogy is not entirely
accurate because real casinos have a built-in
advantage which means that you have slightly
less than fair odds of winning each bet; that’s not
to mention the big burly guys who come over
when you start to beat the house and discuss
loudly how much they enjoy busting kneecaps.
Credit: Lucy Pritchard

Before we go on, I need to remind you of some jargon: At the position of
a mutation, we’ll refer to the original allele as the ancestral allele, and the
new allele will be the derived allele.

A new derived allele (i.e., a new mutation) starts out with 1 copy in the
population. If use N to denote the number of individuals in the popula-
tion, then the starting allele frequency p of a derived allele is

p =
1

2N
.

The factor of 2 in the denominator is to account for the fact that chromo-
somes come in pairs so everyone has two copies of each locus (for the
autosomes 137).

Over time, due to genetic drift, the allele frequency p either drifts down
to zero (the derived allele is lost) or eventually drifts up to 1 (the derived
allele is fixed). As I will explain, a new allele is usually lost within a few
generations, but fixation takes tens of thousands of generations.
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Thought experiment: random changes in allele frequencies over time.
The tiny and remote island of Pitcairn is situated in the south Pacific,
roughly halfway between New Zealand and Peru. It is currently home
to about 50 inhabitants. They are descended from a party of 29 founders
who landed there in 1790: nine mutineers from the British ship Bounty,
along with 20 Polynesians they had kidnapped. The population has never
exceeded 250 inhabitants 138.

Figure 2.2: Pitcairn Island. NOAA, Public Domain

[Link]

Imagine an A/G SNP that was present in the founding population of the
island. Suppose that the derived allele G was at a frequency of 55% in the
founding group in 1790. Assuming there’s no advantage to having either
A or G in terms of either survival or reproduction....should we expect
that G would stay at a constant 55% frequency over time?

Answer: Probably not. In each generation, the kids get a random sample
of the alleles from the previous generation. Since there are so few peo-
ple in each generation, the number of G alleles will vary by chance from
one generation to the next, as illustrated below. This random change is
genetic drift.

Figure 2.3: Random sampling of alleles.
Allele frequencies change from one generation
to the next due to random processes: how many
children each person has and which alleles they
pass on.

Although most human populations may seem very different from the
population of Pitcairn Island, genetic drift occurs in all populations,
though usually much more slowly.

The Wright-Fisher (WF) model of genetic drift. The Wright Fisher
model provides a framework for modeling how allele frequencies change
over time b

b The WF model 139 is named after two
early-20th century founders of population
genetics, Sewall Wright and Ronald Fisher.

.

If you wanted to model genetic drift on Pitcairn Island, you might try to
get a pedigree for the population over time, and then try to understand
how allele frequencies might change through this pedigree. But in prac-
tice we don’t have pedigrees like this in most populations and, in any
event, the complexities of real-world pedigrees tend to obscure the gen-
eral principles of how frequencies change over time 140.

Instead, the Wright-Fisher model proposes some simplifying assump-
tions that allow us to understand the fundamentals of population ge-
netics within a very basic model for how allele frequencies change over
time. As we will show in the next few chapters, this model is naturally
extendable to cover all the other main processes in population genetics,
including recombination, natural selection, and population size changes
and population structure. While the structure of the model is relatively
simple, it provides a powerful framework for understanding genetic vari-
ation in real populations.
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We start by assuming a population with N individuals (2N copies of each
locus). We assume that there are discrete generations, and that the N in-
dividuals mate at random to generate N individuals who form the next
generation, ignoring constraints on the sexes of parents c. c Here we focus on the numbers of each

allele, and ignore the pairing of alleles in
diploid genotypes. When we need to think
about genotypes in Chapter 2.5, we can pre-
dict the proportions using Hardy Weinberg.

To make the model as simple as possible, you can think of all 2N alleles
being thrown into a giant bag. Then, we generate the genotypes in the
next generation as follows: reach into the bag, draw out an allele at ran-
dom, write it down, and throw the allele back into the bag. (In a proba-
bility class, this process is referred to as sampling with replacement.) This is
illustrated here:

Figure 2.4: WF sampling. Imagine that all 2N
copies of a site are thrown into a big bag (left).
We draw alleles out of this bag to make the new
generation (right). After we draw out an allele
and record it on the right, we drop the original
back into the bag on the left. We do this 2N
times to make the new generation.

This process gives rise to a probability distribution called the binomial
distribution, which we’ll describe shortly.

Before we get to that, here is what this looks in practice. Here I’m assum-
ing a starting allele frequency of p = 0.55 as before. Let’s suppose that
we do a single generation of Wright-Fisher sampling: what is the range of
possible outcomes?

The histograms below show the distributions of possible outcomes from
repeating this experiment many times in populations of two different
sizes. Figure 2.5: Genetic drift in a single genera-

tion. Histograms of binomial sampling outcomes
for p1 given 2N=1000 (red) vs. 2N=100 (over-
laid in blue).

Allele frequency in the next generation
0.0 0.2 0.4 0.6 0.8 1.0

2N = 100

2N = 1000

As you see, both populations are centered on the previous allele fre-
quency (0.55) d, but the range of outcomes is much wider in the smaller d To be more precise, the expected value

of the new distribution equals the frequency
in the previous generation. In statistics, an
expected value indicates the average
(mean) of a distribution.

population. This is intuitive, because there is a greater amount of ran-
domness from sampling in the smaller population.
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Binomial sampling.

Binomial sampling comes up in many contexts where we make a series of random, independent draws,
and each time there is a probability p of one outcome, and q = 1 − p of the other outcome 141.

In WF sampling, we make 2N independent draws to create the next generation. Suppose that k is the
number of times we draw the derived allele. In this case, the allele frequency after one generation of
sampling is k/2N, which we will refer to as p1. The expected value of p1 (denoted E(p1)) is simply

E(p1) = E(
k

2N
) = p, (2.2)

meaning that on average the frequency in the next generation is centered on the current frequency. This
doesn’t tell the whole story, however, because as shown in the histograms above, the actual, observed
p1 can vary around p. We can measure how much p1 varies using the variance of p1. By definition, vari-
ance measures the average squared difference from the mean:

Var(p1) = E[(p1 − p)2] (2.3)

Using standard properties of the binomial distribution we can show that:

Var(p1) =
p(1 − p)

2N
(2.4)

Notice that the variance in p1 is inversely proportional to the population size N. This makes sense: a
larger population size means that you’re getting a bigger sample of the allele frequency from the pre-
vious generation. Another important quantity is the standard deviation (SD), which is the square root
of the variance, namely:

SD(p1) =
√

Var[p1] (2.5)

=

√
p(1 − p)

2N
(2.6)

A very useful rule of thumb is that 95% of the time p1 will be within two standard deviations of p.

Election polling also follows a binomial distribution. We can get some intuition for binomial sam-
pling by thinking about a completely different context where it comes up: election polling. Suppose
that Dumbledore and Voldemort are running against each other for President.

In a particular state, 55% of voters plan to vote for Dumbledore, and 45% for Voldemort. To get a pre-
election poll, we phone 100 people, chosen at random, to ask whom they plan to vote for. Assuming
that we can get a representative sample of the voting population, the binomial distribution tells us that
there is a 95% chance our estimate will be within two standard deviations of the true value: i.e., between
45.1% and 64.9% for Dumbledore 142 143.

However, suppose that we phone 1,000 people instead of 100. Now we expect a much more accurate
estimate: in the range 51.8–58.1%.

These examples illustrate two properties: first, each time we do the survey we get a random estimate
centered around the true value. Second, the random error is reduced with a larger sample compared
to a smaller sample. Both properties are relevant for allele frequency sampling.
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Binomial sampling over successive generations produces genetic drift.
So far, we have talked about genetic drift for a single generation. Now
let’s think about what happens over the course of many generations.

The crucial thing now is that the result of binomial sampling in one gen-
eration gives you the starting point for binomial sampling in the next
generation. This will produce a series of allele frequency changes over
time called a Markov chain, or more colorfully, a random walk e

e Genetic drift is an example of a
mathematical model known as a random
walk. You can imagine a drunkard
stumbling backwards and forwards along a
number line with walls at 0 and 1 until he
bumps into either wall and stops.
It’s outside the scope of this book, but infinite random walks in 2 and 3

dimensions have very interesting properties. I have always enjoyed the

aphorism from mathematician Shizuo Kakutani that “A drunk man will

find his way home, but a drunk bird may get lost forever.” [Link].

.

Let’s go back to Pitcairn Island. In our hypothetical example, the derived
allele started at a frequency p0=0.55 in the founders (the subscript 0 on
p0 is to indicate that this is generation 0, before any kids have been born
on the island). Let’s suppose that in the next generation, due to random
sampling, the frequency of A goes up to 60% (p1=0.60). Now, we repeat
the random sampling to create generation 2–but this time, the input fre-
quency of A is 0.60, so the expected distribution is centered around 0.60.
This process repeats, with the frequency of A drifting up or down by
chance depending on the previous frequency. So for example, we might
get a sequence of allele frequencies like this:

p0=.55, p1=.60, p2=.57, p3=.60, p4=.52, ...
but another SNP with the same starting frequencies might go

p0=.55, p1=.45, p2=.42, p3=.30, p4=.35, ...
This is illustrated here:

Figure 2.6: WF sampling over multiple gen-
erations. The allele frequency in each generation
is a binomial sample centered on the allele fre-
quency in the previous generation. Over many
generations, this randomness allows the frequen-
cies to drift away from the initial starting point.

Drift works the same way in larger populations, but the rate of drift is
slower, simply because the binomial variation is smaller in each gener-
ation. The next plots show simulations of this process in populations of
different sizes. Each line plots an independent random outcome:

Figure 2.7: Simulations of genetic drift from
a starting allele frequency of 0.55. Each plot
shows ten independent simulations. Notice that
the range of possible outcomes diverges much
faster in the smaller population size, with some
simulations reaching fixation (frequency=1) or
loss (frequency=0) within the timescale of the
simulation.
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Eventually, the G allele will either reach 100% frequency, in which case
we say that it has fixed, or 0% in which case we say it has been lost. In
random walk theory, 0 and 1 are referred to as absorbing states: meaning
that the random walk ends if it reaches those values.
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Mutation and drift. So far we have been talking about drift of alleles
that are already common. But in practice, each SNP starts life as a new
mutation. Some mutations drift up to become common. How can we
model this?

We’ll assume that each mutation creates a new allele that did not exist
previously in the population. This is known as an infinite sites assump-
tion (this simplifies the math and is usually a good approximation 144).
Under this assumption, each new mutation has a starting allele frequency
of one copy in the population: i.e., p0=1/2N. The new allele now drifts
until it either reaches loss or fixation:

Figure 2.8: The life-cycle of a SNP. A mu-
tation generates a new variant. This is initially
at frequency 1/2N. Its frequency drifts until it
eventually reaches loss or fixation.

The next figure illustrates this process for 200 mutations introduced at
different times in a population of 100 individuals. As you can see, most
of the mutations stay rare and are quickly lost; however a few drift up
to become more common and, in this example, one eventually reaches
fixation.

Figure 2.9: Genetic drift of new mutations.
Each line shows the simulated trajectory of a dif-
ferent mutation, starting at a random generation
number, and drifting independently of the other
mutations. This simulation included 200 muta-
tions, most of which stayed rare and are hard to
see on this plot.
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allele reaches fixation

Most alleles in a population are very rare. Every new mutation starts
out rare in the population (at a frequency of 1/2N), and most are quickly
lost, while a very small fraction drift up to become common. You can see
this in the simulation plot above, where only a few of the 200 mutations
drifted above 10% frequency f. f You can think about new mutations within

our casino analogy. Think about what hap-
pens when a crowd of punters all walk into
a casino with one dollar each and start gam-
bling – most never get much money and
go broke very quickly, but a very few lucky
players build up a sizable purse and play for
a while before going broke.

What is the probability that a new mutation reaches fixation?

One very useful fact that we’ll derive in the next chapter is that the prob-
ability that a derived allele currently at frequency p will eventually
fix is also p. For example, the probability that a new mutation will
eventually fix is 1/2N. Since human populations number in the tens-
of-thousands to millions, the fraction of new mutations that eventually fix
is very very small.

79



Mutation, drift and the amount of genetic variation. If we put these
concepts together, we’re now ready to think about genetic variation in
populations.

In Chapter 1.3 we discussed how to quantify the amount of genetic varia-
tion in different populations. One important measure of genetic diversity
is expected heterozygosity. We define this as follows. Suppose that you
sequence a genomic region on one homolog of one random individual,
and on one homolog of a different individual. Expected heterozygosity is
the average fraction of sites at which these two haploid sequences differ.

Figure 2.10: Expected heterozygosity is the
average fraction of sequence differences between a
random pair of allele copies.

In modern human populations, expected heterozygosity is ∼0.5–1
heterozygous sites per kilobase, depending on the population. (See
Table 1.2, Chapter 1.3.)

What determines expected heterozygosity? First, mutation plays a critical
role of creating new variation in the population. Secondly, the average
effect of drift is to remove variation. (Of course, drift sometimes allows
rare alleles to become common, but this is always transitory, and in the
absence of new mutations, all variants eventually drift to fixation or loss.)

Thus, we can understand expected heterozygosity as a balance between
two forces: mutation, which inputs new variation, and drift, which
tends to remove it. The next box shows a derivation of expected het-
erozygosity under the WF model. You can skip this if you prefer.

Optional derivation: Computing expected heterozygosity.

Imagine picking two random copies of a locus from the population. We want to write down how the
probability that a single nucleotide is heterozygous in the next generation depends on population size
and mutation. We set H1 to be the initial heterozygosity, and H2 the heterozygosity in the next gener-
ation. We also define µ (pronounced mu) as the mutation rate per base pair per generation.

Imagine we pick two random alleles in generation 2. Under our model, there is a probability 1/2N that
they are descended from the same parent allele in generation 1. This has an effect of reducing heterozy-
gosity by a factor 1/2N.

On the other hand, alleles that were identical in the parents (with probability 1− H1) might have mu-
tated in either parent: i.e., with probability ∼ 2µ. (For simplicity I’m ignoring some extra terms that
relate to rare double events, such as two mutations or both mutation AND inbreeding; I’m also mak-
ing a standard simplifying assumption that mutations always create new alleles.)

We can now write a simple recursion for the expected heterozygosity in generation 2, given what it is
in generation 1:

H2 = H1 × (1 − 1
2N

)︸ ︷︷ ︸
Het goes down by 1/2N

+ (1 − H1)× 2µ︸ ︷︷ ︸
Het goes up due to mutation

. (2.7)

This last equation tells us how heterozygosity changes from one generation to the next. Let’s suppose
we’re at a steady state between loss of heterozygosity (from drift) and gain of heterozygosity (from mu-
tation). In that case, we can consider an equilibrium value H that is the same on the left and right hand
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sides of the equation, and solve for this:

H = H × (1 − 1
2N

) + (1 − H)× 2µ (2.8)

After some algebraic rearrangement we get

H =
4Nµ

1 + 4Nµ
(2.9)

Since 4Nµ is usually very small (∼0.1% in humans) it’s customary to simplify this last expression to

H ≈ 4Nµ (2.10)

which matches the value we will derive in the next chapter using a very different technique called the
coalescent.

To summarize the math, we just showed that the expected heterozygosity
is 4Nµ. In other words, heterozygosity is proportional to both population
size N (because larger population size lowers the rate at which alleles are
lost to drift) and mutation rate µ (because higher mutation rate increases
the influx of new variation).

Moreover, it turns out that 4Nµ is a fundamental parameter in popula-
tion genetics, that controls the amount of neutral genetic variation. We
won’t use this notation here, but it’s so fundamental that it’s sometimes
given a special name, θ. We’ll come back to interpreting 4Nµ on the next
page, but we have to introduce effective population size first.

Effective population size. It’s time for me to confess that the binomial
sampling model requires several assumptions that you might think are
silly: for example the population size is constant over time; mating oc-
curs completely at random; we don’t differentiate between males and fe-
males; generations don’t overlap; and that there is no inherent tendency
for some individuals to have more kids than others (in technical terms,
we say that the number of kids is Poisson-distributed).

Figure 2.11: Male elephant seals fighting
for dominance. The winners can control
harems of up to 50 females. High variation in
reproductive success reduces Ne relative to the
actual population size N. Credit: Hullwarren CC BY-SA 3.0

[Link]

But it turns out that the simple model actually works well in place of
more complicated scenarios, provided that we use a fudge factor called
effective population size (Ne). Basically the idea is that we will use this
number Ne in place of N, where Ne reflects the actual rate of drift under a
more realistic scenario.

For example, if a few males have very many offspring, as happens in
some species (and in historical examples like Genghis Khan and his sons
who fathered huge numbers of offspring across central Asia 145), this can
greatly reduce Ne. Similarly, when the population size fluctuates over
time, Ne is strongly shifted toward the times when the population size is
smallest, because drift happens much faster in those generations 146 g. g Most of the ways in which real popula-

tions differ from the idealized WF model
tend to reduce Ne.

In future, when we’re talking about theoretical models, it’s most conve-
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nient to describe the models in terms of N, for idealized populations. But
when we talk about data from real populations, we almost always need
to think about the data in terms of Ne instead of N. As we’ll see below,
Ne is usually much smaller than a census estimate of the population size.

Estimating Ne from data. Remember from above that in the idealized
model, the expected heterozygosity per site is given by 4Nµ. When we
look at real populations, we replace this with 4Neµ to reflect that the ac-
tual rate of drift is controlled by effective population size.

As we noted above, the effective heterozygosity in humans ranges from
5 × 10−4 to 1 × 10−3 per base pair, depending on the population. The
mutation rate is about 1.3 × 10−8 per base pair, per generation. If we use
Ne in place of N then for the higher end of this range we have

4Neµ = 1 × 10−3 (2.11)

Ne ≈ 20, 000 (2.12)

and Ne ≈ 10, 000 for populations at the lower end of the range 147. In
summary, the long-term effective population sizes of humans are around
10, 000–20, 000 individuals.

These estimates may seem absurdly low, given that the current world
population is almost 8 billion. In part Ne is so small because it’s a type
of average 148 over roughly the last million years and the human popu-
lation was far smaller for most of that time than it is now; the effective
size is also made smaller by the various other ways that real human pop-
ulations differ from the ideal model. But it’s difficult to fully interpret
exactly why effective population sizes are what they are 149. Nonetheless,
Ne provides a powerful tool for modeling patterns of genetic variation,
especially if we allow it to vary over time–as we will in the next chapter.

The WF model with haplotypes. So far we have been discussing muta-
tion and drift for individual SNPs. But of course, each SNP is contained
within a DNA sequence, which may contain multiple variant sites (also
known as a haplotype h). How should we think about mutation and drift h Genetic variation is inherited

within haplotypes and we’ll talk a
lot about these in later chapters.

in the context of haplotypes?

Here we’re going to introduce a basic haplotype model. Importantly,
this type of model can be extended in many ways – for example with re-
combination, selection, or population structure – and we’ll use this basic
model as a scaffold again in later chapters.

First, let’s assume we want to model mutation and drift for a genomic
region of L basepairs in length. Now, each generation will comprise two
steps: (1) Mutations can arise anywhere in the sequence, at a rate µ per
base pair, per haploid sequence. (2) In the sampling process, each hap-
loid sequence in the next generation is drawn at random from the previ-
ous generation, sampling with replacement. (Similar to before, this is like
putting all 2N haplotypes in a bag, and drawing out the next generation
one at a time, always writing down the new haplotype, and throwing the
old one back in the bag.) This is shown here:
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Figure 2.12: A WF model for haplotypes.
Each line is a haploid sequence (there are 2N of
these to represent the entire population). Blue
crosses indicate derived alleles at SNPs. New
mutations (red crosses) are placed at random
locations within the sequence. WF sampling acts
on the haplotypes instead of on alleles.

WF simulation of haplotype variation. One powerful feature of the WF
model is that we can use it to simulate data under a wide variety of evo-
lutionary models i. i This approach to simulation is called

forward simulation to distinguish it from
the backward-in-time approaches we will
encounter in the next chapter.

To close the chapter, we’ll take the intuition suggested above, and turn
this into pseudocode (a kind of recipe) that we could use to simulate hap-
lotypes. If you have experience with programming you could try this out.
Even if you don’t have experience with programming, think about the
steps here, and how they relate to the underlying model.

One key idea here is that we will start with an arbitrary genotype matrix,
and then iterate through many generations of mutation and WF sampling
until the simulation reaches equilibrium levels of genetic variation (and
the starting point doesn’t matter any more). For reasons we’ll cover in the
next chapter this takes at least about 4N generations 150. The genotype
matrix at the end of the simulation is a random draw from this mutation-
drift equilibrium.

Here’s some basic pseudocode for a Wright Fisher model with mutation:

Figure 2.13: Illustration of WF pseudocode.

• Genotype matrix: Create a genotype matrix G, that contains 2N rows
(each row is a haplotype) and L columns (each column is a site in
the sequence). We’ll designate four possible nucleotides using the
integers 0, 1, 2, 3 151.

• Initialization: Set every entry in the genotype matrix G to 0.

• for generation in 1 to Max-Generations do:
{

– Mutation: For each site in each row of G, mutate the existing
allele with probability µ.

– WF sampling: Create a new temporary genotype matrix, named
G′. For each row of G′, pick a random integer u between 1 and
2N, inclusive. Copy row u from G into G′ (this simulates WF
sampling with replacement). When all 2N entries of G′ are
filled, copy G′ back into G before starting the next generation.

}
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Possible improvements [Optional]. The pseudocode above is ok, but
it’s slower than necessary and it wastes memory because (i) many hap-
lotypes are identical, and (ii) most sites are not variable. We could make
this much more efficient if we just keep track of the distinct haplotypes,
and how many there are of each haplotype. We also don’t need to store
all the nonvariable sites – instead we can just store the positions of de-
rived variants. Lastly, when we add mutations, we can generate the total
number of new mutations each generation using a single Poisson random
variable with mean 2NµL, and then modify the existing haplotypes at
random positions 152.

Simulation software. Forward simulations provide a flexible approach
for modeling population genetic data, and can be applied to a wide range
of possible models. They are usually computationally slower than back-
ward simulations (next chapter) but aside from very simple models they
are easier to implement and far more flexible. A popular software pack-
age called SLiM provides a powerful toolkit for simulating a wide range
of interesting models [Link] 153.

In this chapter we introduced the Wright Fisher model and the fundamental con-
cept of genetic drift (and the interplay of mutation and drift). Nearly everything
else in population genetics depends on the basic processes of mutation and drift.
In the next chapter, we’ll introduce the coalescent, which gives us a very different
way to understand drift.
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Notes and References.
136In practice the size of your cash holdings over time when gambling in a casino is more analogous to the drift of a

deleterious variant, since casino betting is set up to favor the house. We’ll describe drift of deleterious alleles in Chap-
ter 2.5.

137The counts would be different for sex chromosomes: there are N/2 Y chromosomes, and 3N/2 X chromosomes, as-
suming equal numbers of males and females.

138You can read more about Pitcairn Islands here: [Link] and specifically about the mutiny here [Link]. The peak pop-
ulation size was 250 inhabitants in 1936.

Another example of an extremely isolated population is Tristan da Cunha. This is a tiny island in the south Atlantic–
at 1700 miles west of Cape Town in South Africa it is the most remote inhabited island in the world. Tristan da Cunha
is currently home to about 270 people who descend mainly from 8 men and 7 women from Europe and the US who set-
tled the island in 1816:

Soodyall H, Nebel A, Morar B, Jenkins T. Genealogy and genes: tracing the founding fathers of Tristan da Cunha.
European Journal of Human Genetics. 2003;11(9):705-9

139Sewall Wright, RA Fisher, and a third scientist JBS Haldane, are often credited as developing many of the key ideas
of modern population genetics, mainly in the first half of the 20th Century. This formed a key component of the so-called
Modern Synthesis, which united Darwin’s theory of evolution with the growing understanding of heredity started by
Mendel.

140It’s outside our scope here, but techniques for studying frequency changes in known pedigrees are referred to as gene
dropping. For an excellent example see

Chen N, Juric I, Cosgrove EJ, Bowman R, Fitzpatrick JW, Schoech SJ, et al. Allele frequency dynamics in a pedigreed
natural population. Proceedings of the National Academy of Sciences. 2019;116(6):2158-64

141Binomial sampling. The probability of getting k successes is

n!
k!(n − k)!

pkqn−k, (2.13)

where the function n! is pronounced “n factorial” and calculated as n × (n − 1)× (n − 2)× · · · 3× 2. For more on the
binomial see [Link].

142Here we approximate the sampling distribution as binomial, assuming that the size of the poll is much smaller than
the number of voters. The standard deviation of the binomial proportion is

√
p(1 − p)/n where p is the true proportion

and n is the number of voters that we phoned (instead of 2N for number of allele). The true estimate will lie within +/−
two standard deviations about 95% of the time.

143These example are meant as illustrations, but in practice, the biggest challenge in election polling is not binomial sam-
pling error but getting a representative sample of the voting population. In particular, it may be more difficult to reach
some types of likely voters than others. For this reason, analysis of polling data usually involves techniques to reweight
the samples to better reflect the expected demographic and political composition of likely voters.

144Remember that only about 0.1% of sites are common SNPs so this is a very useful approximation for most applica-
tions within species. However the assumption breaks down in analyses of very large sample sizes, especially at hyper-
mutable CpG sites. It also doesn’t work well for phylogenetic models of distantly related species as over longer timescales
a larger fraction of the sites have accumulated substitutions.

Harpak A, Bhaskar A, Pritchard JK. Mutation rate variation is a primary determinant of the distribution of allele
frequencies in humans. PLoS Genetics. 2016;12(12):e1006489.

145About 8% of the men in central Asia carry a single Y chromosome haplotype that is estimated to descend from a com-
mon ancestral haplotype 1000 years ago. The age and geographic distribution of the haplotype suggest that it was likely
spread by Genghis Khan and his male relatives:

Zerjal T, Xue Y, Bertorelle G, Wells RS, Bao W, Zhu S, et al. The genetic legacy of the Mongols. The American Jour-
nal of Human Genetics. 2003;72(3):717-21

Balaresque P, Poulet N, Cussat-Blanc S, Gerard P, Quintana-Murci L, Heyer E, et al. Y-chromosome descent clus-
ters and male differential reproductive success: young lineage expansions dominate Asian pastoral nomadic populations.
European Journal of Human Genetics. 2015;23(10):1413-22

146When population size fluctuates rapidly over generations, the effective population size is given by the harmonic mean.
Long-term changes in N are less-well modeled by a simple change in Ne.

147I’m rounding here since all the other numbers are somewhat rounded (and in any event heterozygosity varies across
the genome and across populations). Given these particular numbers, the precise value of Ne would be 19,230.

https://en.wikipedia.org/wiki/Pitcairn_Islands
https://en.wikipedia.org/wiki/Mutiny_on_the_Bounty#Pitcairn
https://en.wikipedia.org/wiki/Binomial_distribution


148The harmonic mean.
149It’s difficult to fully interpret effective population size estimates. Humans have extremely low heterozygosity (and

hence Ne) compared to a wide range of other species. Although chimpanzees and gorillas now have very small popu-
lations, they actually have higher long-term Ne than humans. Meanwhile, Neanderthals were even less diverse than mod-
ern humans, as are a few contemporary species with very small populations, such as lynx and wolverines. Although Ne
can be difficult to interpret, it still provides a powerful tool for modeling patterns of genetic variation, especially if we
allow Ne to vary over time as is typical in more advanced models.

Leffler EM, Bullaughey K, Matute DR, Meyer WK, Segurel L, Venkat A, et al. Revisiting an old riddle: what deter-
mines genetic diversity levels within species? PLOS Biology. 2012;10(9):e1001388

150We want to run the simulation long enough to ensure that the simulation can reach a stationary distribution with
respect to the amount of genetic variation (and so the starting point is no longer relevant). One way to think about this
is that the population MRCA in the final generation (see the next chapter) should exist within the simulation. On aver-
age, the time to the MRCA is 4N generations, so we would want to run this for at least 4N, and probably more like 10N
generations to be safe.

151The way I’m writing this it’s actually finite sites mutation, instead of the infinite sites model alluded to earlier. The
finite sites model is a bit more intuitive here.

152We can also convert this into an infinite sites model by representing the mutated position using a real number on
the interval [0,1]. Derived alleles will be represented by 1.

153Messer PW. SLiM: simulating evolution with selection and linkage. Genetics. 2013;194(4):1037-9
Haller BC, Messer PW. SLiM 3: forward genetic simulations beyond the Wright–Fisher model. Molecular Biology

and Evolution. 2019;36(3):632-7


