
2.2 More on genetic drift: The coalescent.

Here we introduce a different way of understanding the Wright-Fisher model,
called the coalescent, but now looking backward in time. The coalescent may
seem confusing at first but is incredibly powerful for understanding genetic vari-
ation and for data analysis a. a The 19th Century Danish philosopher

Søren Kierkegaard quipped that “Life can
only be understood backwards, but it must
be lived forwards.” This quote encapsulates
the difference between coalescent models
(backward-in-time) and the Wright-Fisher
model (forward-in-time) 154.

A short history. In the early 20th Century, when people first started
studying population genetics, it was natural to think about evolutionary
models forward in time, and these ideas were developed into the Wright-
Fisher model during the 1920s. For 50 years forward-in-time models were
the main tools for understanding evolutionary processes.

But it turns out that forward models are not easily adapted for use in
data analysis. When the first molecular data started to arrive at the end
of the 1960s, this drove the development of new questions and models in
population genetics 155. One huge innovation was the coalescent, devel-
oped independently by three scientists in 1982 and 1983: John Kingman,
Richard Hudson, and Fumio Tajima 156.

Like many breakthroughs in science, the coalescent stands the conven-
tional thinking on its head. Instead of thinking about evolution forward
in time to reach the present day, we look backward at the ancestors of
modern samples. Many problems in population genetics, especially for
neutral models, suddenly become far easier 157.

Inheritance of genetic material from a shared ancestor. The central
concept of the coalescent is that the DNA sequences carried by present-
day individuals – you or me, for example – are copies of DNA sequences
carried by individuals in the distant past. Your genome and my genome
are descended from many shared ancestors that lived hundreds of thou-
sands of years ago.

To train your intuition, we start by thinking about inheritance of DNA
within families. Imagine comparing your own genome with that of a sec-
ond cousin (second cousins share great-grandparents). In some parts of
the genome you, and that second cousin, inherited the exact same chunk
of chromosome from one of your great-grandparents (marked in red, be-
low). On average you share 1/32nd (about 3%) of your genome with that
second cousin:
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Figure 2.14: Shared ancestry between sec-
ond cousins. Inheritance of one chromosome
(i.e., one homolog) from a great grandparent
shown in red. For the two cousins the overlap-
ping segment is said to have coalesced in their
great-grandfather. (With such recent ancestry,
the overlapping part of the red segments in the
two cousins is also said to be identical by de-
scent (IBD).)

We say that this part of your genome coalesced with the corresponding
part of your cousin’s genome 3 generations ago; the great-grandparent
is your common ancestor at this locus. Coalescence means that this part
of both your, and your cousin’s genomes, are descended as copies of this
ancestral genome b

b With such recent shared ancestry we
expect the two copies of this region to be
identical, aside from any new mutations.
Regions shared within ∼10 generations are
referred to as identical by descent (IBD).

.

Here we’re focusing on coalescence within a family pedigree, between
two people who are “related” in the usual sense of the word. But as I
shall explain next, in fact everyone in a population is related in the same
way, although coalescence is usually far more ancient c

c There is an important distinction between
pedigree ancestors (e.g., you have 8
great-grandparents) and genetic ancestors,
which are the focus here. As in the
picture above, you have two copies of any
small region of your genome, each of
which comes from just a single parent,
grandparent, great-grandparent and so
on.

.

The coalescent refers to ancient shared ancestry within populations.
Let’s pick an arbitrary location in the human genome. You have two ho-
mologous copies of this locus. Pick one of those two copies at random.
You inherited this copy from one of your parents – your mum, say – who
got it from one of her parents, and so on backwards in time.

Now do the same thing for one of your friends. Pick one copy of this lo-
cus in your friend. Do these two copies have a common ancestor? Per-
haps surprisingly, the answer is yes, although that common ancestor
probably lived hundreds of thousands of years ago.

To see this, we’re going to use the Wright-Fisher model again. Remem-
ber that going forward in time, the WF model generates each generation
by random sampling with replacement from the generation before. We
can think of this in terms of drawing colored balls out of bags. Each time
we pull out a ball we write down its color and toss it back into the bag.
Here, two red balls in the present generation are both copies of the same
“ancestor” red ball two generations ago:
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Figure 2.15: Coalescence in the WF model.
Two copies of this locus in the present generation
are marked by red balls. These descend from a
common ancestor (i.e., they coalesce) two gener-
ations ago. In coalescent models it is most
natural to measure time backward from the
present.

Measuring time forward or backward. The illustration above also shows
that we can measure time either forward or backward. For the WF model
it’s natural to count generations forward from some arbitrary starting
point, as we did in the previous chapter. But in the coalescent we will
define the present day as t = 0 and count generations backward in time.

The genealogy of a sample. So far we have been talking about the an-
cestry for a pair of copies of this locus. Can we extend this to think about
the ancestry of m copies of this locus? For example, we could sequence
this locus in m/2 diploid individuals – how should we think about the
ancestry of these m sequences?

You can think of the ancestry of the samples as coming from a coalescent
genealogy (or just genealogy, or tree) that represents the relationships
of all m sequences. This genealogy is embedded within the forward WF
process:

Figure 2.16: The WF history contains an embedded coalescent genealogy. A. WF genealogy for a small popula-
tion. This includes six chromosomes sampled at the present day, in red. B. Red circles and arrows indicate the ancestors
of the sampled chromosomes, embedded within the WF process. C. The coalescent genealogy abstracts away all irrelevant
details of the WF process, showing only the ancestral relationships of the 6 samples and the coalescent times.

Notice that although the WF process runs forward in time, we can only
reconstruct the genealogy backward in time, after we are told which six
present-day samples are relevant. At that point we can find the geneal-
ogy by tracing backward through the ancestors of the sample. Looking
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forward in time, there is nothing particularly remarkable about the chro-
mosomes that wind up being ancestors, versus those that do not, and
their relevance to the present-day sample only becomes clear in retro-
spect.

Eventually, we reach a single common ancestor of the entire sample, known
as the most recent common ancestor (MRCA), which we will return to
shortly.

Time to coalescence. For the sake of simplicity, the pictures above show
coalescence within a few generations. But how long would coalescence
take in real populations. In fact, how sure can we be that any two copies
of this locus ever find a common ancestor – i.e., that they ever coalesce?

Looking backwards in time, each copy of this locus has a random parent
from among the 2N possible chromosomes in the previous generation. So
the probability that they both descend from the same parent is 1/2N.

Conversely, the probability that they do not have a common ancestor in
the last generation is 1 − 1/2N. What is the probability that we go back
at least t generations without a common ancestor? Assuming this pro-
cess is independent from one generation to the next, we can multiply the
probabilities, giving us

(1 − 1
2N

)t. (2.14)

Now the important thing here is that (1 − 1/2N) is < 1, so if we multiply
it by itself many times, this number steadily approaches zero. This means
that if we go far enough back in time we can guarantee that any pair of
copies of this locus have a common ancestor.

Ok, so any two copies are guaranteed to eventually coalesce, but how
long will this take? To answer this we need to take a short detour:

Understanding waiting-time distributions: the geometric distribution. To understand coalescent
models you should know a bit about mathematical models of waiting times. To make this more con-
crete, suppose that I have a 20-sided die. I keep rolling the die until it lands with the ‘20’ face up (and
then stop). How many times do I need to roll the die?

Obviously, the waiting time is random: there is a 1 in 20 chance that the ‘20’ comes up on the first roll
– or I might need to roll many times. But we can calculate the average number of rolls, and we can also
write down what is called the probability distribution which in this case is a general formula for the
probability that the ‘20’ first comes up on any specific roll.

First of all, we consider the probability of getting a ‘20’ on any particular roll. We’ll call this probabil-
ity p, and it is simply 1/20 since we have a 20-side die. Then the probability of NOT getting a 20, is
1-p, or 1-(1/20). One important property of probabilities is that the probability of multiple indepen-
dent events is the product of the probability of observing each separately, so the probability of NOT
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getting a ‘20’ in the first t rolls is
(1 − p)t. (2.15)

The probability of getting a ‘20’ on the next roll is p, so the total probability that the first ‘20’ occurs
on roll number t + 1 is

p × (1 − p)t (2.16)

This function describes the waiting times for events and it is called the geometric distribution [Link].
We can get a sense of how long you have to wait to roll a ‘20’ by computing Equation 2.16 for differ-
ent values of t. For example, there is a 0.4 probability (i.e., 40%) of rolling a 20 within the first ten rolls:

1 − (1 − 1
20

)10. (2.17)

Can you be confident that you will eventually roll at ’20’ if you are patient enough? Yes. Using this formula,
we find that there is a 64% chance of getting a ‘20’ within 20 rolls, 99.4% probability of getting a ‘20’
within 100 rolls, and 99.996% within 200 rolls. The probability of eventually getting a ’20’ converges
to 1 as you roll infinitely long.

Lastly, an important property of the geometric distribution is that the average waiting time to the first
success is simply 1/p: so in this example, 20 rolls.

Understanding waiting-time distributions: the exponential distribution. The geometric distribu-
tion measures time in terms of a discrete number of events or trials. But for our purposes we can ap-
proximate the geometric with a continuous distribution called the exponential distribution [Link]. For
our setting, the two distributions are virtually equivalent 158, but the exponential distribution is much
easier to work with.

Like the geometric, the exponential distribution is also used to model waiting times, but in settings where
time is measured in continuous units. For example, I might ask: “How long will it be until the next earth-
quake on the Stanford campus?”. Let λ be the rate of earthquakes per day 159. Then, according to the
definition of the exponential distribution, the probability that the next earthquake will occur exactly
t days from now is

λe−λt (2.18)

and the total probability of having an earthquake any time within the next t days is

1 − e−λt. (2.19)

An example of this function is plotted below. Finally, the average waiting time 160 to the next earthquake
is 1/λ. Notice this has the same form as the average waiting time in the geometric distribution, 1/p.

In our models, we are interested in waiting times until coalescent events. We measure time in gen-
erations, and set λ to be the rate of coalescence per generation, namely (1/2N); hence the average
coalescence time will be 2N generations.

The time distribution for two samples. We’re now ready to model the
distribution of coalescent times for two copies of a locus.

Remember that each generation there is a probability 1/2N that the two
copies will coalesce. As described above, we’ll model the waiting time
to coalescence using the exponential distribution, which an excellent ap-
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proximation to the geometric (and easier to work with, mathematically).

The next plot shows what is called a “cumulative distribution” of coa-
lescence times under this model (Equation 2.19 with λ = 2N). As we
showed in the last chapter, for human populations, the longterm (effec-
tive) population size N is around 20, 000 d

d Remember that when we need to allow for
the complexities of real world populations,
the rate of coalescence depends on the
effective population size Ne, rather than
true population size N. For simplicity we’ll
discuss the models in terms of N, but you
can think of subbing in Ne for real-life
situations.

.

The way to interpret this plot is that the y-axis shows the probability that
two samples coalesce within the most recent t generations (plotted on the
x-axis):

Figure 2.17: Cumulative distribution for
coalescence times. This shows the probability
that two samples coalesce within the past t gen-
erations, assuming N = 20, 000.
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As this plots shows, there is a 50% chance that coalescence occurs within
the last 1.4N = 28, 000 generations (slightly less than the mean of 2N
generations). And it’s almost certain that coalescence occurs with 10N =

200, 000 generations. Note that if we assumed a different population size,
this would change the numerical scale on the x-axis, but not the shape of
the plot, which is simply proportional to Ne.

The last important point here is that these timescales are really long in terms
of human evolution. Let’s assume that the average generation time is
about 25 years 161... then the average coalescence time of 2N generations
is 1 million years ago, before the appearance of anatomically modern hu-
mans.

The coalescent for larger samples. So far we have been talking about
the coalescent for a pair of samples. Suppose instead that we sequence a
particular locus in m/2 individuals, giving us a sample of m copies of the
locus. Remember that the genealogy is embedded within the WF process.

How can we model the genealogy without having to bother with the WF process?

Imagine that we trace the ancestry of these m copies back in time. Go-
ing backward in time, we will pick two of these lineages random to coalesce
into a common ancestor. Now (always looking backward in time) there
are m − 1 copies. This process repeats until we get down to 2, and then
finally to one common ancestor.

The process looks like this:
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Figure 2.18: Stepwise construction of a
genealogy. At each step we randomly join two
lineages. This results in a random topology
– i.e., branching structure – that relates the m
samples.

Next we need to model the waiting times between coalescent events.
We’ll use Tk to be the number of generations when there are k lineages
on the tree. (Here I use m as the number of samples in the present and
k, ranging from 1 to m, as the number of distinct lineages at times in the
past.) We showed above that T2 has an exponential distribution, with a
mean of 2N generations. What about larger values of k?

Figure 2.19: Expected times in the geneal-
ogy. Here Tk labels the time during which there
are k lineages. Tk is a random draw from an ex-
ponential distribution with mean 4N/k(k − 1).

How long does it take to go from k lineages to k − 1?

To get this, we need to compute how long it takes for any two of the k lin-
eages to merge into a single ancestor. The key thing here is that there are
a lot of possible pairs that we could make out of k lineages. Specifically,
there are e

e You can compute the number of possible
pairs as follows. List the k lineages in some
arbitrary order. The first lineage can pair
with k − 1 other lineages; the second can
form k − 2 pairs not counting the pair with
the first lineage... and so on. The sum
(k − 1) + (k − 2) + (k − 3) + ... + 2 + 1
equals k(k − 1)/2.

k(k − 1)
2

possible pairs. (2.20)

Since there are k(k − 1)/2 ways to get a possible coalescent event, this
means that the waiting time to the first coalescence is reduced by a factor
2/k(k − 1) compared to the waiting time when there are only two sam-
ples. Specifically, the waiting time when there are k lineages is exponen-
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tially distributed with mean:

E[Tk] =
4N

k(k − 1)
(2.21)

For example when k = 2, the average waiting time is 2N generations.
When k = 10, the average waiting time is 45-fold shorter: 2N/45 gen-
erations f. When k = 100, the average waiting time is nearly 5000 times f To get some intuition for this, imagine

k cars with blindfolded drivers, driving
erratically around a large parking lot. The
time until the first crash is much shorter
when there are many cars, and hence many
possible pairs that could crash. E.g., with
two cars the time until the first crash would
be 45 times longer than for ten cars.

shorter: 2N/4950.

In other words, the most recent coalescent events – when there are many
lineages – occur within a few generations, while the oldest coalescent
events can easily take a million years.

One question of particular interest is: How long ago was the MRCA of a
sample (or even of the entire population)?

Optional math on time to the MRCA. To compute the time to the MRCA, we add together the wait-
ing times between each node. Here TMRCA(m) is the random time to the MRCA for a sample of size m.

TMRCA(m) = T2 + T3 + T4... + Tm−1 + Tm, (2.22)

where Tk represents the random waiting time during which there are k lineages, and is an exponen-
tial random variable with mean 4N/[k(k − 1)]. So the average time to the MRCA is:

E[TMRCA(m)] =
m

∑
k=2

E(Tk) (2.23)

=
m

∑
k=2

4N
k(k − 1)

(2.24)

As the sample size gets large, this sum converges to a fixed value (the derivation requires techniques
on infinite series):

lim
m→∞

E[TMRCA(m)] = 4N. (2.25)

In other words, as the sample size goes to infinity (or in practical terms, the entire population), what
we see is that on average the most recent common ancestor for the entire population is 4N generations
in the past.

The key result here is that for an average location in the genome, the
common ancestor for the entire population is 4N generations ago (∼2
million years, for humans). On average, half of the total time back to the
common ancestor is spent waiting for the last two lineages to coalesce.

The genealogy has both random topology and random times. Before
moving on, I want to emphasize one last important point about the coa-
lescent: although we have been focusing on average properties, genealo-
gies are inherently random, and vary in two important ways: both the
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topology (i.e., branching patterns) and coalescent times are random draws from
the coalescent process. This is illustrated below for genealogies with m = 4:

Figure 2.20: Random outcomes of the coa-
lescent process. A and B differ in their branch-
ing patterns (topologies), while B, C, and D have
different coalescent times.

In practice, the genealogies in different regions of the genome vary widely,
and as we shall see next, this influences the allele frequencies and num-
bers of SNPs at any given locus.

Coalescent with mutation. So far, we have been talking about the ge-
nealogy. The genealogy reflects the inheritance of a DNA segment through
time. Conceptually you can think of this as tracking the copying of DNA
molecules through thousands of meioses, and reflecting the fact that a
particular stretch of DNA in different people is a copy of the same ances-
tral DNA sequence in some distant ancestor.

Now we need to add mutations into the model. Patterns of genetic vari-
ation in modern samples reflect the combination of coalescence and mu-
tation. As you get used to the structure of the coalescent, it provides a
powerful tool for understanding patterns of genetic variation. We’ll come
back to this theme repeatedly in the upcoming chapters.

To make this concrete, let’s suppose that we sequence a stretch of L base
pairs (L = 5 kb, for example) in m samples (without recombination). We
assume that new mutations arise at a rate µ per base pair per generation.
It’s going to be helpful now to label the lengths of branches on the tree
(in generations); we’ll do this using bi for branch i:

Figure 2.21: Example of branch lengths
in a genealogy. The branch lengths bi show
the length (in generations) of each branch. The
numbering is arbitrary. Note that the specific
branching patterns depend on the random tree
topology.

Notice above that we can write the branch lengths bi in terms of the times
between coalescent events (remember that Tk denotes the time when
there are k lineages), although the specific branches and their lengths de-
pend on the random topology.
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Now, let ni be the number of mutations on branch i. What is the expected
number of mutations ni? This is the product of the mutation rate µ,
branch length bi, and sequence length L:

E[ni] = µbiL (2.26)

That is the expected number, but the actual number of mutations on any
particular branch is random; this is modeled using the Poisson distribu-
tion. For more about the Poisson see 162.

Here’s an example of what this might look like for a sample tree. Muta-
tions are shown on each branch in blue; the tips of the tree (A-F) show
six samples collected in the present day. Mutations occur in ancestors along
each branch, and are inherited by all the samples that lie below them. So for ex-
ample on the tree below, mutation 1 is inherited by sample A only, while
mutation 2 is inherited by samples A-D. This means that we can go from
the tree on the left, to the haplotypes on the right:

Figure 2.22: Coalescent tree, mutations, and
haplotypes. (A) Example genealogy with 7
mutations. (B) The corresponding haplotypes,
with blue circles indicating derived alleles (at
arbitrary locations). The labeling A-F corresponds to the

sample labels in the tree. The assignment of alleles to haplotypes is

entirely determined from panel (A). However the sequence positions of the

mutations were assigned randomly while drawing panel (B).

Trees, branches, and derived allele frequencies. The picture above hints
at a key connection between the tree topology and the allele frequencies
in a sample. If a branch is above j samples, then any mutation on that
branch will occur exactly j times within the sample. This is shown below
for two example topologies:

Figure 2.23: Tree topologies and allele
counts. Branches are colored according to the
number of samples (tips of the tree) below each
branch. For example, mutations that occur on
blue branches will be present exactly twice in
the sample. Notice that the branch lengths and
possible allele counts differ between the random
tree topologies.

The branches labeled in green, above, are of particular interest as they
lead to just a single sample. These are often referred to as terminal branches,
and mutations that occur on them are referred to as singletons as they
are found in only a single sample.
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Quantitative aspects of variation in the coalescent. Thus far, I have de-
scribed the coalescent at a conceptual level, as a way of understanding
the structure of genetic variation. But we can also use it as a tool for mak-
ing quantitative predictions about variation.

To start: How many sequence differences can I expect between two samples, in a
region of L basepairs?

Recall that the coalescent time for two samples, T2, is exponentially dis-
tributed with mean 2N generations, with an average µL mutations per
generation along each branch. It follows that the expected number of
mutations between each sample and the common ancestor is T2µL, and
twice that for the total number of differences between the two modern
day samples 163:

Figure 2.24: Number of differences be-
tween two samples. The expected number of
differences between two samples (equivalent to
heterozygosity) is the product of their average co-
alescent time (2N) times the mutation rate along
both branches, 2µL.

It’s convenient to divide this by L, which gives us the expected number of
differences per base pair. That is equivalent to heterozygosity per site, H,
which we computed in the last chapter using the WF forward model:

H = 4Nµ. (2.27)

Happily, the forward and backward approaches gives us the same result.

Most heterozygous SNPs are very old. I mentioned before that you have
about 3 million heterozygous SNPs in your genome. How old are the
mutations that produced these heterozygous alleles?

Using this model we know that for any random part of your genome,
the average time to the common ancestor of two homologous copies is
2N generations (or about 1 million years). On average, a mutation oc-
curs halfway along the branch to the common ancestor... this tells us that
the average variant in your genome is due to a mutation that happened
500, 000 years ago(!) and many are much older 164.

To put this into perspective, modern humans evolved in sub-Saharan
Africa. About 70,000 years ago, some populations started spreading out
of Africa into the Middle East, and then went on to colonize nearly all of
the world’s landmasses g

g I like to think there is some beauty in the
fact that most of the heterozygous sites in
your genome, or in mine, arose as mutations
in distant ancestors in Africa half a million
years ago.

.

The number of SNPs found in a sample. The calculation above tells us
the expected number of mutations in a sample of 2. How many muta-
tions should we expect in a sample of size m?
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Optional: number of SNPs in a sample (the math). Suppose that you sequence a region of L basepairs
in m samples. What is the expected number of variable sites (i.e., SNPs) that you detect? In addition
to the result itself, this box illustrates the kinds of calculations that are (relatively) easy to do using the
coalescent.

To get this, notice that we can break the problem down into two parts: (1) What is the total branch length
– i.e., the sum of all the branch lengths; and (2) How many mutations do we expect to have occurred
given the tree length?

To get the tree length, you might want to start by thinking about computing the length of every branch,
and then adding all those together. But this is complicated because it depends on the branching struc-
ture of the tree, which is random. Instead, we can make the calculation easier by adding together a con-
tribution from the time between each coalescent event. Specifically, what is the total branch length dur-
ing the time when there are k lineages? Well the expected time is 4N/k(k− 1), and there are k branches;
multiplying these together gives 4N/(k− 1) total branch length in this epoch. Next, adding together
all the epochs, the expected total tree length is

m

∑
k=2

4N
k − 1

. (2.28)

Then we can multiply by the mutation rate to get the expected number of variable sites (denoted S) in
a sample of size m, in a region of L base pairs. After minor rearrangement and a shift in the sum in-
dex we get:

S = 4NµL
m−1

∑
k=1

1
k

. (2.29)

When m = 2 this agrees with the result we got before for heterozygosity.

Equation 2.29 in the box provides an important result: the expected num-
ber of SNPs in a sample of size m.

One key point is that as the sample size grows the MRCA time con-
verges to 4N, while the number of segregating sites grows indefinitely
at a rate proportional to the log of the sample size, ln(m) h. This is be- h In human populations the number of rare

variants actually grows a bit faster than
ln(m), for reasons we’ll explain shortly.

cause as you increase the sample size, new samples usually add addi-
tional short branches near the bottom of the tree – slightly increasing the
total branch length but not changing the MRCA time.

The site frequency spectrum (SFS). Suppose that we collect genome
sequence data from m samples. Let si be the number of SNPs at which
the derived allele is present exactly i times. For example, s1 gives us the
number of singletons, s2 the number of doubletons, and so on. The total
number of SNPs, S, is related to si simply by summing over all the possi-
ble allele frequencies from 1 to m − 1:

S =
m−1

∑
i=1

si. (2.30)

The vector of allele frequencies s1, s2, s3, ..., is referred to as the site fre-
quency spectrum (SFS), and is a simple but important description of ge-
netic variation i

i As we’ll discuss later, some types of
natural selection, as well as other departures
from the basic model such as recent
population growth, can be detected because
they distort the SFS away from this baseline
model.

.
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What determines the SFS? Take a look back at Figure 2.23. The expected
value of si depends on the amount of branch length that sits above
exactly i samples: for example, s2 depends on the amount of branch length
that sits above pairs of samples. If we focus on genome-wide data, this
has the effect that we will sample many different trees (in different parts
of the genome) so that we can average over the randomness of the coales-
cent process.

The derivation of the SFS is beyond the scope of this book, but you can
read about it here: 165. Although the math is a little tricky, it produces
the pleasingly simple result j that the expected number of variants with a j This result also implies that the expected

tree length above exactly i samples is 4N/i.derived allele frequency i is proportional to 1/i:

E[si] =
1
i
× 4NµL. (2.31)

This distribution is plotted here:

Figure 2.25: The Site Frequency Spec-
trum (SFS). Here the expected SFS is plotted
for m = 100 and 4NµL = 100. Notice that
most variants are rare. Here, 55% of the variants
are below 10% frequency. This pattern is even
more dramatic in large samples: in a sample of
m = 10, 000, 76% of the variants are at < 10%
frequency.
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One key thing to notice is that most variants are rare. A useful rule of
thumb is that allele frequencies are uniform on a log scale: in very large
samples there are as many variants with derived frequencies between
0.1 and 1 as there are between 0.01 and 0.1, or between 10−5 and 10−4.

Lastly, we can also get intuition for this from the WF model. In the last
chapter I pointed out that most derived alleles are very rare, and only
a small fraction are common: every new mutation starts out rare (i.e.,
at 1/2N frequency). Most are lost quickly, while only a few are lucky
enough to drift up to become common. Thus, the WF model gives us a
different conceptual tool to reach a similar conclusion.

The coalescent with population size changes. I have been describing
the coalescent under the simplest possible population model: constant
size and no population structure. This basic model is referred to as the
vanilla coalescent.

But real populations often differ from this simple model, and it’s impor-
tant to think how this might affect the coalescent. In this section I’ll de-
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scribe how to think about two types of changing population size that are
important for humans: bottlenecks and population growth.

Population bottlenecks. In population genetics, a bottleneck refers to a
reduction in population size, often but not always followed by a return
to the original population size. Bottlenecks are important because they
greatly increase the rate of genetic drift.

Bottlenecks have been important features of human evolution, including
during the spread of populations as they left Africa and colonized the
globe during the past ∼ 80, 000 years 166. This is why non-African popu-
lations have less genetic variation than Africans.

Bottlenecks have also reshaped patterns of variation in some populations
within much more recent timescales – for example the ancestors of mod-
ern Jews went through a tight population bottleneck ∼1000 years ago 167.

In the WF model, we can think of the bottleneck as increasing the vari-
ance in allele frequencies: some alleles increase dramatically, while others
decrease:

Figure 2.26: WF drift through a bottleneck.
Bottlenecks greatly increase the rate of drift due
to low Ne.

Of course, we can also think of this in terms of the coalescent. Remember
that the rate of coalescence is k(k − 1)/4N per generation. If our model
allows N to vary with time then, when N decreases, the rate of coales-
cence will increase at an inverse rate.

This means that we will get an increased rate of coalescence within the
bottleneck, and fewer ancient lineages. The few lineages that predate the
bottleneck are likely to have many descendants:

Figure 2.27: Coalescent through a bottle-
neck. The rate of coalescence during the bot-
tleneck is greatly increased due to low Ne. The
purple and green mutations occurred on lineages
that survived the bottleneck and are at high fre-
quency in the final sample (at right). The yellow
mutation postdates the bottleneck and is at low
frequency. The tree here is tipped on its side to
emphasize similarity to the WF picture above.
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This example also helps to illustrate the intimate connection between
coalescence and drift: in a sense, drift in the WF model occurs because
lineages are coalescing.

Population growth. Another key feature of real human populations is
dramatic population growth, from ∼1 million in 10,000 BCE to ∼8 billion
today. How did this affect the coalescent process, and genetic variation?
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Figure 2.28: Exponential human population
growth. Estimates of total world population
during the past 12,000 years. Credit: El T [Link], Public

Domain. Data: [Link].

Here, the logic is opposite the bottleneck situation: a very large popula-
tion size slows down the rate of coalescence at very recent times. As a
result, recent growth hugely increased the number of very rare variants.

To understand this, it would be most natural to model population growth
as following an exponential increase over time 168. But the math for coa-
lescence with exponential growth is a bit clunky and obscures the main
points, so we’ll consider a simpler model:

Figure 2.29: Instantaneous growth. In this
simplified model, the ancestral population size
is 20, 000, followed by instantaneous growth to
infinite size 100 generations ago.

In the model above, we consider a population that grew instantaneously
to infinite size, 100 generations ago. How would this extreme model
change the properties of trees, compared to a model of constant N =

20, 000?

Recall that in the vanilla (constant size) model, for large samples the first
coalescent events occur very quickly. But in the infinite growth model,
there is no coalescence in the most recent time period, thus greatly ex-
tending the terminal branches:

Figure 2.30: Coalescent tree in the instanta-
neous growth model. There is no coalescence
for the first 100 generations (grey region) due to
infinite population size. Note: the picture is not
drawn to scale.

The longer terminal branches produce many more singleton mutations.
Recall for the vanilla model that the expected number of singletons is
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4N × µL (Equation 2.31).

But in the infinite growth model, every tip is extended by 100 genera-
tions. Since there are m tips, the expected number of singletons is now
(4N + 100m)× µL. So for example, in a sample of m = 1000, the number
of singletons is more than doubled! Meanwhile, the deeper structure of
the tree is unaffected, aside from slightly pushing back all the expected
times.

While the infinite growth model is unrealistic it still provides valuable
insight. Under a more realistic model of continuous exponential growth
there is a strong reduction in the rate of recent coalescence relative to the
vanilla model, thereby increasing the lengths of recent branches. In sum-
mary, recent exponential growth leads to a dramatic increase in low fre-
quency variants.

Footprints of population history in real data. In a 2012 paper, Tennessen
et al described genome-wide (exome) sequencing data from about 1100
individuals of African-American, and 1300 individuals of European-
American ancestry 169 170. They found over 500, 000 SNPs, of which 86%
were at less than 0.5% frequency and 57% were singletons.

The plot below illustrates the SFS for these two samples: Each line plots
the proportion of alleles (Y-axis) in bins of allele frequencies (X-axis).
Both axes are on log-scales; on these axes the theoretical null (constant
N) is approximately a straight line 171.

Figure 2.31: The SFS in human popula-
tions: huge excess of rare variants. Notice
that the real data (colored lines) are well above
the theoretical prediction (black line) in the
upper-right hand part of the plot. Credit: Modified

Figure S9D from Jacob Tennessen et al 2012 [Link] Used with permission.

Constant NEuropean 
American

African 
American

As you can see, the real data from both populations show a much higher
fraction of rare variants (higher in the upper right) compared to the null.
This is direct evidence for rapid recent population growth.

The authors then fit a model of historical population sizes (often called a
demographic model) that can fit the full SFS data. The model is shown
below, including a tight European bottleneck, and extreme recent pop-
ulation growth to reflect the huge excess of rare variants relative to the
vanilla coalescent model:
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Figure 2.32: Fitted demographic model. This
model is designed to fit the SFS data for African-
and European Americans (see upper-right panel).
The inferred model illustrates extreme recent
growth in both populations, and a strong
European bottleneck. Note that more recent estimates

include times and population sizes that are roughly doubled due to

updates in mutation rate estimates since 2012. The image was simplified

by not showing European mixing into African Americans in the last 400

years. Credit: Modified Figure 2B from Jacob Tennessen et al 2012 [Link]

Used with permission.

E.A (model 
and data)

A.A. (model 
and data)

As you can see in the inset in the upper right of the plot above, the pro-
posed model provides a good fit to the observed SFS. While the precise
parameter estimates vary among papers in this area, all of them agree on
the presence of a tight bottleneck for non-African populations, and ex-
treme recent population growth.

The coalescent and the fixation process. Thus far we’ve been using the
coalescent to understand genetic variation. But it also provides a useful
intuition for understanding how alleles fix. Crucially: A variant is fixed in
the present day if and only if it was present in the population MRCA.

Figure 2.33: Fixed variants are present in
the population MRCA. The blue variants are
fixed in the present day population because they
were carried by the MRCA; the green variants
are SNPs. Assume that the MRCA shown for this sample is in fact

the MRCA of the entire population.

This now provides intuition for two important results that I stated in the
last chapter:

The probability of fixation for an allele now at frequency p, is simply
p. You now know that any present-day sample has a common ances-
tor sometime in the past. Flipping this around, if we imagine going far
enough forward in time (on the order of 4N generations), we know that
exactly one copy of this locus will eventually be a common ancestor of
the entire current population. So for a SNP now segregating at frequency
p, there is a probability p that in the future a lineage carrying it will be-
come the ancestor of everyone.

The average time to fixation for a new mutation is 4N generations. The
logic here is similar: If a new mutation eventually fixes, this means that it

101

https://pubmed.ncbi.nlm.nih.gov/22604720/


is destined to become the common ancestor of everyone in a future pop-
ulation. We know that the expected time back to a common ancestor is
4N generations. Forward in time, it takes approximately 4N generations
until the first time that the mutation is the common ancestor of everyone
172:

Figure 2.34: Mutations fix at different times
depending on when their lineages first become
the population MRCA. All three blue mutations
are fixed in the final population at the far right,
but the first time at which they fix depends on
the structure of the coalescent. Also of interest: the yellow

variants are SNPs in the gray sample, but many of them are lost by the

time of the final (red) sample.

Coalescent simulation of haplotype variation [Optional]. As in the
previous chapter we end with a basic outline for how to simulate hap-
lotypes, this time using the vanilla coalescent model. If you’re good at
programming you may wish to try this 173.

Figure 2.35: Coalescent simulations.

Data storage: It’s useful to create a data structure that represents nodes of the
tree. There are m of these to represent each of the present day samples,
and m − 1 for the ancestral tree nodes. Each node stores the time, as well
as a pointer to the parent node, and to each child. (The child nodes are
null for the present day samples, and the parent pointer is null for the
MRCA.) It also stores a list of the derived variants present at this node.

You’ll also want:
• a list of the locations of mutations within the sequenced region;
• the current time before present, for use while constructing the tree;
• a list of current active lineages (nodes), for use while constructing the tree.

Construct tree:
Initialize the current time at 0.
The initial active lineages are the m present-day samples. Set the times
for these to 0 and all their children to null.

for (k starting at k = m, down to k = 2) do:
{

• Coalesce lineages: Pick two of the active lineages at random to coa-
lesce. Create a new node, with these two lineages as children. Drop
those from the active list and replace with the new node;

• Generate node time: Update the current-time by adding a random
time ∼ Exponential(4N/k/(k − 1)). Set the time at the new node
equal to the new current-time;

• Update lineage counter: k = k − 1
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}

Add mutations: Starting from the top of the tree, visit each branch i in
turn and do:

{

• Calculate the branch length bi as the elapsed time between the parent
node and the child node;

• Simulate the number of mutations as ∼ Poisson(biµL);

• Simulate the position of each mutation as ∼ Uni f orm(0, L);

• Drop the mutations down through every node below the mutated
branch to the present-day samples.

}

Comments. This is conceptually a bit more complicated than the Wright-
Fisher pseudocode, but it’s far more computationally efficient, as we
don’t need to track a huge number of ancestors that are not relevant to
variation in the present-day sample.

This type of algorithm provides an extremely efficient tool for simulating
genetic data. As a rule, coalescent simulations are much faster than WF
simulations, but they can be less versatile, and more difficult to modify
to new situations. There are numerous free software packages for coales-
cent simulations, including msprime [Link].

Well done! In the last two chapters you have learned the two most fundamental
tools for understanding patterns of genetic variation. In the next two chapters
we’ll discuss how to fold recombination and population structure into these basic
models.
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154Credit for finding this quote goes to the late Paul Joyce: [Link].
155We’ll talk more about these early data in Chapter 2.7, along with the other major conceptual development of the 1970s
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156Inspiration for the coalescent was motivated in part by developments in population genetics during the 1970s. John
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tic processes. He came to this problem after conversations with a group of Australian population geneticists: Pat Moran,
Warren Ewens, and Geoff Watterston. In a trio of papers published in 1982, Kingman framed the process in highly math-
ematical terms and published in mathematical journals; in one of these he coined the term “coalescent” (hence the oc-
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picture of a smashed car outside Stanford’s Old Chem Building in 1989 see [Link]. USGS data: [Link].
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t=0
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bers, and that’s roughly balanced by using a population size on the high end for human populations.

162The Poisson Distribution is a widely used model for the (random) number of rare events that occur in a specified
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to denote the probability density function for T (i.e., the exponential distribution with mean 2N). Then we have:
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∫ ∞
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∫ ∞

0
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= 2µL E[T] (2.37)

= 2µL2N = 4NµL (2.38)
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