
2.5 Natural selection: I. Background and models

At its most fundamental level, evolution proceeds through changes in allele fre-
quencies over time. In the next three chapters we will discuss the role of natural
selection in shaping genetic variation. This chapter describes basic models of pop-
ulation genetics with selection.

Figure 2.77: Charles Darwin sketched this
evolutionary tree in his notebook in 1837, to
describe his monumental insight that species
evolve from common ancestors. [Link] Public Domain.

Evolution, adaptation, and the modern synthesis. Charles Darwin’s
1859 book On the Origin of Species by Means of Natural Selection launched a
major revolution in the history of science. Darwin articulated two impor-
tant principles:

(1) that different species evolve from common ancestors, a process that
Darwin referred to as “descent with modification”; and

(2) that natural selection and the “struggle for life” provides a driving
force for how species change and adapt over time.

These ideas are the fundamental organizing principles of biology: we can
understand the similarities and differences among species in terms of
the fact that species are descended from common ancestors, while at the
same time, their traits evolve over time according to the principles of nat-
ural selection a. a In 1973 the evolutionary biologist Theo-

dosius Dobzhansky famously wrote that
“Nothing in Biology Makes Sense Except in
the Light of Evolution”.

In Darwin’s formulation of natural selection (also developed indepen-
dently by his contemporary Alfred Russell Wallace), populations can
adapt over time provided that three conditions are met:

(1) Variation. Individuals vary in their phenotypes;

(2) Inheritance. The phenotypes are at least partially inherited: i.e.,
children tend to resemble their parents;

(3) Competition. Not all individuals survive or reproduce equally; sur-
vival and/or reproductive success depend in part on phenotype;

Under these conditions, the traits that increase the probability of sur-
vival or reproduction tend to increase in frequency in the population.

In modern terms, we would say that if there is selection on certain phe-
notypes, and these phenotypes are (at least partly) controlled by genetic
variation, then the genetic variants associated with the preferred pheno-
types tend to increase in frequency b

b Although we usually think of natural
selection acting on phenotypes and
genotypes, these same principles can act in
other domains. In his 1976 book “The
Selfish Gene”, Richard Dawkins talked
about the idea that the principles of natural
selection can help to evolve, and spread,
ideas in social networks. This idea has
become increasingly relevant; you are surely
familiar with the term he coined to describe
this: “meme”.

.

Darwin amassed a wealth of evidence for his theory, drawing on nat-
ural history, paleontology, biogeography, and other fields. However a
crucial gap was that the mechanism of inheritance – i.e., genetics – was
not understood at all. At that time, the prevailing model of inheritance
was known as “blending inheritance”, namely that children represent
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some kind of blending, or averaging, of the characteristics of their par-
ents. Blending inheritance would imply a steady loss of phenotypic varia-
tion over time, which would be seriously problematic for Darwin’s theory
since the theory requires the presence of heritable variation. Darwin rec-
ognized this as an important gap in his argument, and even endorsed an
incorrect alternative model of inheritance called “pangenesis”, in which
parts of the body emitted particles called gemules that collected in the
gonads.

Figure 2.78: Fossil mosquito infected with
the malaria plasmodium, preserved in amber.
Malaria has been a major selective pressure in
human history. Credit: George Poinar, Jr., [Link] CC BY-SA 2.0.

The irony is that, unbeknownst to Charles Darwin, at the same exact time
Gregor Mendel was working in Brno (now in the Czech Republic) on the
experiments that would lead to Mendelian genetics. His experiments on
peas, conducted between 1856 and 1863, showed that genetic information
is inherited as discrete packets (i.e., alleles) rather than being blended. In
contrast to blending inheritance, Mendelian inheritance means that allelic
variation–and hence phenotypic variation–is transmitted from one gener-
ation to the next. This insight immediately rescues the Darwinian model.
However, Mendel’s findings were published in 1866 in an obscure natu-
ral history journal published in Brno (Verhandlungen des naturforschenden
Vereines in Brünn), and were not widely known until the paper was redis-
covered in 1900–long after both Darwin and Mendel were dead.

After the rediscovery of Mendel’s work, there was a blossoming of ge-
netics in the first half of the 20th Century including, for the first time, a
clear understanding of alleles and transmission, a chromosomal theory of
inheritance, and some understanding of the connections from genotype
to phenotype. Most of the fundamental models of population genetics,
including Hardy-Weinberg, the Wright-Fisher model, the basic models of
natural selection that we will cover in this chapter, and quantitative ge-
netic models of inheritance that we cover later, all date to this period c. c It’s striking that most fundamental prin-

ciples of population genetics can be traced
to this period when there was only a rudi-
mentary understanding of genetics, and
the molecular details were unknown. In
contrast, coalescent theory came rather
later (early 1980s), partly stimulated by
the emergence of molecular data. The 21st
Century has seen huge advances in statis-
tical and computational techniques and the
interpretation of modern data.

This work joining together population genetics with Darwinian evolution
in the early-to-mid 20th Century is referred to as the Modern Synthesis,
and nowadays population genetics and molecular genetics are central pil-
lars of evolutionary biology.

One key insight of the Modern Synthesis is that evolution results from
population genetic processes, played out over long timescales. In pop-
ulation genetics, we study the forces that change allele frequencies or
haplotype frequencies from one generation to the next; accumulated over
hundreds, thousands or millions of years this results in adaptive changes,
speciation, and everything else in evolutionary biology.

In these next three chapters, we will cover a modern understanding of
how natural selection plays out in population genetics, using both theory
and examples.

Fitness. In past chapters, our models have assumed that survival and
reproduction is independent of genotype. But of course some genotypes
do affect the ability of an individual to survive to adulthood, or to repro-
duce successfully.
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To model this, we introduce the concept of fitness. Consider an individ-
ual at a certain point in the life-cycle (e.g., a newly fertilized egg), with
genotype x at a certain variant or set of variants. We define the fitness of
genotype x as the expected number of offspring, precisely one generation
later, that descend from this individual. In other words, fitness measures
the ability of genotype x to survive to reproductive age, to attract mates,
and to reproduce successfully through one full turn of the life-cycle.

Figure 2.79: Natural selection and fitness.
Here, spiders with the aa genotype are blue and
stand out from their background; as such they
are more likely to be eaten by birds. Hence aa
individuals have low fitness, lowering the fre-
quency of the a allele among individuals at repro-
ductive age. Credit: Lucy Pritchard.

Notice that fitness is defined as an expected outcome – importantly, you
can think of fitness as the expected reproductive output for an individual with
this genotype, averaging over the possible environments they may experience,
averaging over possible genotypes elsewhere in the genome, and averag-
ing over the good or bad luck experienced by individuals of this geno-
type throughout their lives: what Hamlet called the “slings and arrows of
outrageous fortune”.

A basic fitness model. We’re now ready to introduce a basic model of
selection. We consider a single nucleotide position, with an ancestral al-
lele, A, and a derived allele a.

We model the relative fitness of each genotype as follows. AA acts a ref-
erence group, defined to have fitness 1, and we measure the fitness of the
other genotypes relative to that reference 235 236:

Fitness of AA = 1

Fitness of Aa = 1 + hs

Fitness of aa = 1 + s (2.61)

Here, s is referred to as the selection coefficient, and h is the dominance
coefficient:
• If s is positive (s > 0) then the derived allele is advantageous
• If s is zero then the derived allele is neutral
• If s is negative (s < 0) then the derived allele is deleterious

Reflecting the sign of s, selection in favor of an advantageous allele is also
referred to as positive selection; selection against a deleterious allele is
negative selection.

To give you a sense of scale, the most strongly advantageous derived
alleles in humans may have s of up to ∼3%. But there are many more
ways to break genomes than to improve them: the effects of deleterious
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variants can range from just very slightly negative, all the way down to
s = −1 (which would imply that the derived allele is incompatible with
life or reproduction).

Meanwhile, h measures the relative fitness of heterozygotes, and is known
as the dominance coefficient. If the derived allele a is fully recessive then
h = 0; and if a is fully dominant then h = 1. In rare cases h can be outside
the range [0, 1] leading to a special form of selection called balancing se-
lection. Except where stated the figures below assume what is known as
an additive model (h = 0.5).

Frequency changes over time. How does selection change allele fre-
quencies and genotype frequencies over time? We’ll set p to be the cur-
rent derived allele frequency, and q = 1 − p as the ancestral frequency.

Genotype frequencies. Before selection the genotype frequencies are
given by Hardy Weinberg proportions. The effect of selection is to change
the genotype frequencies in proportion to their fitnesses.

For example, the frequency of the aa homozygote is p2 before selection,
and proportional to p2(1 + s) after selection:

Figure 2.80: Changes in genotype frequen-
cies due to selection. Before selection the
genotype frequencies are given by Hardy Wein-
berg proportions. After selection, the frequencies
are multiplied by the genotype fitnesses – illus-
trated here for s < 0. The factor of w is used so
that the genotype frequencies add to 1.

By definition, frequencies have to add up to 1, so each of the terms above
is divided by the total, a quantity known as the mean fitness:

w = q2 · 1 + 2pq · (1 + hs) + p2 · (1 + s). (2.62)

Dividing by w simply rescales the frequencies to sum to 1.

Allele frequencies. And what is the expected frequency of a in the next
generation? (We’ll call this p′.) To get this we add together half the fre-
quency of heterozygotes plus the frequency of aa homozygotes:

E[p′] =
pq(1 + hs) + p2(1 + s)

w
(2.63)

This expression isn’t particularly illuminating, but we get something
more useful if we look at the change in allele frequency, ∆p from one gen-
eration to the next:

∆p = E[p′]− p. (2.64)

139



∆p tells us whether p is increasing or decreasing over time (depending on
whether ∆p is positive or negative). After a small flurry of algebra 237, we
find that

∆p =
pqs[p(1 − h) + qh]

w
. (2.65)

This expression is easier to interpret:

• When p = 0 or q = 0 there is no allele frequency change. That
makes sense, because there’s no variation for selection to act on.

• If s = 0 there’s no selection, and no expected change in allele fre-
quency.

• Third, and most important, if p lies between 0 and 1 we have the
intuitive result that if s is positive, then ∆p is positive, meaning that the
derived allele is favored, and tends to increase in frequency; if s is negative,
the derived allele is disfavored and tends to decrease 238.

What happens over multiple generations? We can iterate Equation 2.65

over multiple generations to predict the trajectory of a selected allele over
time. This is known as a deterministic model, meaning that it assumes
the trajectory of an allele is completely determined by the expectation. As
you can see, selection drives favored alleles up towards fixation, and dele-
terious alleles to loss. The process in which favored alleles are pushed up
to fixation is called a selective sweep.

Figure 2.81: Allele frequency trajectories
of selected alleles, over time. The blue and
black lines show frequency increases of advan-
tageous alleles. The right-hand plot assumes an
unreasonably high starting frequency of 0.2 to
illustrate that selection drives deleterious alleles
(in red) to low frequencies.
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The deterministic model is helpful for understanding the overall process,
but it’s also important to consider the random effects introduced by drift.

Frequency changes with selection and drift. In Chapter 2.1 I suggested
that genetic drift of a new mutation is like a player’s winnings over time
in a casino. Even for advantageous alleles, the effects of random sam-
pling are extremely important.

Suppose you walk into a casino to play Blackjack, and you play until you
either go bust, or beat the house.

For Blackjack, assuming optimal play, players usually have an inherent
disadvantage of 0.5–1.0% relative to the casino (the precise value depends
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on the house rules). However, there are card-counting strategies that can
potentially tilt the odds by 1–2% back towards the player, turning a small
player disadvantage into a small player advantage (although these are
frowned upon by the casinos 239). You can think of the default Blackjack
game as like selection on a mildly deleterious mutation (s < 0), and the
game with card counting as like a mildly advantageous mutation (s > 0).

Figure 2.82: Blackjack cards. Credit: Scott5114 [Link]

Public Domain

There are two key points here: First, with a small starting purse, you’re
likely to go bust quickly, regardless of whether you count cards or not.
This is simply because, with small numbers, you’re likely to have at least
some bad luck that bankrupts you. This reflects the great importance of
chance when you’re working with small numbers.

But if you get lucky early on, then the power of large numbers starts to
take over, and you can start to use a deterministic model to predict how
your purse will grow – at least until the casino tosses you out!

Selection in the WF model. The same fundamental processes affect new
mutations. So far we have considered the Wright Fisher model for neutral
alleles, but it’s easy to extend it to allow biased sampling due to selection.

Under the neutral model, if the current allele frequency is p in a popu-
lation of size 2N, then the allele frequency in the next generation would
be

p′ ∼ Binomial(p, 2N) [neutral model] (2.66)

With selection, the allele frequency in the next generation is similar but
centered on the expected allele frequency with selection, E(p′), as given by
Equation 2.63:

p′ ∼ Binomial(E(p′), 2N) [with selection] (2.67)

Here’s what this looks like, for one generation of sampling with relatively
strong selection: s = 0.01. (A 1% selective advantage may not seem like
much, but as we’ll discuss shortly there are very few individual changes
to the genome that can improve fitness by this much.)

Figure 2.83: Histogram of binomial sam-
pling outcomes (p′) after one generation
of selection and drift with s = 0.01 and
2N = 20, 000. The starting allele frequency
p = 0.55. (Compare to the neutral case, Figure
2.5.)

Allele frequency in the next generation
0.50 0.52 0.54 0.56 0.58 0.60

p=0.55

p' for s=0.01

As you can see, the overall distribution of outcomes (in red) is shifted to-
ward higher frequencies than the initial frequency p. However, due to
the random sampling process, there is variation in the resulting allele fre-
quency, and even a chance that the frequency actually decreases, despite
the upward selection pressure.
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Now, let’s look at selection and random drift together, over multiple
generations. The next figure shows simulated trajectories from a start-
ing frequency of 0.5, for a range of different selection coefficients. In the
left panel, selection is strong enough that drift has little impact on the se-
lected alleles (blue and red curves). In contrast, in the right panel, selec-
tion is just 1/10th as strong, and while the blue curves tend to be higher
than the red curves on average, the randomness of drift means that some
favored alleles (blue) fare worse than some deleterious alleles (red):

Figure 2.84: Selection and drift of alleles
from starting frequencies of 0.5 in a popu-
lation of N = 104. The left panel shows simu-
lated trajectories for relatively strong selection
(2Ns = 100 in blue, and 2Ns = −100 in red);
and neutral in gray for comparison. The right
panel shows weaker selection (2Ns = 10 in blue,
and 2Ns = −10 in red).
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In the plots above, the directional effect of selection has to fight against
the randomness imposed by genetic drift in a finite population. When
selection is strong enough, it overwhelms drift, and allele frequency curves are
close to the deterministic trajectory. But when selection is weak, or the popula-
tion is small, drift can effectively overwhelm selection.

To quantify this, a widely-used rule of thumb is that when 2Ns is in the range
of about −1 to 1, selection is so weak that it is nearly overwhelmed by drift.
Such alleles are referred to as nearly-neutral. Alleles with |2Ns| in the
range of about 1 to 10 do feel the effects of selection, but are also heavily
influenced by drift as you see above.

What sets this scaling for the nearly-neutral range? One way to think
about this is that if 2Ns = 1 then selection effectively adds (or removes)
one copy of the alternate allele per generation somewhere in the popula-
tion 240. Below this threshold selection is almost entirely ineffective 241.

Most new mutations are lost, even if they are favorable. The last im-
portant point is that even strongly favored alleles are vulnerable to the
vagaries of random sampling when they are rare d. To illustrate this, the d This is analogous to the card-counter

who walks into a casino with a small initial
purse. Even if she has a long-term advan-
tage, she is likely to go bust early on.

simulations shown below started with 1000 new mutations with a 1% se-
lective advantage. Despite the selective advantage, only about 11/1000
of the simulated alleles spread to fixation; the rest were rapidly lost from
the population. As you can see, most trajectories stayed below 1% and
were lost by drift; in contrast, nearly all of the trajectories that got above
1% went into deterministic growth and reached fixation:
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Figure 2.85: Selection and drift of new fa-
vored mutations. 1000 simulated allele fre-
quency trajectories with s = 0.01, starting from
a single copy in a population of 2N = 104.
Around 99% of alleles were lost quickly, and are
hard to see as they are effectively on top of each
other along the y = 0 line. The right-hand panel
shows the same data but with different axes: note
the log10 scale on the y-axis to show rare vari-
ants more clearly.

Fixation probabilities with selection. For strongly favored mutations,
the probability that a new favored mutation fixes is only about 2hs: this
was 1% in the simulation above, close to the observed rate of 11/1000.
This fixation rate is much higher than the rate for neutral variants (i.e.,
1/2N) but still means that nearly all advantageous mutations are lost.
For this reason, adaptation by new mutations can be highly inefficient 242.

A general formula for fixation probabilities with selection and drift was
developed by the Japanese population geneticist Motoo Kimura in the
1950s (we’ll hear from Kimura again soon, when we get to the Neutral
Theory) 243. For a new mutation with h = 0.5 the Kimura formula simpli-
fies to

Probability of fixation =
1 − e−s

1 − e−2Ns . (2.68)

You can see this plotted here:

Figure 2.86: Fixation probabilities of new
mutations (here 2N = 104 and h = 0.5). A.
Fixation probabilities across a wide range of s.
B. Nearly-neutral range: Same plot highly mag-
nified near s = 0, with x-axis in units of 2Ns
instead of s. The horizontal line at 1/2N shows
the fixation probability for neutral mutations.
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The left-hand plot above illustrates that when selection is strong, the
model does not depend on population size: strongly deleterious alleles
have essentially no chance of fixing, and strongly advantageous muta-
tions fix with probability ∼ 2hs. Chance does matter for favored muta-
tions, but only because it determines whether they start to spread when
they are extremely rare 244.

But we see something quite different in the right-hand plot. This shows
what happens in the nearly-neutral range, where selection is weak com-
pared to drift (roughly |2Ns| < 1). These alleles drift very much like
neutral alleles, and selection only modestly increases or decreases their
chances of fixation 245.
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We close this chapter with a deeper discussion of negative selection; we’ll
return to positive selection and balancing selection in the next chapter.

Purifying selection: protecting the genome against mutation. As we
discussed in Chapter 1.5, our genomes suffer a barrage of mutations in
every generation – around 70 per child. The vast majority of these are
close to neutral, but among those with functional effects, the vast major-
ity have deleterious effects. I think this is intuitive: if you introduce ran-
dom typos into a written document, you’re far more likely to reduce the
quality of the writing than to improve it!

For this reason, the most common form of selection is against deleterious
variants. The term “deleterious” refers to variants with fitness s < 0, and
includes everything from severe disease-causing mutations to millions of
variants across the genome with tiny effects on phenotypes and mildly
negative effects on fitness. Selection against deleterious variants is re-
ferred to as negative selection; or sometimes purifying selection because
it cleanses deleterious mutations from the genome.

Under a strictly deterministic model, a new deleterious mutation would
not increase in frequency at all. But in practice, natural selection is com-
peting against the randomness of genetic drift, and some deleterious alle-
les do manage to drift up to higher frequencies e

e Going back to the gambling metaphor,
even a completely rubbish player might win
some money by luck early in a game, but
they are extremely unlikely to keep winning
indefinitely.

. For this reason, at any
given time, some variants segregating in a population are actually delete-
rious, but they tend to be at lower frequencies than neutral variants.

Here you can see simulations comparing genetic drift of 1000 neutral
variants (panels A and B) and 1000 deleterious variants with a fitness dis-
advantage of 5% (panels C and D). In each plot, all the trajectories were
started from a single copy at time 0.

Figure 2.87: Selection and drift of new mu-
tations: neutral (panels A and B) and dele-
terious (panels C and D). Here panels A and
B show the same data, but with the y-axis of B
plotted on a log-scale to show more detail about
rare variants. The same is true for C and D.
Parameters: 1000 simulated allele frequency trajectories for each panel,

starting from a single copy at time 0 in a population of 2N = 104 .

As you can see, the deleterious variants (C and D) are held at lower fre-
quencies and are removed from the population much faster than the neu-
tral variants.

Here, a useful approximation is that deleterious variants can drift up to a maxi-
mum frequency on the order of ∼1/(2N · hs), corresponding to selective removal
of about one copy of the derived allele per generation. This corresponds to
0.4% in Panels C and D above, which you can verify is close to the high-
est frequencies across the 1000 replicates.
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The SFS for deleterious alleles. The plots above show trajectories of mu-
tations over time, but in practice it’s much easier to measure the distribu-
tion of allele frequencies across many different variants at a single point
in time.

This is shown in the next plot, with theoretical distributions for neutral
sites (red), nearly-neutral (blue), mildly deleterious (black) 246. You can
see that at low frequencies all three curves are similar, but at higher fre-
quencies selection greatly reduces the numbers of deleterious alleles:

Figure 2.88: Theoretical distributions for
numbers of variants as a function of allele
frequency, with weak purifying selection.
The expected number of variants between frequencies p1 and p2 in a

region of L basepairs is 4NµL times the integral from p1 and p2 . Curves

computed from theory in Sawyer and Hartl (1992) [Link].
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Hence, for a given number of base pairs, we see fewer total SNPs at dele-
terious sites, and the SNPs we do see tend to be at low frequencies.

We can also see similar effects in real data. The plot below, from 2005
247,

was one of the first to show the site frequency spectrum (SFS) f for sites f Recall from Chapter 2.2 that the SFS
shows the fraction of SNPs at each allele
frequency.

with different levels of constraint 248.

This analysis tests the hypothesis that missense (nonsynonymous) vari-
ants are under purifying selection, and uses synonymous and noncoding
variants as controls that are less often constrained 249. Under this hypoth-
esis, we would expect more of the missense variants to be at low frequen-
cies.

Figure 2.89: SFS for different types of SNPs
in a sample of size 40. Note that the plot is
drawn differently than the theoretical plot, as
here the histograms add up to 1 within each cat-
egory. This plotting style emphasizes the relative
shift toward rare variants for nonsynonymous
SNPs. Credit: Modified Figure 1 from Scott Williamson et al (2005)

[Link].

nonsynonymous

synonymous
noncoding

Indeed, as you can see, around 48% of missense sites are singletons in
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this data set, compared to around 35–38% of noncoding and synonymous
sites 250. This reflects the fact that a large fraction of missense variants are under
purifying selection.

Sequence conservation between species is an important indicator of
function. The SFS analysis is useful for showing that a type of variant
(such as missense mutations) is under purifying selection, but it’s not
very useful for testing at individual sites 251.

However, recall that selection is extremely effective at preventing delete-
rious variants from fixing. So an alternative is to use sequence conser-
vation between distant species to identify regions or sites that are func-
tionally important. If we compare distantly related species, then a large
fraction of neutral sites will show differences, but sites that are function-
ally constrained are much more likely to be shared.

This concept has been used to identify functional regions of the genome:
for example important regulatory enhancers, or protein domains that are
particularly crucial for protein function 252.

For example, the plot below shows sequence conservation between mouse
and four distantly related vertebrates in the region around the TBX2 and
TBX4 genes (highly conserved master regulators of limb development).
Regions marked in blue are exons, are regions in red are putative non-
coding elements. The boxed regions were shown to have regulatory activ-
ity in transgenic mouse experiments 253.

Figure 2.90: Genome sequence conserva-
tion identifies functional elements. Each
track shows regions with high sequence identity
between mouse and the indicated species (the
y-axis of each track ranges between 70 − 100%
sequence identity). Coding exons are shown in
blue and noncoding conserved regions in red.
Credit: Figure 2 from Douglas Menke et al (2008) [Link]; CC BY.

Nearly-neutral mutations and the limits of natural selection. We’ve
been talking about how natural selection tends to purge deleterious mu-
tations. But as I discussed above, for variants with very weak selection,
the vagaries of drift become more important than selection; we refer to
these weakly selected variants as nearly-neutral.

There’s no hard cutoff for a variant to be “nearly-neutral”, but as I noted
above, a common definition is |2Ns| ≤ 1.

Here it’s worth pausing to reflect on the fact that selection is an extraor-
dinarily efficient process. To put this into numbers, if the human effec-
tive population size Ne is ∼ 15, 000, this implies that selection is efficient
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down to around 3 × 10−5, or three extra individuals surviving or repro-
ducing per 100, 000. Variants with s smaller than this are nearly-neutral.
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Figure 2.91: The nearly-neutral zone: fixa-
tion probabilities of new mutations. A slightly
deleterious mutation with 2Ns = −1 is nearly
as likely (0.58×) as a new neutral variant to fix.
A slightly advantageous mutation (2Ns = 1) is
about 1.6× more likely to fix than neutral.

And yet, while a single variant with a fitness cost of 10−5 is almost incon-
sequential, the combined impact of many nearly-neutral mutations can
have meaningful effects. In particular, the existence of the nearly-neutral
zone places important limits on the extent to which natural selection
can optimize genomes.

This is especially true for species with small effective population size,
including humans, since the size of the nearly-neutral zone depends on
N. These species are much worse at safe-guarding their genomes from
weakly deleterious mutations compared to species with larger popula-
tions including fruit flies, yeast, or E. coli.

One setting where nearly-neutral mutations are relevant is for something
called codon bias. As you know, different DNA triplets can code for the
same amino acid (e.g., GGA, GGC, GGG, and GGT all encode glycine).
Mutations that switch between alternative triplets encoding the same
amino acid are referred to as synonymous. However, it turns out that
some synonymous codons are slightly preferred over others, likely be-
cause they enable greater translation accuracy or speed. Preferences are
species-specific and correlate with the abundances of the corresponding
tRNAs 254.

These codon preferences can result in a very slight selective benefit to using
one synonymous codon instead of another. But you can imagine that the
fitness consequence of switching, for example, a single GGA to GGG in
a single gene, is very very small. In consequence, the ability for a species
to maintain codon usage bias depends on its effective population size
– for species with sufficiently large Ne, codon switches can lie outside
the nearly-neutral zone. As a result, many species with large Ne, such as
in Drosophila, can maintain strong codon bias across the genome, while
species with small Ne including humans cannot 255.

A second example comes from the difficulty that genomes have in con-
trolling the spread of transposable elements (TEs). TEs are DNA ele-
ments that can copy themselves and reinsert the copies elsewhere in the
genome, usually via an RNA intermediate 256. While TE insertions do oc-
casionally have salubrious effects 257, on the whole they are considered
selfish DNA: they replicate because they can, but they do not benefit the
host genome. Quite remarkably, it’s estimated that more that 2/3 of the
human genome was originally derived from transposable element inser-
tions 258. Moreover, 10% of your genome is made up by copies of just a
single 300 bp element called Alu, which is present about in about 1 mil-
lion copies 259! Although a few Alu copies play functional roles in gene
regulation, Alus are primarily parasitic elements. Figure 2.92: Axolotl genomes are 10-fold

larger than ours. The axolotl, a model organism
for limb regeneration, has a huge 32GB genome
chock-full of millions of transposable elements.
This fact also provides the opportunity for a
gratuitous axolotl photo. Credit: th1098 [Link], CC BY-SA 3

The key problem is that the selective costs of most new TE insertions are
very small. When an Alu is copied into a new location, there is a slight
chance that it inserts into a functional region such as an exon, in which
case it will probably be deleterious 260, and be removed by selection. But
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if the new copy inserts into nonfunctional sequence, the added cost of the
new copy is almost negligible – mainly the tiny cost of replicating a few
hundred basepairs of additional DNA at every cell division 261 .

In fact, the marginal cost of each new Alu is so small that selection can-
not effectively prevent individual Alus from fixing. At the same time,
however, there are substantial genome-wide costs to carrying and repli-
cating millions of TEs. In consequence, genomes have evolved trans-
acting mechanisms for epigenetic silencing of TEs to try to reduce their
rates of spreading 262.

A third example is evolution of the mutation rate 263. The mutation rate
depends on a number of factors: the rate of spontaneous damage and
copying errors, as well as the ability of cells to fix these errors. These fac-
tors – in particular the complex machinery that cells use to prevent and
repair errors – are of course evolved properties of organisms. What fac-
tors determine the evolution of the mutation rate?

Given that mutation is an essential component of evolution, you might
think that some amount of mutation is helpful. That may be true for the
long-term survival of a species, but from the viewpoint of an individual
– which is what matters for natural selection – the overall effect of muta-
tion is negative. The mutations your kids inherit may have no impact on
their fitness, but if they do impact fitness, then it’s much more likely that
they have a negative effect than a positive effect.

Consider a new variant that makes the DNA repair machinery very slightly
worse – such a variant is known as a mutator allele. Let’s suppose this
mutator increases the average genome-wide number of mutations by a
single mutation. We can estimate that this mutator variant would de-
crease fitness by around 10−5, which puts it in the nearly-neutral range
for humans, and selection wouldn’t be very good at removing it 264. In
contrast, a mutation that adds 10 new mutations per generation would
have a ten-fold higher fitness cost and would be much more visible to se-
lection 265.

This process creates what Michael Lynch has termed a drift barrier: nat-
ural selection cannot reduce the mutation rate indefinitely because below
a certain point, any improvement to the mutation rate is nearly-neutral,
and hence mainly governed by drift. The mutation rate at which the
drift barrier kicks in depends on population size. Indeed, data on mu-
tation rates of different organisms suggest that mutation rates are deter-
mined by the drift barrier model, as species with larger population sizes
tend to have lower mutation rates:
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Figure 2.93: Relationship between muta-
tion rate and effective population size. The
mutation rate here refers to the total number of
mutations at protein-coding positions, per gener-
ation. Credit: Figure 1c from Way Sung et al 2012. [Link]

Genetic load. Given these limits of natural selection, each of our genomes
contains many deleterious variants. These come in two main categories:

• Each of us has a unique personal collection of deleterious variants that
are currently drifting at low to moderate frequencies (and will eventually
be removed from the population by natural selection).

• Like any other species, theory argues that humans must also carry
many fixed variants that are weakly deleterious, but within the nearly-
neutral range where selection is ineffective.

Together, these deleterious variants are referred to as genetic load.

It’s been argued that the second of these categories – fixed nearly-neutral
variants – leads to an evolutionary paradox. If we make the plausible as-
sumption that many more mutations are slightly bad than slightly good,
then we should predict an inexorable increase in genetic load over evo-
lutionary time. One famous paper had the colorful title “Contamination
of the genome by very slightly deleterious mutations: why have we not died 100
times over?” 266. But clearly we’re still around after 4 billion years of evo-
lution so this argument cannot be fully correct. While the details are still
not entirely clear, this argument likely under-states the ability of weakly
advantageous mutations to counteract the accumulation of load 267

Meanwhile, our burden of segregating deleterious variants is responsible
for the genetic contributions to phenotypic variation and disease – and is
something we’ll come back to in much greater detail in Section 4 of the
book.

In this chapter we have covered basic models of selection, with and without drift,
and an overview of negative selection. In the next chapter we turn to a deeper
consideration of positive selection.

149

https://doi.org/10.1073/pnas.1216223109


Notes and References.
235In these models, the alleles compete against each other, but we assume that the population size is fixed by exoge-

nous factors–perhaps food or other resources–and that selection at the variant in question does not directly drive pop-
ulation growth. This is referred to as “soft selection”, and the genotype fitnesses are measured relative to one another.
In contrast, in hard selection models, the genotypes have absolute fitness values, and this means that the population can
grow, or grow faster, as fitter alleles increase in frequency. Soft selection models are theoretically more tractable, and usu-
ally a good approximation in humans where fitness gains from any single variant tend to be very small. Hard selection
may be relevant in other situations–for example in modeling growth of E. coli on antibiotics, where an antibiotic resis-
tance allele can allow a dramatic increase in growth rate.

236You’ll often see this model parameterized slightly differently, denoting the fitness of each genotype by w with a sub-
script: i.e., wAA, wAa, waa. But in the soft selection case what matters is the fitness of each genotype relative to the oth-
ers, so we set the ancestral homozygote to be a reference group, and divide all three fitnesses by wAA. Now the fitnesses
are 1, wAa/wAA, waa/wAA, which we rewrite as 1, 1+ hs, 1+ s. (We can do this provided that we don’t have the spe-
cial case of symmetric balancing selection wAA = waa ̸= wAa).

237First, recall that we want to compute ∆p = E[p′]− p where

E[p′] =
pq(1 + sh) + p2(1 + s)

q2 + 2pq(1 + sh) + p2(1 + s)
(2.69)

We simplify the notation by using w in place of the denominator (pronounced w-bar, and referred to as “mean fitness”),
and simplifying:

w = q2 + 2pq(1 + sh) + p2(1 + s) (2.70)

= q2 + 2pq + 2pqsh + p2 + p2s (2.71)

Noting that p + q = 1 and q2 + 2pq + p2 = 1 we simplify this to

w = 1 + 2pqsh + p2s (2.72)

Now we’re ready to start calculating ∆p as follows:

∆p =
pq(1 + sh) + p2(1 + s)

w
− p × w

w
(2.73)

= [pq(1 + sh) + p2(1 + s)− p[1 + 2pqsh + p2s]/w (2.74)

= p[q(1 + sh) + p(1 + s)− 1 − 2pqsh − p2s]/w (2.75)
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= p[qsh + ps − 2pqsh − p2s]/w (2.77)
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= pqs[h(1 − 2p) + p]/w (2.81)
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238We assume that h is in the range of [0, 1]; in the next chapter we’ll discuss balancing selection, which can happen when

h is outside the range [0, 1]. Also note that w is positive under reasonable conditions.
239Overview of card counting: [Link], and an example of a card-counting technique: [Link]. And a classic movie scene

about counting cards from Rain Man: [Link].
240To be more precise, if the allele is at frequency p, selection would add or remove 2Nsp copies in expectation. So for

a common allele this is of order 1.
241A second intuition for why 2Ns = 1 represents the lower bound for selection is that the expected change in allele

frequency (E(∆p) due to selection is on the order of sp(1− p), while the variance in allele frequency due to drift (Var(∆p)
is p(1 − p)/2N. So the expected change due to selection trumps the change in variance when 2Ns >> 1.

242A nice description of the math for the haploid case is given by Otto and Whitlock (1997). Otto and Whitlock also point
out that the fixation rate of new mutations is much higher in growing populations, and this is probably important in some
ecological settings. See also Pritchard et al (2010) for further discussion of these issues:
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