
2.7 Natural Selection III. Genome-wide extent of se-
lection

We have now touched on the main types of natural selection, and I have already
hinted at a key question: how important are each of these in practice? Here we
tackle this key question.

First though, it’s helpful to give some historical context 310.

By the 1960s, much of the basic theory of population genetics had al-
ready been developed, but molecular techniques for measuring genetic
variation were extremely limited. Consequently, population genetics was
largely a theoretical field 311. Little was known about the relative impor-
tance of the fundamental processes: mutation, recombination, migration,
and drift; negative selection, positive selection, and balancing selection.

Figure 2.114: Enzyme Polymorphisms in
Man (1966). Gel electrophoresis, as shown here,
made it possible to survey genetic variation for
the first time. The vertical lanes show banding patterns for two

alleles at the phosphoglucomutase enzyme: homozygotes in lanes 1, and

2; heterozygotes are a mixture of both pattherns: 2-1. Experimental data

at left, and a schematic of the banding patterns at right. The alleles were

reported at frequencies 0.75 and 0.25 respectively, in human populations.

Credit: Fig. 68 from Harry Harris (1966). [Link] Used with permission.

This started to change with the invention of gel electrophoresis, a tech-
nique that made it possible to measure protein variation on gels 312. The
first examples came from humans and flies in 1966

313. These first studies
were followed by a flurry of electrophoresis studies in a wide range of or-
ganisms – so many that this was cheekily referred to as the “find ’em and
grind ’em” approach 314.

Before the electrophoresis era it was anticipated that most protein vari-
ants would be subject to strong selection. Thus the default state would be
a wildtype allele and perhaps additional rare deleterious variants; mean-
while there would be occasional rapid sweeps, and perhaps balancing
selection in some genes 315.

Given these expectations, it was a surprise to find that protein variation is
widespread in most species. For example, in 1966 Lewontin and Hubby
estimated that around 1/4 to 1/3 of genes were polymorphic within pop-
ulations of the fly Drosophila pseudoobscura 316. One possibility was that
this might indicate huge amounts of balancing selection, but this conclu-
sion was controversial.

A complementary insight came from emerging data on protein differ-
ences between species. By the mid-1960s it was becoming apparent that
proteins tend to accumulate amino acid substitutions steadily over evolu-
tionary time. This was referred to by Zuckerkandl and Pauling in 1965 as
the molecular clock 317. One vivid illustration of the molecular clock was
published by Richard Dickerson, below, in 1971

318:
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Figure 2.115: One of the first demonstra-
tions of the molecular clock, from 1971. The
x-axis shows divergence times of pairs of species,
as estimated from the fossil record; the y-axis
shows fractions of amino acid differences in three
proteins. The analysis was important for show-
ing that protein differences accumulate roughly
linearly over evolutionary time, but at different
rates for different proteins. Credit: Figure 5.3 from Graham

Coop in Population and Quantitative Genetics [Link], CC BY 3.0; based

on Dickerson (1971).
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Of course it was possible that these protein changes were all adaptive,
but even in the 1960s there were reasons to doubt this. The gene Cy-
tochrome C, shown above, is found in a wide range of eukaryotes and
fulfills a conserved role in the electron transport system in the mitochon-
dria. King and Jukes (1968) noted that experiments comparing Cytochrome
C proteins from different species could detect no functional differences.
They hypothesized that the observed substitutions are mainly at posi-
tions that do not have a functional impact, and have fixed by neutral drift
319. Their proposal contrasts sharply with an adaptive model of protein
evolution, where one might expect most substitutions to be functional.

The Neutral Theory of Molecular Evolution. Together, these observa-
tions stimulated a paradigm shift in the late 1970s in how people thought
about the main forces acting on genetic variation – and especially the
role of genetic drift. These new ideas were articulated in particular by the
Japanese scientist Motoo Kimura, who dubbed this the Neutral Theory of
Molecular Evolution 320. In short, he proposed that most new mutations
are either approximately neutral, or deleterious; advantageous muta-
tions are very rare and contribute only a tiny fraction of polymorphism
and differences between species.

As stated by Kimura (1983) 321: “The neutral theory asserts that a great ma-
jority of evolutionary changes at the molecular level...are caused not by Dar-
winian selection but by random drift of selective neutral or nearly neutral mu-
tants.... (P)olymorphisms are mainly due to mutations that are nearly enough
neutral... that their behavior and fate are mainly determined by mutation and
random drift...

On the topic of selection he clarified that: “The theory does not ... assume
that selection plays no role; however, it does deny that any appreciable fraction
of molecular change is due to positive selection or that molecular polymorphisms
are determined by balanced selective forces... selective constraints imposed by
negative selection are a very important part of the neutralist explanation...”
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It’s hard to overstate the impact this model has had on how we think
about genetic variation. The Neutral Theory provides an intellectual frame-
work for thinking about modeling, and a null hypothesis for data analy-
sis. It is no longer controversial that most new mutations are neutral and
that, of those that are not neutral, most are selected against. As we’ll dis-
cuss in Part 3 of the book, these properties allow us to use genetic varia-
tion as a tool for studying population structure and history while largely
ignoring the role of selection.

That said, it’s worth noting that early conceptions of the Neutral Theory
under-appreciated the importance of some processes in shaping patterns
of variation 322. One important early addition came from Tomoko Ohta’s
work emphasizing the importance of nearly neutral mutations. Starting
in 1973, Ohta argued that many mutations may have selection coefficients
that are close to, but not precisely, 0. These can have important conse-
quences: for example, recalling that selection is ineffective when |4Ns| is
less than about 1, we see that weakly deleterious variants fix at a higher
rate in species with small N than in species with large N, which can af-
fect substitution rates in different lineages (Chapter 2.5) 323.

Another under-appreciated area was the role of linked selection (which
we’ll cover in this chapter), and a third is the role of polygenic stabiliz-
ing selection and adaptation (Chapter 2.7).

The original theory also predated modern understandings of genome ar-
chitecture, as well as the central importance of gene regulation in pheno-
typic variation and evolution.

Figure 2.116: Camouflaged cicada on tree.
Although the neutral theory provides a powerful
framework for modeling molecular evolution,
it does not deny the central importance of
Darwinian adaptation – in this case driving
adaptation of the cicada to be almost perfectly
camouflaged in its natural habitat. Credit: Henk

Monster [Link] CC BY 3.0.

And despite the Neutral’s Theory’s importance as a null hypothesis, sig-
nificant effort in the last 50 years has been devoted to understanding its
limitations. There has been a great deal of work aimed both at measuring
overall rates of positive selection, as well as at elucidating the specific ge-
netic changes that underlie adaptations 324. Even if only a small fraction
of polymorphisms and substitutions are positively selected, the most in-
teresting biology lies in those exceptions: for many evolutionary biologists,
a sense of awe at the power of Darwinian adaptation is what got us excited about
biology in the first place!

Substitution rates and the molecular clock. As shown above, proteins
(and DNA sequences) tend to accumulate changes roughly linearly in
time, though the rates differ between proteins. This observation would
be puzzling if most substitutions are adaptive: why should adaptation
occur at a roughly constant rate over hundreds of millions of years, while
the organisms themselves, ecosystems, and parameters such as effective
population size, vary hugely over time? The Neutral Theory provides a
simple model for this.

First, we need to derive the substitution rate for purely neutral sequences.
Suppose we sequence a neutral region of the genome in two species that
diverged T generations. How many differences do we expect to see be-
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tween the two species?

Mutations arise at a rate µ per base pair per generation. Let’s look first at
fixation events in Species 1. Suppose that the population size of Species 1
is 2N; then across the entire population of Species 1 we get 2Nµ new mu-
tations per base pair each generation. Recall from Chapter 2.1 that new
mutations will ultimately fix with a probability equal to their starting fre-
quency: i.e., 1/2N. Hence, the rate of fixation of mutations is

Fixation rate = [Total rate of new muts]× [Fixation prob. of muts] (2.93)

= 2Nµ × 1
2N

(2.94)

= µ (2.95)

The population size, N here, cancels out, leading to the crucial result that neutral
mutations fix at a rate µ per generation per site, regardless of population size.

Similarly if we compare two species that have diverged for T generations,
then at neutral sites the expected frequency of differences is 2µT 325. The
factor of 2 reflects that fixation events occur in both lineages for T genera-
tions 326.

Now let’s focus specifically on nonsynonymous changes a. Think about a Recall that nonsynonymous (=missense)
substitutions change the amino acid encoded
at a position, while synonymous substi-
tutions do not. For example, CCC→GCC
changes proline to alanine (nonsynony-
mous); but CCC→CCG maintains proline
(synonymous).

what happens if a gene contains some positions where mutations would
be neutral, and others where mutations would be deleterious: for ex-
ample mutations in a functional binding pocket of an enzyme might
strongly disrupt function, while a change between similarly charged
amino acids in an unstructured region might be neutral. Let’s suppose
that a fraction of λ of all changes are neutral, and 1 − λ are sufficiently
deleterious that they have essentially no chance of fixing 327. Now we
find that mutations fix at a rate

Fixation rate = λµ (2.96)

per generation, and the expected number of substitutions per site be-
tween species is

2λµT. (2.97)

If we convert µ from a per-generation rate to a per-year rate, and assume
that this is roughly constant across the phylogeny, and across genes, then
this predicts that substitutions accumulate linearly in time, where the rates are
proportional to the fraction of neutral sites. This results in the molecular clock,
where the slope is proportional to λ 328.

dn/ds as an estimator for amino acid constraint. If we want to use Equa-
tion 2.97 to estimate λ we need to know both the divergence time T and
gene-specific mutation rate µ. Unfortunately we don’t always have good
estimates of these.

But we can get a better estimator of λ by simply comparing the substi-
tution rates for synonymous and nonsynonymous sites within the same
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gene. This is captured in a measure called dn/ds (also known as Ka/Ks
329). Here dn is the expected number of nonsynonymous substitutions per
nonsynonymous site, and ds is the corresponding number for synony-
mous substitutions. Then dn/ds gives the ratio of the two rates b. b Note that dn and ds are adjusted for the

effective numbers of nonsynonymous and
synonymous sites, based on the numbers of
possible mutations that would/would not
change the encoded protein. Thus dn/ds
should be 1 in the absence of selection 330.

To interpret dn/ds, let’s first make the simplifying assumption that all
synonymous mutations are neutral 331. Then the expected synonymous
divergence between two species would E(ds) = 2µT, as above.

For nonsynonymous sites in the same gene, the expected nonsynony-
mous divergence would be E(dn) = 2λµT. So the ratio of the expected
values tells us that 332:

dn

ds
= λ. (2.98)

Notice that since λ represents the fraction of neutral sites, dn/ds must be
between 0 and 1 under this model.

Indeed, this is the case for most genes, as you can see in this plot show-
ing the distribution of dn/ds values in mammals 333:

Figure 2.117: Distribution of dn/ds across
human genes. The plot shows a histogram
of estimated dn/ds across genes, measured in
the human lineage. The vertical line indicates
the mean. dn/ds is measured on the human lineage since the

common ancestor of human, mouse, and pig. Credit: From Fig. 5 of Frank

Jørgenson et al (2005) [Link]; CC BY 2.0.

This study reported a genome-wide average of about dn/ds = 0.14, which
we could interpret to mean that about 14% of amino acid substitutions
were effectively neutral.

Positive selection, dn/ds, and the MK test. In the absence of positive
selection dn/ds is always ≤ 1. But what happens if some nonsynonymous
mutations are actually favored by selection? Intuitively, you might ex-
pect that selection should increase divergence at nonsynonymous sites,
and could potentially push dn/ds > 1. This suggests a test for adaptive
evolution of protein sequences: Can we find genes for which dn/ds is sig-
nificantly > 1?

To understand this, let’s consider a simple extension of the model to three
categories of sites:
• A fraction λ0 are neutral
• A fraction λa are advantageous with selection coefficient s
• A fraction 1 − λ0 − λa are strongly deleterious

Recall that favored mutations fix with probability s 334. Hence, favored
mutations arise at a rate 2Nλaµ per generation, and fix at a rate 2Nλaµ · s.
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So the expected divergence at nonsynonymous sites in time 2T will be
λ0 · 2µT + 2Nλas · 2µT, compared to 2µT at synonymous sites, and

dn

ds
= λ0 + 2Nsλa. (2.99)

To make this concrete, suppose that λ0 = 0.2; and further suppose that
1% of nonsynonymous mutations in a gene have a selective advantage
s = 0.1% in a population of 104. Then 2Nsλa = 0.2, and dn/ds is 0.4. In
this example, even though many of the sites are fixed by positive selec-
tion, dn/ds is still much less than 1.

In fact, we need a lot of selection to detect it using dn/ds. For example,
suppose that 1% of nonsynonymous mutations have an advantage of s =

1%. We now predict that 2Nsλa = 2.0 and dn/ds will be 2.2, and we reject
neutrality.

High dn/ds at MHC genes. It’s quite unusual in mammals for selection
to be strong enough to drive dn/ds above 1, but a famous example oc-
curs in genes of the Major Histocompatibility Complex (MHC) 335. MHC
genes play an essential role in defense against infection by presenting
fragments of proteins known as peptides for surveillance by T cells. T
cells are trained to ignore peptides from our own proteomes; but when
they detect foreign peptides they initiate an immune response.

The T cell antigen receptor: the Swiss army knife of the immune systemThe picture can't be displayed.

Clin Experimental Immun, Volume: 181, Issue: 1, Pages: 1-18, First published: 08 March 2015, DOI: (10.1111/cei.12622) 

Figure 2.118: Peptide presentation by MHC.
MHC proteins (here in gray) play an essential
role in the immune system by presenting short
peptides (red/blue) for inspection by T cells.
MHC proteins must be able to successfully bind
a highly diverse and rapidly evolving array of
foreign peptides. Credit: Figure 3e of Meriem Attaf et al (2015)

[Link]. CC BY 4.0

Crucially, different MHC alleles have different potential binding reper-
toires. Thus, the universe of peptides that you can present to T cells de-
pends on your genotype across the six MHC genes involved in antigen
presentation. There is an overall advantage to having different alleles at
each MHC gene, as it expands the potential space of antigens you can
present, and particular MHC alleles may especially effective against par-
ticular pathogens. All of these factors have led to huge selection pressure
for allelic diversity in the MHC, driving ancient balancing selection, simi-
lar to the ABO story in the last chapter 336.

Given the strong selection pressure in favor of functional diversity, it
should come as no surprise that there is enormous nonsynonymous di-
versity at functional sites in the MHC genes. A classic 1988 paper by
Austin Hughes and Masatoshi Nei examined dn and ds between highly
diverged human alleles for three MHC genes. They predicted high dn

within the peptide binding region (PBR), but not in the rest of the protein
where the function is more conserved 337.

Peptide Binding (L=57) Not PBR (L=125) Exon 4 (L=92)
dn ds dn ds dn ds

MHC-A 13.3 3.5 1.6 2.5 1.6 9.5
MHC-B 18.1 7.1 2.4 6.9 0.5 1.5
MHC-C 8.8 3.8 4.8 10.5 1.0 2.1

Table 2.7: High dn/ds in MHC genes.
Average dn and ds between different human
alleles in three MHC genes. “Peptide Binding” refers

to sites within the PBR; “Not PBR” corresponds to other sites in Exons

2 and 3 that do not contact the peptide; sites in Exon 4 also do not

contact the peptide. L indicates numbers of sites. Standard errors for most

comparisons were ∼2. Modified from Hughes and Nei (1988) [Link].

Consistent with this logic, you can see above that dn is larger than ds within the
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peptide binding region, and lower elsewhere. This indicates that there is frequent
adaptive evolution within the peptide binding region, and main selective con-
straint in the structural regions of these genes.

However, more generally, testing for dn/ds > 1 is not a very powerful test
because it’s highly unusual to see so many adaptive changes in one small
region; secondly, we may not know in advance which sites are likely to
be evolving adaptively as we do in the example above (but see 338, 339).

Tests contrasting polymorphism and divergence. A paper by John Mc-
Donald and Martin Kreitman in 1991 suggested a more powerful test
for selection by contrasting variation within and between species, now
known as the McDonald-Kreitman or MK test 340. The key concept is
that selective sweeps occur quickly compared to drift, and so they are
more likely to be observed in a data set as differences between species
than as polymorphic sites within species.

In one version, the MK test considers gene sequences for multiple indi-
viduals from each of two species. Variants can be classified as being ei-
ther fixed differences between the species, or polymorphic within one of the
species c. Similar to the model we used before, the null hypothesis will be c A fixed difference is a variant where all

individuals in one species have one variant,
while all individuals in the other species
have a different variant. A polymorphism
would be variable within the sample from
one or other species.

that a fraction λ of new nonsynonymous mutations are neutral, and 1 − λ

are strongly deleterious.

Assuming that selection against deleterious variants is strong enough, we
don’t expect to see deleterious variants as polymorphisms, and certainly
not as fixed differences. In this scenario, we expect the ratio of nonsyn-
onymous to synonymous to be the same (i.e., λ) for both polymorphisms
and fixed differences (Panel A):

Figure 2.119: Overview of the MK test.
A. In the baseline model (Neutral + Strongly
deleterious) the expected ratio of nonsynony-
mous:synonymous variants is the same in the
fixed and polymorphic categories. B. In the
model with positive selection, there is a greater
fraction of nonsynonymous sites among the fixed
differences.

But if some nonsynonymous sites are positively selected, then these will
tend to sweep through populations very quickly (Panel B). Because they
sweep quickly, it’s rare that one would be just in the process of sweeping
right now, and much more likely that they would be fixed differences d. d You can look at Figure 2.95 to see that

selected variants fix much faster than
neutral variants.

For this reason we expect that positively selected variants will increase the
fraction of nonsynonymous variants among the fixed differences.

Consistent with the positive selection model, the first application of the
MK approach found a much higher fraction of nonsynonymous substi-
tutions between Drosophila species (41% of substitutions) compared to
nonsynonymous polymorphisms within species (just 5% of variants):

170



Fixed Polymorphic

Nonsynonymous 7 2

Synonymous 17 42

% Nonsynon. 41.2% 4.7%

Table 2.8: Excess of nonsynonymous
substitutions in the Drosophila ADH
gene. The table shows the numbers of non-
synonymous and synonymous variants that
are either polymorphic within species, or fixed
between species (P-value for a test of indepen-
dence is 0.006). Modified from McDonald and Kreitman (1991)

[Link].

The authors interpreted this as evidence that positive selection at ADH
drives nonsynonymous fixations that accumulate as an excess of between-
species differences 341 342.

Since then, MK analyses in the genome-wide era have revealed rampant
positive selection in Drosophila: likely as many as 50% of nonsynony-
mous differences between species were fixed by positive selection 343.

For humans, in contrast, it seems that a much smaller fraction of nonsyn-
onymous differences between humans and other primates were fixed by
positive selection: likely in the range of 0–10%, although the precise frac-
tion is still a matter of debate 344. This work shows that the great majority of
nonsynonymous substitutions in primates are effectively neutral.

Linked selection: background selection and hitchhiking. This brings
us to our last major selection topic, linked selection, which deals with
the effects of selection–both positive and negative–at nearby sites. Here,
we ask: How does selection affect the patterns of genetic diversity at nearby
neutral sites 345?

Our story begins around the same time as development of the McDonald-
Kreitman test, when an observation from Drosophila presented an im-
portant new challenge to the Neutral Theory. A 1992 paper by David Be-
gun and Chip Aquadro showed that regions of the fruit fly (Drosophila)
genome with low recombination rates tend to have low genetic diversity
346.

Figure 2.120: Classic plot of the relation-
ship between recombination rate and ge-
netic diversity in fruit flies (1992). The x-
axis shows a measure of local recombination rate;
the y-axis is average pairwise heterozygosity, π;
each data point is a different sequenced locus.
The null hypothesis that the slope is 0 is rejected
with p = 0.0007. Credit: Fig. 1 of David Begun and Charles

Aquadro (1992) [Link] Used with permission.

Similar patterns are also seen in humans (side panel) 347.

Begun and Aquadro proposed that this observation is evidence for wide-
spread genetic hitchhiking with selective sweeps. Recall from Chapter
2.6 that when a favored mutation sweeps rapidly through the popula-
tion, it carries a surrounding haplotype with it, up to high frequency, in a
process known as hitchhiking. As a sweep nears completion it eliminates
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genetic variation in a window around the selected site (Figure 2.96).

The size of the window is inversely related to r × 2log(2N)/s, where r is
the local recombination rate, N is the population size, and s is the selec-
tion coefficient. This is intuitive: when r is high, recombination breaks
up the sweeping haplotype much more efficiently than when r is low.

Figure 2.121: Human genetic diversity is
also reduced in regions of low recombi-
nation. Black dots show binned averages of the
genetic diversity (θ × 10−3) as a function of local
recombination rate. Orange dots show raw data
in a sliding window across the genome. Credit:

Fig. 1B of James Cai et al (2009); CC BY 4.

Begun and Aquadro hypothesized that sweeps are scattered randomly
across the genome. When they sequenced a locus with low recombina-
tion rate it was much more likely to fall within the window of a recent
sweep (and therefore, have low diversity) than when they sequenced a
locus with high recombination rate. They concluded that “Hitch-hiking
thus seems to occur over a large fraction of the Drosophila genome and
may constitute a major constraint on levels of genetic variation”.

Background selection. However, the next year an alternative explana-
tion, dubbed background selection, was proposed by Brian Charlesworth
and colleagues 348. The essential concept of background selection is that
when deleterious mutations arise, they may drift briefly but are unlikely
to contribute to the population long-term. As those variants are eventu-
ally purged, any linked neutral variants are lost too.

One helpful way to think about this is that, at any given locus, the copies
of this locus present in the population today are primarily descended from past
copies of the locus that did not carry deleterious mutations. Thus, deleterious
mutations can be thought of as reducing effective population size within a linked
region.

Figure 2.122: Background selection. At any
given time a fraction of chromosomes carry dele-
terious variants (red mutations). These chro-
mosomes have low fitness and don’t contribute
much to future populations in the long term.
Neutral variants linked to deleterious variants
will eventually be removed by selection. Mean-
while new deleterious variants continue to arise
by mutation.

To model this, let’s first look at background selection in a region with-
out recombination 349. Define f as the total fraction of chromosomes that
carry deleterious mutations. A simple model 350 suggests that at equilib-
rium

f ≈ Lµ/hs, (2.100)

where L is the number of basepairs that can produce deleterious muta-
tions, µ is the mutation rate per base pair, and hs is the selective disad-
vantage for a heterozygote e. e In a minor abuse of notation, in this sec-

tion we use hs > 0 to indicate a selective
disadvantage. The derivation requires that
selection is considerably stronger than drift,
i.e., hs >> 1/N.

Provided that selection is strong enough that individual deleterious mu-
tations don’t persist long in the population (hs >> 1), you can think of
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this as reducing the effective population size locally by a factor 1 − f .
Then we can approximate the expected pairwise genetic diversity, E[π],
in this region as

E[π] = π0(1 −
Lµ

hs
), (2.101)

where E[π0] is what the expected genetic diversity would have been if
there were no background selection.

What happens with recombination? Let’s say we sequence a region that
is at a recombination fraction r from a conserved functional element.
Now things are more complicated, because a neutral variant in the se-
quenced region could be rescued by recombining away from a linked
deleterious mutation. After a flurry of math 351, the expected diversity
is found to be

E[π] = π0

[
1 − Lµ

hs(1 + r/hs)2

]
. (2.102)

The last part of this expression, Lµ
hs(1+r/hs)2 , represents the proportional de-

crease in variation due to background selection. This has the intuitive form
that the impact of background selection increases with the deleterious mutation
rate Lµ, and decreases with recombination distance r. The relationship with
selection strength is more complicated 352.

Figure 2.123: Genetic diversity at neutral
sites is reduced by background selection
from linked functional elements. Each func-
tional element reduces expected diversity by a
factor of (1 − Liµ

hs(1+ri/hs)2 ).

Next, the total strength of background selection experienced at a site de-
pends on the cumulative contributions from all linked functional loci (for
example, all coding exons, conserved gene regulatory elements, etc). The
total reduction in π is a product of the contributions from each functional
element:

E[π] ≈ π0

M

∏
i=1

[
1 − Liµ

hs(1 + ri/hs)2

]
. (2.103)

where i indexes each of M linked functional elements 353.

Does this model fit real data?

In a 2009 paper, Graham McVicker and colleagues used this approach
to predict the background selection effect of constrained regions across
the human genome 354. As you see from Equation 2.103, the strength of
background selection at any specific location depends on the local land-
scape of linked functional elements. This can be used to predict genetic
diversity at neutral sites across the genome, depending on the number,
size, and genetic distance to nearby functional elements in the genome
sequence. This reduction in diversity is commonly written as B 355:

B =
E[π]

π0
(2.104)

The plot below shows an updated version of McVicker’s analysis 356. As
you can see, the background selection model provides a remarkably good
prediction of the landscape of genetic diversity in humans:
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Figure 2.124: Human genetic diversity pre-
dicted from background selection model.
Genetic diversity along chromosome 1 is plotted
in teal; predictions from a background selection
model are in orange. Data are for Yoruba (from Nigeria). The

y-axis is genetic diversity π divided by the genome-wide average. The

data are plotted in megabase-sized windows. The gap at the center of the

plot is due to repetitive regions near the centromere. Credit: Figure 2 from

David Murphy et al (2021) [Link]. CC BY 4.

This is actually quite a dramatic effect, with the model accounting for
most variation in genetic diversity (at megabase scale) across the genome,
emphasizing the importance of linked selection in shaping genetic varia-
tion.

Background selection or hitchhiking? Thus, in both humans and flies
(and other species) we see a strong relationship between neutral sequence
diversity, and the local recombination rate and density of nearby func-
tional sequence. This is compelling evidence that linked selection plays a
major role in shaping genetic diversity across the genome. But it leaves
us wondering how much of the linked selection effect is due to back-
ground selection versus hard sweeps 357.

One way of distinguishing these is to note that if hard sweeps are impor-
tant, then there should be a dip in diversity specifically near the sites of
completed sweeps. This is different from the general depletion of varia-
tion due to background selection. We don’t know which sites have had
recently completed sweeps, but we could hypothesize that these would
be enriched at recent nonsynonymous substitutions. Under this hypothe-
sis, diversity near nonsynonymous substitutions would reflect a mixture
of neutral and selected signals. To summarize: if an appreciable fraction of
nonsynonymous substitutions on the human lineage are recently completed hard
sweeps, then we should see lower diversity near those sites compared to a model
with background selection only 358.

But, instead, the genetic diversity around nonsynonymous substitutions
can be predicted entirely from the background selection model. The plot
below shows the average of genetic diversity around all nonsynonymous
substitutions, along with the predictions under background selection.
There’s a dip at the center of the plot, but this is only because nonsyn-
onymous sites are generally in regions with lots of functional sequences –
as you can see the data are extremely similar to the background selection
model:
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Figure 2.125: Average levels of genetic di-
versity at nonsynonymous substitutions
and comparison to predictions from back-
ground selection. Genetic diversity at non-
synonymous substitutions (teal) is accurately
predicted from a background selection model
(orange). The close fit at nonsynonymous sites
argues against frequent hard sweeps driving
nonsynonymous substitutions. Credit: Figure 3 from

David Murphy et al (2021) [Link]. CC BY 4.

This analysis would have had power to detect a signal if as much as 10%
of nonsynonymous variants had swept with strong selection (s=1%) 359,
though it has less power to detect soft sweeps. In contrast, this type of
analysis does show a clear signal in Drosophila, where selective sweeps
seem to be much more common 360.

In summary, this analysis and the MK results argue that at most a small
fraction (<10%) of nonsynonymous variants in humans were fixed by
strong positive selection. Similarly, genomewide selection scans reveal
relatively few unequivocal examples of recent sweeps in noncoding re-
gions. This leaves open the possibility of positive selection through soft
sweeps, much weaker hard sweeps, and polygenic adaptation as we’ll
discuss next.

Concluding remarks. In this section of the book we have covered some
of the core principles for understanding genetic variation. One remark-
able aspect of population genetics is that many of the fundamental con-
cepts extend logically from the basic genetic and population processes:
mutation; Mendelian segregation; linkage; random mating and popula-
tion structure; and different forms of selection.

That said, while many key concepts were already understood 50 years
ago, it has taken much longer to determine the relative importance of
the different processes–in particular the impact of genetic drift, linkage,
and the different types of selection in shaping patterns of variation and
evolution–and many aspects of this are important areas of research now
that we have much richer genome data, and modern tools from func-
tional genomics.

I think it’s fair to say that versions of the Neutral Theory now provide the
central structure for most models of genetic variation: at least 90% of new
single nucleotide mutations are essentially neutral, and most of what is
not neutral is deleterious. However, we also now know that linked selec-
tion in the genome, mainly from background selection, is pervasive, so
that diversity in most of the genome is reduced relative to the maximum
possible under a fully neutral model.

What then, is the role of positive selection? Even if only a tiny fraction of
variants are positively selected, we do know that the natural world, in-
cluding humans, show an astonishing diversity of forms. Organisms are

175

https://doi.org/10.1101/2021.07.02.450762


amazing molecular machines, and exquisitely adapted to their environ-
ments. This must happen through forms of adaptation. As I discussed
at length, we do now have compelling examples of the various forms of
positive selection acting in humans: including hard and soft sweeps, and
ancient balancing selection.

Figure 2.126: Exquisite adaptation of the
spicebush swallowtail caterpillar. This cater-
pillar discourages would-be predators using pig-
mented spots that mimic snake eyes. Credit: Michael

Hodge [Link] CC BY 2.

However, my personal reading of the data is that strong hard selection
on individual loci has been rare in the human genome during the past
∼ 200, 000 years when we can best detect it. Many of the exceptions
where we do see sweep signals are at genes where a single protein plays
an exceptional role in some process–for example Duffy, which serves as
a specific receptor for vivax malaria; or lactase which plays an essential
role in digesting lactose. The relative importance of different modes of se-
lection seems to vary greatly across species, and hard sweeps may be less
important in humans than in some other species that have been studied,
including flies and stickleback fish.

It’s possible that environmental pressures acting on human populations
are often variable and inconsistent across space and time, and thus it is
rare for selection be both strong and consistent enough over the many
thousands of years that are required for hard sweeps in a species with
our long generation time. This hypothesis may be consistent with recent
work on ancient DNA identifying many short-term selective frequency
shifts 361. This work suggests that perhaps much of the recent selection
has taken the form of partial soft sweeps – which would not show up
clearly in most analyses 362.

Lastly, it is likely that most human adaptation comes through polygenic
shifts of complex traits. We do know that the genetic variation in most
phenotypes, aside from monogenic genetic diseases, is highly polygenic.
It must surely be the case that environmental pressures are continually
pushing optimal phenotypes around in some high-dimensional pheno-
type space as conditions change. However, polygenic adaptation leaves
little trace in the data and, at the time of writing, detection remains dif-
ficult 363. We will consider the population genetics of polygenic traits in
detail later in the book.

Well done! You have now completed the population genetics section of the book!
These main principles are useful for understanding all aspects of human genetic
variation. In the next section we’ll focus on application of these principles for
understanding the genetic structure and history of human populations.
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