
2.3 Linkage, recombination, and LD.

Within small linked regions of the genome, the coalescent process generates cor-
relations between the genotypes at different SNPs. This is known as linkage dise-
quilibrium (LD). Meanwhile, at larger distances, recombination breaks down LD
by shuffling genotypes. Here we discuss how the opposing forces of linkage and
recombination shape genetic variation.

The concepts of linkage, recombination, and LD appear in almost every topic in
human genetics, including natural selection, population history, population ad-
mixture and introgression, and the genetics of complex traits.

A first look at haplotype structure. The first time anyone sequenced
the same locus in multiple individuals was in 1983. In a landmark study,
Marty Kreitman, who was a graduate student at the time, sequenced the
ADH gene in 11 lines of the fly Drosophila melanogaster 174. The figure be-
low shows a simplified version of the complete data set from that paper:

Figure 2.36: Haplotype structure. Each row shows the genotype for a single fly line, and the columns show genotypes
at SNP positions (most sites are not shown as they were identical in all 11 lines). The major allele at each position is
shown in blue. Examples of blocks of shared haplotypes are indicated. Note that each line was constructed to carry only a single haplotype. For simplicity, a few

indels are not shown. Data: Martin Kreitman (1983) [Link].

Each row shows the sequence of alleles found on a particular chromo-
some copy in the population. We refer to the set of alleles found at vari-
ant positions within a linked region as a haplotype a. a For another early example, this time from

human data, see Figure 1.31.
Looking at these haplotypes, one feature may jump out at you: particular
combinations of alleles at different SNPs frequently appear together.
For example, on the left, a block of alleles TGCAG is shared among four
lines, all of which (and one other) later carry another block: GTCTCC.

This is a very typical feature of genetic data: particular alleles at nearby
SNPs often appear together more often than expected by chance. This
nonrandom assortment of alleles at different sites is referred to as
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linkage disequilibrium (LD). How do we understand this?

In the next couple of pages, we’ll talk about how linkage generates LD,
while recombination tends to break down LD. As before, both the backward-
in-time models (the coalescent) and forward-in-time models (Wright-
Fisher) provide complementary kinds of intuition, and we’ll use both
approaches.

Linkage generates haplotype structure (or equivalently, LD). Sites that
are close together in the genome are usually inherited together. This is
called linkage.

When we introduced the coalescent in the last chapter, we ignored the
possibility of recombination, focusing on sequences that are completely
linked. In this setting, there is a clear relationship between the branching
structure of the tree, and the corresponding haplotypes:

Figure 2.37: The coalescent process gener-
ates haplotype structure. A shows a coales-
cent tree without recombination. The red circles
indicate mutations. B shows the corresponding
haplotypes; the red circles indicate derived alleles
using the same numbering as in panel A. The posi-

tions of the mutations within the sequenced region are random.

For example in the tree above, mutations 1 and 2 occurred on the same
branch, and hence those two derived alleles always appear together. Mu-
tations 1 and 5 are on adjacent branches, and so derived alleles 1 and 5

usually appear together (although haplotype A has the derived allele at 1

but not at 5).

For a tree without recombination, there are very strong constraints on
the possible configurations of the derived alleles across haplotypes. For
example, if we focus on two SNPs at a time, you might expect that there
could be four possible haplotypes. If we label the ancestral and derived
alleles as A/a at the first SNP, and B/b at the second SNP, then in princi-
ple the haplotypes could be A-B, A-b, a-B, a-b.

But in the absence of recombination we can only get either two or three
of the four possible haplotypes, depending on where the mutations oc-
cur. As you can see in the examples below, we can get either 2 or 3 of the
possible combinations, but not all 4:

Furthermore, looking across all SNPs together, there are additional con-

105



Figure 2.38: Pairwise LD in the absence
of recombination. For any pair of SNPs we
can observe either 2 or 3 out of the 4 possible
haplotypes (depending on where the mutations
lie on the tree). While this is illustrated here for 4
samples, it is true regardless of sample size.

straints: the alleles must be nested in a way that is consistent with exis-
tence of a single tree. Haplotypes that are consistent with a single tree are
said to form a perfect phylogeny [Link]). I suggest that you draw some
examples of trees with mutations, to see what configurations are possible.

Recombination. But in practice, most regions of the genome are subject
to recombination. Recombination plays a crucial role in shuffling hap-
lotypes, and producing combinations that would be impossible in the
absence of recombination.

A quick refresher on recombination. Recall that during the production
of eggs and sperm, the chromosomes go through meiosis. In humans,
this reduces the number of chromosomes from 46 to 23. During this pro-
cess, the maternal and paternal chromosomes are broken and then joined
back together so that chromosomes in the resulting gametes are mixtures
of the parental chromosomes. This is called recombination, or crossover
175. Crossover events are positioned more-or-less randomly across the
genome with an average of 26 crossovers per sperm and 42 per egg.

Figure 2.39: Recombination. Sperm and eggs
carry recombined mixtures of the parental chro-
mosomes; typically there are around 1-2 switches
per chromosome, known as crossovers, posi-
tioned randomly along each chromosome.

Genetic distance. It will be helpful to talk about genetic distance, which
measures the rate of crossover, between different positions along a chro-
mosome. Genetic distance is measured in terms of centiMorgans (cM).

We define the genetic distance x, between two points on a chromo-
some to be x cM if the average number of crossovers between those two
points is x/100 per meiosis. For example, if two points are 10 cM apart,
then we expect 0.1 crossovers per meiosis.

Furthermore, we’ll be most interested in short genetic distances, for which
we can also interpret genetic distance in centiMorgans as the percent
probability of a crossover in the specified interval 176. For example, if the
genetic distance between two sites is 1 cM, then there is about 1% proba-
bility of a crossover per meiosis in that interval.

Figure 2.40: Crossover observed in
laboratory whiteboard pens.

Lastly, it’s helpful to define relate genetic distances to base pair distance
in the DNA sequence. For this purpose we define the recombination
rate. This is commonly measured in cM/Mb: that’s 100 times the ex-
pected number of cross overs per megabase. The average recombination
rate in the human genome is about 1.2 cM per Mb. In other words, there
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is about a 1.2% probability of a crossover event per megabase b

b It’s useful to remember that the human
recombination rate is about 1% per
megabase.

177.

So, why do we care about this here? Recombination is central to our
story because it shuffles haplotypes:

Figure 2.41: Recombination mixes haplo-
types, often creating new combinations that did
not exist previously.

In this way, recombination generates new combinations of alleles that
would not be possible with complete linkage. For example, when there
is recombination we do expect to see all four possible haplotypes for a
pair of SNPs, unlike what I showed you above. However, the rates de-
pend crucially on genetic distance.

As we shall see, for SNPs that are close together in the genome (less than
∼0.01–0.1 cM, or about 10–100 Kb) linkage is a stronger force than recombina-
tion and there tends to be strong haplotype structure. At larger distances (more
than ∼0.1 cM), recombination is highly effective at shuffling genotypes, and LD
is generally weak. In the next sections we’ll see why this is.

Measuring LD between pairs of SNPs. To make this discussion more
precise, it’s helpful to define some measures of LD that we can study in
models, and in real data.

Imagine two SNPs. One has alleles A and a, with allele frequencies pA
and pa; the other SNP has alleles B and b, with frequencies pB and pb.
Then there are four possible haplotypes: AB, Ab, aB, and ab, with fre-
quencies pAB, PAb, and so on:

Figure 2.42: Notation for allele and hap-
lotype frequencies at two SNPs. Here p
denotes a frequency.

If I didn’t tell you anything about these SNPs in advance, what would
you guess for the haplotype frequency pAB? The most natural thing would
be to guess that the alleles are independent of each other, in which case
pAB = pA pB.

This intuition is captured by a measure called D, which is the difference
between the observed and expected frequency of the AB haplotype:

D = pAB − pA pB. (2.39)

If genotypes at the two SNPs are independent (i.e., the SNPs are in
linkage equilibrium), then D = 0. c c Note: If the alleles are labeled 0 and 1 at

each SNP, then D can be interpreted as the
statistical covariance between alleles at the
two SNPs.

It may seem arbitrary to define D in terms of just the AB haplotype, but a
little algebra will show that if we redefined D in terms of a different hap-
lotype (e.g., with respect to Ab), then the only thing that would happen
is that D would switch signs to become −D. Since the allele labeling is
usually arbitrary, in practice we’ll only pay attention to the absolute value
|D|.

The second important measure of LD is known as D′. A weakness of D
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as a measure of LD is that its possible range depends on the allele fre-
quencies of the two SNPs, so it doesn’t immediately tell us if LD between
two SNPs is weak or strong.

To solve this limitation, D′ is adjusted to range between −1 and 1 regard-
less of the allele frequencies:

D′ =
D

Dmax
=

D
min(pA pb, pa pB)

for D > 0 (2.40)

=
D

min(pA pB, pa pb)
for D < 0 (2.41)

As with D, the sign of D′ depends on the labeling of the alleles, so most
papers use the absolute value, |D′|.

The formula for |D′| is a bit messy, but a little algebra reveals a crucial
property: |D′| < 1 if and only if all four possible haplotypes are present.
In other words, |D′| < 1 implies that there must have been recombina-
tion between the two sites.

The third important measure of LD is called r2, and again builds off D:

r2 =
D2

pA pa pB pb
. (2.42)

The value of r2 ranges from 0 to 1, where 0 means that the SNPs are com-
pletely independent. A value of r2 = 1 is referred to as perfect LD d, d Note: r2 can also be interpreted as the

squared correlation coefficient: the statistical
correlation between genotypes at two SNPs
is r = D/

√
pA pa pB pb.

and occurs if and only if there are just two of the four possible haplo-
types: i.e., only AB/ab or only Ab/aB.

As we’ll see later in the book, r2 is the natural parameter for measuring
the contribution of LD to genetic associations in complex trait
genetics 178.

Strong recombination breaks down LD. We can now show a key result
for how LD behaves in a model with strong recombination (and no drift).

Suppose we create an artificial population where two SNPs start out in
strong LD, with an initial value of D=D0 in generation 0. Let c be the
probability of crossover, per generation, between these two SNPs. (See
the Box below for a precise definition of c and a derivation.)

In the next generation, the LD (denoted D1) is predicted to be:

D1 = (1 − c)D0, (2.43)

and over successive generations the decay of D simply multiplies, so that
in generation t we have:

Dt = (1 − c)tD0. (2.44)

This implies that unless the recombination rate is very small, LD de-
cays very quickly. For two SNPs that are 20 Mb apart, say, we expect that
c ∼ 0.2. After ten generations, (1 − 0.2)10=0.1, meaning that within ten
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generations D decays to just 10% of its starting value. In this time, LD
between unlinked parts of the genome (c = 0.5) would essentially disap-
pear. Here’s a plot showing decay of D over time:

Figure 2.43: D decays within a few gener-
ations for large recombination rates (Equa-
tion 2.44, assuming D0 = 0.25). Timescales of
tens of generations are very short compared to
timescales of drift – which takes place over tens
of thousands of generations.
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This result also holds for D′ since, without drift, the denominator is unaf-
fected by recombination.

Optional: Decay of LD due to recombination. Here we sketch out the argument for how D decays over
time (Equation 2.44).

First, my definition of c above was a bit sloppy. To be more precise, c will be the probability that the
two alleles passed into a gamete both came from the same parent (i.e., both from the mother, or both
from the father). At short genetic distances, c is closely approximated by the probability of at least one
cross-over between the two SNPs, but this definition implies that the maximum value of c is 0.5, which
corresponds to random assortment of alleles on different chromosomes 179.

Our derivation assumes that recombination is happening much faster than drift. Specifically we assume
the allele frequencies pA and pB stay constant, while the haplotype frequencies, pAB, etc, change due
to recombination. (To be more precise, this approximation will be accurate when the change in D due
to recombination, cD, is much larger than the rate of drift, which is O(1/N).)

Let pAB be the frequency of the AB haplotype in the current generation. What do we expect for p∗AB,
the frequency in the next generation? Here I use the notation ∗ to indicate the value of a parameter in
the next generation.

The haplotype frequency p∗AB depends on two effects. First, recombination breaks apart AB haplotypes
at a rate c× pAB. Second, recombination creates AB haplotypes at a rate c× pA pB: this is the proba-
bility of randomly assembling an AB haplotype as a result of recombination. So we have

p∗AB = pAB − cpAB + cpA pB (2.45)

= (1 − c)pAB + cpA pB (2.46)
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Subtracting pA pB from both sides we write this in terms of D:

p∗AB − pA pB = (1 − c)pAB + cpA pB − pA pB (2.47)

= (1 − c)pAB − (1 − c)pA pB (2.48)

D∗ = (1 − c)D. (2.49)

Then, using the same logic over multiple generations, the decay of LD follows

Dt = (1 − c)tD0. (2.50)

To summarize, so far we have seen that:
• if there is no recombination, the basic properties of the coalescent ge-
nealogy tell us to expect strong LD;
• at large distances (for SNPs more than a few centiMorgans apart, say,
and certainly for SNPs on different chromosomes), recombination rapidly
eliminates LD.

We now need to explore what happens at intermediate distance scales,
between ∼1 kb to 100 kb, where recombination and coalescence compete
against each other.

The coalescent with recombination: the ARG. To understand these
models, we can incorporate recombination into the coalescent. This pro-
duces a more complex structure called an ancestral recombination graph
(ARG) 180.

To begin, we’ll look at two positions in a sequence, labeled L (left) and R
(right). Going backward in time, we now have two kinds of events: both
coalescence and recombination. As before, coalescence joins lineages,
but now recombination can split sequences apart so that each side of a
breakpoint becomes a separate lineage. This is visualized here:

Figure 2.44: An ARG for two samples. L
and R indicate the left and right-hand ends of
haplotypes 1 and 2. A. Coalescence without
recombination. B. Going backwards in time
Lineage 1 splits due to recombination. L1 takes
the left-hand path, while R1 takes the right. The
two ends of the locus have different MRCAs as
indicated.

In the figure above, you can see in panel B that, going backwards in time,
Lineage 1 is split apart by a recombination event so that we have a dif-
ferent coalescent time for the left-hand side of the region (red) versus the
right-hand side (blue).

We can extend this idea to consider more samples and more recombina-
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tion events. Instead of considering just two sites, we consider a sequence
of length c (in units of genetic distance), and recombination can occur
anywhere within this region. We indicate the position of a recombination
event by a fraction: for example, recombination at 0.3 occurs 30% of the
way along the sequence.

In this figure, the full ARG is shown at the left. This contains a series of
four so-called “marginal” trees at different positions across the sequence,
shown in red, each with a different branching pattern. As you can see,
the ARGs can become very complicated:

Figure 2.45: ARG and embedded “marginal” trees. Split points represent recombination events; we use the conven-
tion that the left-hand side of the sequence follows the left-hand branch, and the right-hand side follows the right branch.
The red numbers at top show which part of the sequence is relevant to each marginal tree: e.g., the first tree covers posi-
tions 0–0.3. Note that the recombination at 0.1 does not affect the marginal trees.

The graph above contains 4 recombination events. These split the region
into four distinct blocks, each with a different coalescent tree. However,
the trees don’t change entirely: haplotypes 1 and 2, as well as 4 and 5, are
closely related across the entire region.

I’ve described all this in terms of the full ARG process, but it’s worth not-
ing that the sequence data only depend on the marginal trees at each po-
sition (the red trees), and it can be easier to think about the process just
in terms of these trees, and the fact that they change as you move along
the sequence e

e We won’t cover inference methods in
detail, but in practice the modern inference
methods focus on estimating marginal trees
rather than the full graph including all
recombination events.

.

Breakdown of LD within the ARG. How does recombination affect hap-
lotype variation? Crucially, recombination can create mixtures of hap-
lotypes. This is illustrated in the example below, where addition of a
single recombination event produces all four possible haplotypes – re-
member that this would not possible in the absence of recombination:
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Figure 2.46: Recombination can generate all four haplotypes for two SNPs. The mutations are at positions 0.2
and 0.7 along the sequence, as indicated; the recombination is at 0.5.

The tug-of-war between coalescence and recombination. It’s difficult to
get really deep intuition for properties of the ARG. But I think it’s helpful
to think about it as a competition between two key processes: the tree-
structure of the coalescent creates haplotype structure, while recombina-
tion tends to break it apart.

The outcome of this competition is determined by a compound param-
eter, 4Nc: the ratio of the rate of recombination (c) to the rate of coales-
cence (1/2N) (and an extra factor of 2, see below). A large value of 4Nc
basically means there is a high rate of recombination per unit rate of co-
alescence, so recombination tends to be the winner (and conversely for
small 4Nc).

The next box explains why 4Nc is a natural parameter.

Optional: Timescales in the ARG. Let’s start with two samples, and a region of length c. What’s the
probability that these two samples coalesce without recombination?

Going backwards in time, as usual, coalescence occurs at a rate 1/2N per generation. Meanwhile, re-
combination occurs at a rate c per generation (in either lineage), so 2c in total. So the probability of at
least one recombination before coalescence is

2c
2c + 1/2N

=
4Nc

4Nc + 1
. (2.51)

(This result uses a method for “competing exponentials”; don’t worry if it’s not familiar.)

More generally, take a slice through the ARG at any time. Suppose that we have k lineages. What are
the waiting times to the next event (backwards in time, as usual)? Coalescence decreases the number
of lineages from k to k− 1; this occurs at a rate k(k− 1)/4N per generation as before. Meanwhile, re-
combination increases the number of lineages from k to k + 1; this occurs at a rate ck, where c is the
total recombination rate across the segment of interest 181.

So the probability that the next event is a recombination event is

kc
kc + k(k − 1)/4N

=
4Nc

4Nc + k − 1
. (2.52)

This formula suggests the following:

• 4Nc is the natural parameter to describe the role of recombination in an ARG.
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• In large samples, coalescence predominates at recent timescales (when k is large), while recombina-
tion is more effective at scrambling the lineages further back in time (when k is small).

To summarize, consideration of the ARG highlights a few key points:

• sites that are close together tend to share the same genealogy, hence
SNPs are in high LD;

• genealogies become less and less correlated with increasing genetic
distance, thus reducing LD;

• the scale of LD depends on the product of N and c (usually written
as 4Nc);

• in large samples, the most recent coalescent events occur faster than
recombination, so closely related haplotypes can be shared over
large recombination distances, even at distances where overall LD
is low.

Decay of r2 with distance. So we have a qualitative prediction that LD
should decay with genetic distance. Can we predict this more precisely?

It turns out that the expected r2 can be approximated as a ratio of covari-
ances in coalescence times among sequences at different distances f

f Note: these results focus on the typical
levels of LD at very short distances with
recombination and coalescence; as such it
differs from the earlier results predicting
rapid decay of D starting from an initial
condition of unnaturally high LD.

. I
won’t present the math for this (it’s a bit fiddly) but you can read about
it here [Link] 182.

And here’s how average r2 decays as a function of distance:

Figure 2.47: Predicted decay of mean r2

between pairs of SNPs, as a function of distance.
To interpret the x-axis, note that for humans
4Nc=80 corresponds to c=0.1 cM or ∼100
kb at the genome-average recombination rate. The

function plotted here is (10 + 4Nc)/(22 + 13(4Nc) + (4Nc)2), which

approximates the mean of r2 between common SNPs. See [Link].
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To give you a sense of scale, on average 100 kb in humans is around 4Nc =
80; this model predicts that LD should decay to be low within around
10 − 100kb, which is fairly typical in practice.

Recombination and LD in human data. Most of this basic theory was
already understood by the 1980s and 1990s. But for a long time we didn’t
have the tools to measure this in real data 183.

Figure 2.48: Pedigree studies of recombina-
tion. Traditional genetic mapping studies used
a scaffold of genetic markers to count crossover
events within pedigrees – shown here for a single
chromosome in parents and four kids.113
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This started to change in the 1990s, alongside the Human Genome Project.
At that time, one goal was to create genetic and physical maps of the
genome. One main approach was to genotype a genome-wide scaffold
of genetic markers (STRs) in families, and count recombination events
directly. With these data it was possible to estimate recombination rates
along each chromosome, as shown here in this recombination map of
Chromosome 1, made in 2002:

Figure 2.49: Pedigree-based recombination
map for Chromosome 1. These data, from a
2002 pedigree study, show estimated recombi-
nation rates at megabase scale (females, solid
line; males, dotted line). The region without recombination at

around 150 Mb marks the centromere. Credit: From Figure 2 of Augus-

tine Kong et al (2002) [Link] Used with permission.

As you can see here, at this scale recombination rates vary from about
1–3 cM/Mb (except for the centromere), and are higher near the telom-
eres, which is pretty typical of the genome. Female rates (solid line) are
generally higher than male rates (dotted), consistent with the fact that
genome-wide rates in females are 1.6× the male rates.

But the resolution of this type of map was limited by the number of avail-
able STRs (about 2 per Mb), which meant that they could not study fine-
scale variation in rates 184.

So when the first high-resolution SNP data came along, it was a big sur-
prise to find that the LD data revealed something much more striking!

But before we get to this, I need to explain a little about how to visual-
ize LD. Let’s suppose that we genotype a bunch of SNPs across a region.
One thing we could do is to show colored haplotypes in the style of Fig-
ure 1.31, but it’s hard to get a quantitative sense of the data from this. In-
stead, a commonly-used approach computes a matrix of r2 or D′ between
all pairs of SNPs, and displays it with a color scale, like this:

Figure 2.50: Visualization of LD patterns.
Panel A displays the full haplotype data but is
difficult to interpret quantitatively. B Instead
it’s common to display the data as a matrix of
pairwise LD; and often color-coded C. D Finally,
the matrix is rotated, and only the top half is
shown.

In panel D above, the SNP pairs that are close together are plotted near
the base of the triangle, and SNPs that are far apart are higher up. Thus,
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we expect that LD will usually be high (red) near the base, and decrease
going up.

By the early 2000s, as it became possible to collect SNP data at higher
density, some very interesting patterns started to emerge 185. Our model
above suggests that LD might be expected to decay smoothly with dis-
tance, but this is not the case at all. Instead, LD structure forms striking
blocks of high LD (so-called haplotype blocks), separated with lower LD
between blocks. Here’s a typical example from a 500 Kb region of the
genome:

Figure 2.51: Fine-scale patterns of LD and
recombination for a 500 Kb region on Chro-
mosome 2, in three population samples (A–C).
Red entries indicate pairs of sites with |D′| = 1;
white sites indicate |D′| < 1. Notice that the
overall structure is largely shared across pop-
ulations, but the extent of LD is lowest in the
African population (Yoruba) and highest in east
Asian population. D. Estimated recombination
rates in cM/Mb across the same region. The peak
recombination estimates are much higher than in
the pedigree map. Credit: Modified from Figure 8 of HapMap

(2005) [Link] Used with permission.

A. Yoruba

B. CEU (Europeans)

C. Chinese and Japanese

D. Estimated recombination rates

In the plot above, red indicates |D′| = 1. Remember that |D′| < 1 (white)
indicates that all 4 possible haplotypes are present, and that past recombination
must have shuffled genotypes between the two sites. The blocky structure of
the D’ matrices suggests that most recombination is taking place at the
boundary points between adjacent blocks.

It’s possible to use the LD structure to estimate a fine-scale recombination
map (panel D) 186 – this supports the visual impression that most recom-
bination is concentrated into narrow regions with extremely high recom-
bination rates. These locations are referred to as recombination hotspots.

These early results have proved to be typical of the genome overall: the
structure of LD tends to form blocks, with generally high LD inside
blocks, and lower LD between blocks. This reflects the structure of
recombination, which is mainly concentrated into narrow hotspots.

Genome-wide, more than 30,000 hotspots have been identified, with ad-
ditional recombination spread among weaker hotspots 187. This helps to
set the scale of LD, which typically extends around 10–100 Kb, depend-
ing on the genomic region g. g The figure above also illustrates another

typical pattern, namely that LD is low-
est in African populations due to their
larger long-term effective population
size.

PRDM9 and the hotspot paradox. The discovery of tens of thousands
of recombination hotspots immediately suggested a new question: What
controls the locations of hotspots? Work on this question led to a fascinat-
ing saga spanning molecular genetics, human genetics, and evolutionary
biology.
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The first major progress came in a 2005 paper by Simon Myers and col-
leagues, which reported that a certain 7-nucleotide sequence motif is
highly enriched within hotspots 188. The presence of this short DNA mo-
tif at many hotspots suggested that the locations of hotspots are, at least
in part, directed by local DNA sequences h. This situation is reminiscent h Terminology: DNA sequences that control

local activity are said to act in cis, while
external factors such as a DNA-binding
protein that recognizes those sequences are
said to act in trans.

of binding sequences for transcription factors, and suggested that recom-
bination events might be directed by an unknown DNA-binding protein
that recognizes this motif.

But this exciting observation immediately raised a theoretical problem
known as the hotspot paradox 189. The hotspot paradox argues that, due
to the molecular details of recombination, evolution should tend to re-
move cis-acting hotspot motifs.

To explain this, I need to say a bit about what happens during recombi-
nation. During meiosis, the homologous chromosomes pair up. Crossovers
are initiated by one of the two homologs (the blue one, in the example
below). The initiating chromosome undergoes a double-strand break, and
part of the chromosome is chewed back in both directions around the
break. Eventually, this damaged region is repaired using the other (red)
chromosome as a template, in a process known as gene conversion:

Figure 2.52: Simplified model of recombi-
nation with gene conversion. A. Recombi-
nation is initiated with a double-strand break
in the blue chromosome. B. Several hundred bp
around the DSB are resected (chewed away) on
the blue chromosome; then one strand invades
the red chromosome. This is resolved in one of
two endpoints: C. crossover with gene conver-
sion to repair the damaged section using the red
chromosome as template, or D. gene conversion
without crossover. Note: this is a simplified account of a com-

plex process. Figure modified from [Link].

The key point here is that, within the gene conversion region, it is the ini-
tiating chromosome (blue) that is copied over by its partner (red). Both
resulting chromosomes end up with the red sequence inside the con-
verted region.

Now, let’s suppose that one chromosome carries a hotspot motif but the
other does not (for example there could be a SNP for which one allele
breaks the motif). Then, the chromosome with the motif can initiate the
crossover. But that sequence would then be replaced by gene conversion
from the other non-motif chromosome. This is known as biased gene
conversion:

Figure 2.53: Biased gene conversion. An
allele that encodes the hotspot motif (blue) will
tend to be replaced by an alternative allele that
breaks the motif (red).

In other words, biased gene conversion tends to remove hotpots! We haven’t
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covered selection yet, but this is mathematically equivalent to a form of selec-
tion in favor of alleles that remove hotspots 190!

Based on this logic, the hotspot paradox argues that any time a SNP arises
inside a hotspot motif, it will tend to spread through the population as
if it were positively selected. Over time, this should tend to eliminate all
hotspots. So why are there any hotspots left?

Around the same time as discovery of the hotspot motif, another intrigu-
ing observation was made by comparing LD in humans and chimpanzees.

Recall that chimpanzees are our closest living relatives, and that our genome
sequences are extremely similar, differing at only about 1.4% of sites.
Given this, you might naively expect most hotspots to be shared if they
are controlled by cis-acting motifs. But, remarkably, studies of LD in
chimpanzees found no meaningful overlap of hotspot locations between
humans and chimps beyond random expectations 191:

Figure 2.54: No sharing of hotspots be-
tween humans and chimpanzees. A. One
study estimated that just 8% of hotspots overlap
between humans and chimpanzees. B. Simula-
tions showed that this is consistent with no true
sharing of hotspots (since hotspot regions are
estimated imprecisely, some overlap is expected
even by chance). Credit: Panel B is Figure 2 from Susan Ptak et

al (2005), [Link] Used with permission.

A. Sharing of recombination hotspots B. Simulated distributions of sharing 

And an independent study of recombination events in pedigrees in a
European-American population showed that, even within humans, not
everyone uses the same hotspots at the same rates 192. All this was very
intriguing. If hotspot locations are controlled by local sequences, then
shouldn’t most hotspots be shared?

Many of these questions started to be resolved by a set of papers in 2010

that identified a gene called PRDM9 as the missing, central, player in this
entire saga 193. PRDM9 encodes a protein with a so-called “zinc finger”
domain that is responsible for DNA binding.

The zinc finger domain has a specific affinity to – you guessed it – the
previously-discovered hotspot motif. The plot below shows DNA binding
predictions from a 2010 paper, based on the protein sequence of the most
common European PRDM9 allele. This substantially matches the DNA
sequence enriched within hotspots: Figure 2.55: Predicted binding preferences

of the PRM9 ’A’ allele. The sequence motif
in red at top represents a consensus of the motif
enriched at hotspots (’n’ indicates no clear con-
sensus). The DNA ’logo’ plot shows predicted
binding preferences of the PRDM9 protein based
on the corresponding zinc fingers; the sizes of the
letters reflect the predicted strength of preference
for each nucleotide. Modified from Figure 2 of Baudat et al

(2010) [Link] Used with permission.

Enriched hotspot motif

Predicted motif

Amino acids at DNA 
contact points 

Once PRDM9 binds to the DNA, it recruits additional machinery to
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initiate double-strand breaks (which can result in crossovers).

Of particular interest, the zinc finger DNA-binding domain is encoded
within a minisatellite repeat section of the gene i

i Minisatellites are similar to STRs, but
with longer repeat units. They tend to be
highly variable due to replication slippage,
and are also often referred to as VNTRs:
Chapter 1.3; Figure 1.34.

. Each repeat (or “fin-
ger”) consists of 28 amino acids (84 bp), of which 4 amino acids touch the
DNA and provide binding specificity. Most of the other 24 amino acids
are identical across repeats.

Recall that the copy number in such regions is often highly variable due
to mispairing during DNA replication. In fact, this is the case at PRDM9,
where dozens of alleles have been found in humans. Furthermore, the
alleles frequently differ specifically in the amino acids that contact the
DNA. The image below shows differences between two of the most com-
mon human alleles, A and C, as well as allelic variation across nine dif-
ferent human alleles:

Figure 2.56: Structure of PRDM9. A. Do-
mains of the PRDM9 gene. Zinc fingers 8–13
are responsible for DNA binding and differ be-
tween Alleles A and C. B. Diversity of zinc fin-
ger structure across nine human PRDM9 alleles.
Each box represents a single zinc finger, and
colors indicate distinct sequences. Notice that al-
leles differ both in the numbers of fingers as well
as their sequences, especially within the main
DNA binding region (red bar). C. DNA binding
structure of the C allele. Fingers 8-13 are respon-
sible for DNA sequence recognition. Panel A and C,

modified Figure 1 of Patel et al (2017) [Link], CC BY 4; Panel B part of

Figure 2 of Baudat et al (2010) [Link] Used with permission.

A. PRDM9 domain structure

B. Allelic variation of zinc fingers

C. Structure of DNA-binding (Allele C)

Importantly, in many cases, the different alleles have different DNA bind-
ing preferences. For example, allele C, which is common (36%) in west
Africa but rare outside Africa, uses completely different hotspots than
allele A (plot at right) 194.

Meanwhile, chimpanzees also have completely different PRDM9 alleles
from humans – thus neatly explaining the complete lack of overlap be-
tween the human and chimpanzee hotspot maps.

Enriched hotspot motif

Predicted motif (from protein)

A. Binding preferences of PRDM9 C allele B. Average recombination rate near C motif

Figure 2.57: Population differences in
hotspot usage at C allele binding motifs.
Recombination rates averaged across all in-
stances of the C allele binding motif in African
Americans (red) and Europeans (black). (Very
few other genes exhibit strong functional differ-
ences across human populations; in this case it
reflects the unique evolutionary pressures acting
on PRDM9.) From Figure 3 of Anjali Hinch et al (2011) [Link]

Used with permission.

Lastly, the rapid evolution of PRDM9 neatly resolves the hotspot para-
dox. There has indeed been systematic loss of human hotspots during
recent human evolution 195, but this is counteracted by regular jumps in
PRDM9 binding preferences due to the evolution of new alleles 196.

As a consequence of all this, the selective pressure imposed by hotspot
evolution has made PRDM9 one of the most rapidly evolving vertebrate
genes – and a fascinating story involving molecular biology, population
genetics, and evolutionary biology.
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In the last part of this chapter we return to models of LD, but now with a differ-
ent flavor. The new model is slightly heuristic, but much easier to work with in
data analysis – and hopefully more intuitive.

Haplotype copying models. While the ARG can be considered an “ex-
act” representation of chromosome ancestry 197, its complexity makes it
extremely difficult to use in statistical analysis 198.

But in a landmark 2003 paper, Na Li and Matthew Stephens introduced
an alternative framework known as a haplotype copying model 199 that
approximates key elements of the ARG process, while being much sim-
pler and far more computationally tractable 200. This model has inspired
many methods for a variety of important problems 201.

The central concept of the copying model is to define a conditional sam-
pling probability for the “next” haplotype in a sample. Suppose that you
have already observed K haplotypes in some region of the genome (by ei-
ther sequencing or genotyping). You then sequence one more haplotype:
before you look at the data, what would you expect this next haplotype
to look like?

Intuitively, within a small region of DNA sequence we should expect the
next haplotype to be similar to (i.e., “copy”) one we have already seen, but might
not be identical due to occasional mutations.

Secondly, over a larger region, we might expect that the next haplotype will
first copy one haplotype, and then switch to copy a different one, reflecting past
recombination events.

A third key point is that if we have a very large reference panel (large K),
then it’s more likely that the next haplotype will be similar to something
we have already seen, compared to if we were using a small reference
panel. So the rate of both switches and mutations should decrease with K.

One possible outcome from this process is illustrated here:

Figure 2.58: The Haplotype Copying Model
defines a probability distribution for the next
haplotype, modeling it as a mosaic of haplotypes
that have already been observed. It allows for
occasional differences due to mutation or errors,
as well as switches due to past recombination
events.

More formally, these ideas suggest that we could define a conditional
sampling probability. This allows us to compute the probability of ob-
serving any specific sequence of variants as the next haplotype. Under
this model, haplotypes that can be generated as simple mosaics of the
previous haplotypes are more likely 202.
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This model can easily handle recombination hotspots, simply by allowing
a higher switch rate any time the copying process passes over a hotspot.
Conversely, the model can be used to detect hotspots, as locations where
haplotypes often switch parents.

The upcoming box provides some technical detail on the copying process:

Optional: The Conditional Sampling Probability for Haplotype Copying. We define the conditional
sampling probability for the next haplotype as follows, assuming a reference panel of K ≥ 1 haplo-
types observed so far. For motivation and details see Li and Stephens (2003).

We focus on genotype data at a set of S SNPs, where the SNP number s ranges from 1 and S. This pro-
cess defines what is known as a Markov process for the k+ 1 haplotype, conditional on the K haplo-
types observed so far:

Initial parent. At the first variant position, s=1, pick a reference panel haplotype k between 1 and K,
at random. (We will start copying from this haplotype.)

Next, repeat the following until s = S:

• Determining the allele value. When copying from haplotype k, we usually copy the allele in hap-
lotype k but we allow for a low probability of single nucleotide mismatches due to mutation (or
other events such as genotyping errors or gene conversion). Specifically, at site s, with probabil-
ity 1− [θ/(K+ θ)] the allele in the new haplotype is set to equal the allele at site s in haplotype
k; otherwise we set it to an alternate allele. Here θ reflects the rate of mutations or mismatches in
the data 203.

• Recombination. When we move from SNP s to SNP s+ 1, we decide whether to switch to copy-
ing a different haplotype 204. Let cs be the expected number of crossovers between these two SNPs,
per generation. With probability e−4Ncs/K we continue copying from the current haplotype. Oth-
erwise, with probability 1− e−4Ncs/K we introduce a recombination event: in that case we select
a new random haplotype parent k′ between 1 and K.

• Increment SNP position. Set s to s + 1.

The expression for the switch rate is motivated by noting that the average coalescence time for a new
haplotype into an existing panel of K samples is ∼ 2N/K, so the expected number of recombination
events along either branch between the two SNPs is ∼ 4Nc/K, and the probability of zero recombi-
nations is e−4Nc/K.

Notice that here c is measured in units of genetic distance, so it naturally allows for a higher jump rate
across hotspots.

One huge advantage of copying models is that they are highly tractable
for computational analysis. For example, unlike the ARG, they are amenable
to efficient tools for data analysis called Hidden Markov Models (HMMs).
The details of HMMs are outside our scope 205, but I’ll briefly outline one
major application of copying models:

Phasing and imputation. Recall that one of the main ways of collecting
genome data on individuals is by genotyping. In genotyping, we mea-
sure the genotype of an individual at a pre-specified set of SNPs (com-
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monly ∼1 million SNPs). Until recently, genotype data has been much
cheaper than genome sequencing j. However, these data are incomplete j These issues also come up for sequencing:

in particular, traditional short-read sequenc-
ing does not determine haplotype phase.

in two key ways:
• We do not know the genotype at SNPs that were not on the array;
• We do not know haplotype phase: i.e., for heterozygous SNPs, we do
not know which allele goes on which homolog.

However, we can use the concepts of LD and haplotype structure to fill in the
missing data. This is referred to as phasing – inferring which heterozy-
gous alleles are from the same homologs; and imputation – for inferring
genotypes at SNPs that were not on the array. Imputed data are valuable
for many purposes as they allow us to approximate whole genome se-
quencing data at a fraction of the cost. Phased data are needed any time
we want to analyze haplotypes and, in any event, most imputation algo-
rithms work by phasing the data simultaneously, as I’ll discuss below.

Most applications of phasing/imputation build off a panel of known hap-
lotypes, such as data from the 1000 Genomes Project 206 to enable phas-
ing and imputation in a new sample, as shown here:

Figure 2.59: Imputation and Phasing. It is
common to collect genotype data on a subset
of SNPs (green). With the help of a reference
panel of known haplotypes (black) we wish to
infer haplotype phase and impute the missing
genotypes at unmeasured SNPs.

Under the copying model, we can view the data in a diploid individual
as coming from two unknown paths threading through the reference
panel. The HMM machinery allows us to identify likely paths and, from
this, to infer phase and missing genotypes 207:

Figure 2.60: Likely haplotypes inferred
from genotype data. For a diploid individual,
the genotype data result from two independent
copying paths through the reference panel. The
algorithm finds likely pairs of paths (red and
blue) consistent with the genotype data; switch
rates are higher at recombination hotspots. There
may be multiple likely paths. Once likely paths
have been identified we can infer phase and im-
pute variants at ungenotyped SNPs (bottom).

This type of approach provides the basic structure for how we can phase
and impute data from genotypes. While more advanced techniques in-
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clude various bells and whistles and speedups, this type of idea has been
used to analyze data from tens of millions of people.

In this chapter we’ve talked about how linkage, recombination and drift shape
patterns of genetic variation in the genome, including LD. These processes are
fundamental to understanding other aspects of human variation including natu-
ral selection and disease genetics.
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