
2.4 Genetic drift in structured populations.

So far, our models have ignored population structure. But of course, individu-
als do not choose their reproductive partners at random from the entire world’s
population. This nonrandom mating is referred to as population structure, and
over time it leads to differences in allele frequencies.

Human populations are structured at all levels: between continents and geo-
graphic regions, and often between nearby ethnic groups, towns or villages. Here
we discuss basic models of structure; we’ll revisit these themes in Section 3 with
a specific focus on human history.

Humans share a recent African origin. Spoiler Alert! We first need the
briefest overview of human genetic history to set the stage.

Humans are descended from populations in sub-Saharan Africa. Around
80, 000 years ago part of this population spread out of Africa, and eventu-
ally colonized most of the world’s land masses. As a result of our shared
ancestry, all human populations share much of our genetic variation.

Here’s a schematic overview of the relationships among human popula-
tions; see Section 3 for more about this topic:

Figure 2.61: Schematic overview of rela-
tionships among human populations. Most
human populations descend from an ancestral
population in sub-Saharan Africa. Non-African
populations also briefly contacted archaic hu-
mans (Neanderthals and Denisovans) when they
reached Eurasia. This overview is highly simplified: for example,

there has been frequent migration among groups, and many populations

have mixed ancestry across branches. Time estimates are approximate.

Credit: Figure 2 from Rasmus Nielsen et al (2017) [Link].

As we shall see in this chapter, the separation time of human populations
is actually quite recent in terms of population genetic timescales so that
most common genetic variants are shared among all human populations.

Allele frequency variation across populations. As we’ll discuss in this
chapter, population structure (non-random mating) allows alleles and
haplotypes to drift independently in different populations. This leads to
differences in allele and haplotype frequencies across populations.

An Owner’s Guide to the Human Genome, by JK Pritchard. September 23, 2023. Original material distributed under a CC BY 4.0 license.
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To give you a sense of what this looks like, the next plot shows the allele
frequencies in different human populations for a single common SNP. As
is typical for intermediate-frequency SNPs, both alleles are present in all
sampled populations, but at varying frequencies:

Figure 2.62: Population allele frequencies
at an arbitrary common SNP. Each pie chart
shows allele frequencies for a 1000 Genomes pop-
ulation sampled at that location. The blue allele
at this SNP is ancestral, and yellow derived.
Credit: Plot made using the Geography of Genetic Variants browser:

[Link]. SNP: rs7148516, Blue: A; Yellow: T. A is likely ancestral. Note

that the populations plotted in the Americas are not primarily native

populations.

chr14:93702672 A/T

Frequency Scale = Proportion out of 1
The pie below represents a minor allele frequency of  0.25

Sample sizes below 30 become increasingly transparent to 
represent uncertain frequencies, i.e.

0 n=9 n=18 n=27

And here’s a different visualization, showing allele frequencies for 100
randomly chosen SNPs from the 1000 Genomes Project data 208. SNPs
are sorted by global allele frequency (highest frequencies at the top) and
populations from the same continent are show in adjacent columns:

Figure 2.63: Geographic distribution of 100
random SNPs. Rows are Single Nucleotide
Variants, columns are populations, grouped into
continental groups: Africa; Europe; South Asia;
East Asia; Americas. White boxes mean that the
derived allele is absent from a particular popu-
lation sample; the blue color scale indicates
allele frequency in each population where
the allele is present. Credit: Figure 1 from Arjun Biddanda

et al (2020) [Link]. CC-BY 4.0.

The plots above suggest two key features of the data:

(1) Alleles that are common in one population tend to be common ev-
erywhere – notice the solid blue rows at the top of the plot that indicate
SNPs that are segregating in most, or all, populations. As we will explain
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shortly, this pattern arises because most common alleles arose in sub-
Saharan Africa before the human diaspora and were carried everywhere
as humans spread around the globe.

(2) Alleles that are rare are usually restricted to a single population or
continent – lower down in the plot, the blue bars in each row are usu-
ally found in just one or a few populations. This pattern occurs because
most rare alleles arose much more recently, after the separation of human
populations, and are only found within the populations where they first
occurred (or were carried by later migrants).

In the remainder of the chapter we’ll discuss models for genetic drift
with population structure to try to understand these observations.

Models of population separation and drift. To start thinking about
models for allele frequency variation, consider the allele frequencies in
two populations. For example, we might compare a pair of closely re-
lated populations such as Japanese and Korean; or more distantly related
populations such as Japanese and Yoruba (from Nigeria). In each case,
we can ask questions such as:

• How do allele frequencies differ between these pairs of popula-
tions?

• Are two samples from the same population more closely related (in
a coalescent sense) than samples from different populations?

The most basic model for thinking about this is to consider a pair of pop-
ulations that separated T generations ago from an ancestral population,
as you can see in the sketch to the right. We’ll start by assuming no mi-
gration between the two populations after the split (we’ll introduce mi-
gration shortly).

Figure 2.64: A basic population-split
model: An ancestral population of size NA
split at time T generations before the present,
instantaneously creating two descendant popula-
tions, of sizes N1 and N2.

We’ve discussed two different approaches to understanding drift: the
Wright-Fisher forward-in-time approach, and the coalescent approach.
Let’s use each of these in turn to understand what happens after the pop-
ulation split.

First, in the forward-in-time framework, consider an allele that drifts in
the ancestral population to a frequency pA at the time of the split. Imme-
diately following the split, it is at pA in each of the descendant popula-
tions, but after that it drifts independently in each population a

a If Wright-Fisher drift is like a drunk man
stumbling aimlessly between 0 and 1, this is
now like two drunk men stumbling
independently from the same starting
position. The allele frequency difference
between two populations is analogous to
how far apart they get after T steps.

.

This is illustrated in the plot below, which uses the Wright-Fisher model
to simulate drift of a single allele with N = 10, 000: first in an ances-
tral population (black), and then in two descendant populations (red and
blue):

125



Figure 2.65: Simulated drift of a single
variant. Drift in the ancestral population is in
black, and drift in the descendant populations
is blue and red. Here time is measured forward
from left to right; the amount of time plotted
after the population split (3000 generations) is
similar to the divergence of African and non-
African populations. NA = N1 = N2 = 10, 000.
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Allele frequency drift following a population split.

Ancestral population Independent drift in Pop1, Pop2

That’s just one random outcome from this process: what is the overall
distribution of allele frequency differences under this model?

There is not a simple, exact mathematical formula for this, but we can
get useful insight using the Nicholson-Donnelly approximation 209. This
provides a simple model for the present day frequency of an allele in a
population (denoted pT), given that the ancestral frequency was pA at
a time T generations before the present, assuming effective population
size N. Nicholson et al. suggested that we can approximate this using a
normal distribution 210:

pT ∼ Normal(pA,
T

2N
pA(1 − pA)). (2.53)

If pT falls outside the range [0, 1] we think of this as equivalent to loss or
fixation of the allele and set the frequency to 0 or 1.

Equation 2.53 may look complicated but is actually pretty intuitive. First,
the mean of pT is simply equal to the starting frequency pA, since we’re
assuming no selection.

Meanwhile, the variance of the distribution is T · pA(1 − pA)/2N; this
uses an approximation that the variance across T generations is simply T
times the WF sampling variance pA(1 − pA)/2N per generation.

Here’s what the model looks for an ancestral allele frequency of 0.55:

Figure 2.66: Genetic drift after a popula-
tion split. The plot shows the distributions of
possible allele frequencies in two populations of
different sizes, both starting from an ancestral
frequency of 0.55. The population shown in red
has larger T/2N and shows more drift from the
ancestral frequency. The red line approximates
the amount of drift in non-African populations
since the out-of-Africa migration.

0.0 0.2 0.4 0.6 0.8 1.0

Allele frequencies after split

Present day allele frequency

Ancestral
frequency

T/2N=0.05

T/2N=0.15

Example: Tibetans and Han. This basic model predicts the drift of each
population from an ancestral population. But in practice we don’t know
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the ancestral allele frequencies, so we infer drift by comparing frequen-
cies in different modern populations.

One example of this is shown in the plot below, which compares allele
frequencies between 50 Tibetans and 40 Han Chinese for about 100, 000
SNPs 211. As you can see, the allele frequencies are generally close to
the diagonal, implying that frequencies are similar in the two popula-
tions. Indeed, about half the scatter around the line actually comes from
the limited sample sizes rather than from drift alone (the standard devia-
tions of allele frequency estimates are up to 5% at these sample sizes).

Figure 2.67: SNP allele frequencies in Ti-
betans and Han Chinese. The plot shows
Tibetan and Han allele frequencies for ∼100K
exonic SNPs. Colors indicate the density of
points; notice the high color density along the
main diagonal indicating that the vast majority
of SNPs have very similar frequencies in the two
populations. Credit: Figure 1 from Xin Ye et al 2010. [Link] Used

with permission.

While allele frequencies for most SNPs are very similar in the two pop-
ulations, you’ll notice that two SNPs in the EPAS1 gene are notable out-
liers in Tibetans. These outliers were the first indication of a remarkable
evolutionary story.

Tibetans, of course, live at high elevations in the Himalayas, and it turns
out that the EPAS1 SNPs tag a haplotype involved in local adaptation of
Tibetans to altitude. EPAS1 is a transcription factor that plays a central
role in regulating red blood cell production, and the haplotype that is
common in Tibet increases fitness at high altitude. Natural selection has
driven this haplotype to high frequency in Tibet, thus causing it to be an
outlier against the genome-wide background of genetic drift 212.

A coalescent interpretation of population splits. So far we have been
thinking about drift of allele frequencies forward in time, but it’s also
helpful to think about how population structure affects coalescence of
samples. As before, we’ll assume the basic split model shown in Figure
2.64, and to keep things simple, we’ll assume that the effective population
size is simply N at all times (NA = N1 = N2 = N).

Consider two samples: either both from the same population, or both
from different populations. When they both come from the same pop-
ulation, they are eligible to start coalescing immediately and, as before,
the average coalescence time is simply 2N generations (Panels A and B,
below).

127

https://doi.org/10.1126/science.1190371


But if the samples come from different populations, they cannot coalesce
during the first T generations (looking backwards in time) until the lin-
eages merge back into the ancestral population (Panel C). At that point,
the usual coalescent process starts. Hence, for 2 samples from different
populations, the average coalescence time is 2N + T:

Figure 2.68: Coalescent times for pairs of
samples within and between populations.
When both samples are from the same popula-
tion, they either coalesce within their own pop-
ulation (A), or back in the ancestral population
(B). If two samples are drawn from different pop-
ulations they are not eligible to coalesce until
both move into the ancestral population, starting
T generations ago (C).

Under this model, what is the probability that two samples from the
same population coalesce in the ancestral population? Using properties
of the exponential distribution 213 we can show that this probability is
e−T/2N . So for example, if we take a person with recent European
ancestry 214, then at a typical locus in their genome there is a very high chance
(∼85%) that their two alleles go back as independent lineages into the ancestral
African population (Panel B, above).

How does this look if we consider larger samples? Remember that in a
large sample, the first coalescent events occur very quickly, while a few
lineages take a long time to coalesce. This means that in a large sample,
many lineages coalesce within the population, but the deeper lineages go
back into the ancestral population (Panel A):

Figure 2.69: Coalescence of larger samples
within and between populations. A. Re-
cent coalescences occur within populations, while
deeper coalescences are in the ancestral popula-
tion. B. Common variants (green) are generally
older, and occur in the ancestral population; rare
variants (purple) are generally younger, and
usually population specific. Note: blue and red
lineages are ancestral to samples in one popula-
tion only; black lineages are ancestral to both.

This has clear implications for genetic variation (Panel B, above): muta-
tions that occur in the upper parts of the coalescent tree (i.e., older muta-
tions) are usually common, and shared among populations. In contrast,
mutations in the lower parts of the tree (younger mutations) are usually
rare, and much more likely to be population-specific.

To give you some very rough numbers on this: suppose we sequence m
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samples from the same population, then the expected time until the num-
ber of lineages goes down to K distinct lineages (1 ≤ K < m) is

2N
K+1

∑
k=m

2
k(k − 1)

. (2.54)

If we start with m = 1000 samples in the present day, most of these
coalesce very quickly – i.e., within populations. For example, at a time
0.15 · 2N generations before the present (i.e., roughly the time of the out-
of-Africa dispersal), only ∼13 distinct lineages would survive back into
the human ancestral population 215 216. In other words, each lineage that
goes back into the ancestral population is ancestral to a bit less than 10%
of the modern sample (on average), so mutations that occur since popula-
tion splitting would usually be below ∼10% frequency.

Meanwhile, the dozen or so deepest lineages would then take a very long
time to finally reach an MRCA: almost another 4N generations, or ∼2
million years. This is why most common genetic variation is old, pre-
dates the human diaspora, and is found in all modern populations.

Migration and other complications. I’ve been describing a highly sim-
plified model in which two populations split at a fixed time T in the past.
This simple model is helpful for understanding the main forces at work.

But in truth, real populations are far more complicated. Human struc-
ture is somewhat hierarchical, with many populations splitting at differ-
ent times within and between continents, as in Figure 2.61. Furthermore,
as we shall see in Section 3 of the book, populations don’t always stay
separated: populations exchange migrants or very often undergo major
mixing events with other populations.

One important process is migration which refers to the movement of in-
dividuals (and their alleles) between populations. We can incorporate this
into the Wright-Fisher model by defining a migration rate m, per genera-
tion.

Then to simulate a new generation, each new allele copy is sampled from
its own population with probability 1 − m, and from another population
with probability m:

Figure 2.70: Migration in the Wright Fisher
model. To simulate a new generation (at bot-
tom), alleles are drawn randomly from one of the
parent populations: from the same population
with probability from 1 − m, and from a different
population with probability m.
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Equivalently, in the coalescent, lineages switch between populations at
rate m per generation. Coalescence can only take place between lineages
that are currently in the same population 217 218:

Figure 2.71: Coalescence in a split model
with migration. A. In the presence of recent
migration, lineages can move between popula-
tions at a rate m per generation. They are then
eligible to coalesce with lineages in their new
population. B. In the presence of migration, it is
possible for recent mutations to be shared among
populations, as indicated.

By moving alleles among populations, migration tends to reduce allele
frequency differences among populations, and enables young mutations
to move between populations in a way that is not possible in the pure-
split model.

Together, these and other related conceptual models help us to under-
stand the effects of a wide range of demographic processes on genetic
variation. Using modern software it is now possible to simulate extremely
complex models of population histories, including spatial structure, mi-
gration, population movements and splits 219.

Measuring population structure: FST. So far we have been talking about
models but, for data analysis, how should we measure the extent of allele
frequency differences between populations?

The most widely-used measure of differences between populations is
known as FST (pronounced “F-S-T”) 220. The concept of FST was devel-
oped in the 1930s by Sewall Wright to measure the degree to which ran-
dom alleles from the same subpopulation are more similar to one another
than are random alleles drawn from the total population.

FST is defined to range from 0 to 1, where FST=0 implies no population
structure and a value of 1 implies perfect structure, i.e., that subpopula-
tions are completely fixed for different variants.

Optional: Estimation of FST

Wright’s original formulation referred to FST as “the correlation between random gametes, drawn from
the same subpopulation, relative to the total” 221. This may sound precise, but there is no unique way
to apply Wright’s definition to data analysis, and so this idea has spawned many estimators, and many
review articles. It’s such a mess that I’m tempted to skip the concept entirely, but you can hardly shake
a stick around in the population genetics literature without banging into FST.
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One ambiguity is whether the “total” population should refer to the ancestral population, or to an av-
erage of modern populations (and if so, which populations to include). Secondly, it’s unclear whether
our goal should be to estimate an evolutionary parameter that depends on demographic history, or to
estimate a simple arithmetic function of the allele frequencies, that can be computed even for individ-
ual SNPs. We won’t go too far down the FST rabbit hole here, but I’ll sketch out some main ideas 222.

First, consider a situation where multiple populations diverged from a common ancestral population.
Let pk be the present-day allele frequency of a SNP in the kth population; then we can define FST in terms
of the extent of drift relative to the ancestral population as follows:

FST =
Var(pk)

pA(1 − pA)
. (2.55)

This expression focuses on the variance in allele frequencies across subpopulations; the denominator
pA(1 − pA) is the maximum possible variance if all subpopulations are fixed for one allele or the other223.
This version of FST measures the variance in allele frequency across subpopulations as a fraction
of the maximum possible give the ancestral allele frequencies.

We can interpret this further using the Nicholson-Donnelly expression Var(pk)≈(T/2N)pA(1− pA).
Plugging this into Equation 2.55 gives us

FST ≈ T
2N

(2.56)

for small T/2N. In contrast, at very large divergence times (for example between species), when all the
ancestral variation is either fixed or lost within populations, FST converges to 1 224. Equation 2.55 is not
immediately useful for data analysis as it depends on the ancestral frequency pA, which we cannot ob-
serve directly; but it’s not hard to estimate this with Bayesian methods 225.

An alternative formulation (and closer to Wright’s original framing) is to write FST in terms of the prob-
ability of identity of pairs of alleles between and within subpopulations 226:

F′
ST =

Hb − Hw

Hb
(2.57)

where Hw and Hb are the probabilities that two random samples from within a subpopulation, or between
subpopulations, are different. The notation H is used here because this is analogous to heterozygosity.
Although it’s not evident at a first glance, this version of FST is actually a rearrangement of Equation
2.55, but using the total frequency pt in modern populations instead of the ancestral frequency pA

227.

Importantly, the expected number of differences between random samples is proportional to their co-
alescent times, so this expression can be related to average coalescent times within and between pop-
ulations 228. This interpretation of FST measures the fractional reduction in coalescent times for a
pair of samples from the same population compared to a random pair from the total population 229.

Computing FST from Equation 2.57 has the advantage that it doesn’t depend on the unknown ances-
tral allele frequency, but it arguably makes estimation more difficult because in real applications there
is sampling error in both the numerator and the denominator which makes estimation a bit painful.
For a helpful summary of moment estimators of FST, with recommendations, see Bhatia et al (2013).

Turning to data, Bhatia et al (2013) 230 estimated values of FST between
human continental groups. The FST values are roughly centered around
the value of 0.15 that we used above to illustrate our models:
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Populations FST

Yoruba and Han 0.161

Yoruba and European 0.139

Han and European 0.106

Table 2.6: FST between human popula-
tions. The data include samples from three
populations: Yoruba (from Nigeria), CEU (a
sample of individuals from Utah of northwest
European descent), and Han Chinese. Modified

from Bhatia et al (2013). [Link]

As you can see, FST in humans is fairly small (up to about 0.15), even be-
tween the most distantly related populations. This reflects the fact that
most common variation is shared among all populations.

A second interesting point is that FST is a bit higher between the African
population Yoruba and Han Chinese (0.161), than between Yoruba and
Europeans (0.139), even though Europeans and Chinese are descended
from the same out-of-Africa migration event. This is because east Asians
underwent a stronger bottleneck than Europeans after the out-of-Africa
event, resulting in a smaller effective population size and higher FST.

Third, FST between populations from the same continent is usually much
lower, reflecting more-recent split times and subsequent migration. For
example, in the Tibet-Han data set discussed above, the authors esti-
mated that FST between the two populations is just 0.026.

It would be tempting to interpret FST values to estimate population split
times, using the models described above. But in practice, FST values de-
pend on a complex mixture of population split times, bottlenecks and
migrations. FST provides a useful summary of the combined impact of all
these processes but it’s very difficult to untangle the contributions of all
these distinct forces in real data b. b Ancient DNA has been a game-changer

for reconstructing complex population histo-
ries, far beyond what is possible using only
modern genomes (Chapter 3.3).Example: Coalescence between species. To close this chapter, I’ll show

an example where we can use the coalescent to understand evolutionary
splits in a very different context: between species.

Before DNA sequencing, the main way that we knew about the evolu-
tionary histories of species was from fossil evidence. But interpretation
of the fossil record is often based on just a few fragmentary specimens. It
may be unclear how the fossils relate to one another, and to modern pop-
ulations or species. Fossil evidence continues to be important, but genetic
data gives us a powerful complementary type of information for studying
our evolutionary history. The accumulation of sequence differences over
time, due to mutation, is often called a molecular clock.

Figure 2.72: Our closest relatives: female
chimpanzee with infant. Credit: Alain Houle CC BY 4.0

[Link]

Here we’ll use genome sequence data to understand the evolutionary re-
lationships among the great apes: humans and our closest living rela-
tives: chimpanzees, gorillas, and orangutans.

Until the late 1990s, it was still debated whether humans are more closely
related to chimpanzees or to gorillas (orangutans are more distantly re-
lated to all three) 231. DNA sequence data now show that in fact we are
most closely related to chimpanzees, with the human and chimpanzee
genomes differing at 1.37% of aligned nucleotides compared to 1.75% for
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human versus gorilla 232.

This tree shows the evolutionary relationships among the great apes, in-
cluding that humans and chimpanzees are most-closely related:

Figure 2.73: Species tree for the great apes.
This figure simplifies additional complexity
within the nonhuman clades, as there are two
recognized chimpanzee species, two gorilla
species, and three orangutan species, and ad-
ditional subspecies of each. After Figure 1a from Aylwyn

Scally et al (2012) [Link].

The picture above shows the relationships among the ancestral popula-
tions that gave rise to humans and the other great apes (this depiction
is known as a species tree). But if you look at individual regions of the
genome, a very interesting pattern emerges. The branching order for the
human, chimpanzee and gorilla sequences vary from region to region
across the genome 233:

Figure 2.74: Different parts of the genome
support different trees. About 70% of the
genome supports human and chimpanzee as clos-
est to each other, while the rest supports group-
ing either human with gorilla or chimpanzee
with gorilla.

About 30% of the genome shows gorilla closer to either human, or chim-
panzee. How should we interpret this?

The key to understanding this is to think about the relationships among
the different genomes as a coalescent process. First, think about the an-
cestral lineages for a segment of the human and chimpanzee genomes.

As in the split model we described above, human and chimpanzee can-
not coalesce immediately because they come from different species. But
unlike our human examples, it is around 6 million years until the human
and chimpanzee lineages flow back into an ancestral population. At that
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point, the coalescent process you’re already familiar with starts: the hu-
man and chimpanzee lineages have the opportunity to coalesce, and the
average waiting time is an additional 2NHC generations, where NHC is
the effective population size in the human-chimp ancestral population.

Figure 2.75: Coalescence of human and
chimpanzee lineages. Moving backward in
time from the present, the lineages are ineligible
to coalesce until they flow into the human-chimp
ancestral population about 6 million years ago.

If the human and chimp lineages coalesce quickly, then this always re-
sults in the “correct” tree. But if the lineages don’t coalesce quickly, they
flow back into the human-chimp-gorilla ancestral population. If this hap-
pens, all three possible branching patterns are equally likely:

Figure 2.76: Possible coalescent trees relating human, chimpanzee. and gorilla. A. Human and chimpanzee
coalesce in the human-chimp ancestral population, and this ensures that the tree topology matches the overall “correct”
relationship among the populations. B-D. Human and chimpanzee do not coalesce until they flow back into the human-
chimp-gorilla ancestral population. When that happens, all three possible trees (with human-chimp, chimp-gorilla, or
human-gorilla joining first) are equally likely. The theoretical and actual probabilities for each outcome are shown at the
bottom.

So to summarize, for about 55% of the genome, human and chimp co-
alesce in the H-C ancestral population. This ensures the “correct” ge-
nealogy – meaning that the genealogy matches the species relationships.
However, for 45% of the genome the genome, the human and chimp lin-
eages fail to coalesce within the H-C ancestral population and, instead,
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flow separately into the H-C-G ancestral population. When that happens,
all three possible trees are equally likely, and occur with about 15% prob-
ability each c c This situation where the local genealogies

often differ from the species tree is known as
incomplete lineage sorting.

.

I told you before that 70% of the genome shows a human-chimp pairing:
this is the sum of Tree A (55%) and Tree B (15%), while Trees C and D
contribute about 15% of the genome each.

Optional math: Probabilities for the four H-C-G tree topologies.

We start by computing the probability of Tree A: i.e., that human and chimp coalesce within the H-C
ancestral population. For this we will assume the simplest possible model: constant population size
and no population structure. NHC is the effective population size in the human-chimp ancestral pop-
ulation, and we assume that this population existed for THC generations.

To compute the probability of Tree A we need to compute the probability of a coalescent event for two
samples within THC generations. Using properties of the exponential distribution we can write the prob-
ability of a coalescent event at time t as

1
2NHC

exp(
−t

2NHC
) (2.58)

where exp(x) indicates ex. Then the probability of Tree A equals the probability of t < T2, which we
compute by integration: ∫ T2

0

1
2NHC

exp(
−t

2NHC
) = 1 − exp(

−T2

2NHC
). (2.59)

The remaining probability, exp(−THC
2NHC

), gives us the probability that the human and chimp lineages go
back into the H-C-G ancestral population. At that point, there are three lineages (H, C, and G), and any
pair of these are equally likely to make the first merger. So the probability of each of these three trees
(B, C, D) is simply

1
3

exp(
−THC

2NHC
). (2.60)

It’s beyond our scope here, but there has been some fascinating work on
the structure of the ancestral great ape populations. While there’s still un-
certainty in the models, one main result is that the ancestral population
sizes were huge: ∼120,000 for the human-chimpanzee ancestral popula-
tion, which is > 6-fold the current human effective size. Consequently,
coalescence within that ancestral population was very slow. The human-
chimpanzee population split is estimated at 5.5 − 7 million years ago, and
the split from gorilla at 8.5 − 12 million years ago 234.

Well done! In these last few chapters we have covered the main forces of neu-
tral population genetics! In the remainder of this section of the book we turn our
attention to selection. As we shall see, selected alleles are still subject to all the
processes we’ve covered already, but also subject to the guiding hand of natural
selection.
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