
3.1 Population structure: I. Ancestry estimation

In which we discuss how genetic data are used to study the population structure,
ancestry, and mixing of modern human populations. Specifically we ask: How
can we use genotype data from a collection of individuals to learn about
population structure? We close with a discussion of the relationship between
ancestry and cultural concepts of race 364.

Figure 3.1: “I come from the Black Lagoon,
but it turns out I’m 14 percent Atlantic
dolphin.”
Cartoon copyright 2019 Robert Leighton [Link]. Used with permission.

In Chapter 2.4 we showed how barriers to random mating–most notably
due to the geography of where we live and who we reproduce with–
allow allele frequencies to drift apart. This leads to population structure:
i.e., differences in allele frequencies or haplotype frequencies among dif-
ferent groups or populations within a species. A closely related concept,
ancestry, refers to how much of a person’s genome comes from each of a
set of defined groups or populations.

In this chapter we’ll describe how genetic data is used to study popula-
tion structure, and to estimate the ancestry of individuals. The key anal-
ysis methods here will have a different feel from approaches we’ve used
so far. In particular, we’ll make heavy use of clustering techniques. In
statistical data analysis, “clustering” refers to a variety of methods for
grouping objects that share similarities – in this case, for grouping indi-
viduals with similar genotypes.

While these approaches are extremely useful for understanding human
variation, we should always remember that they are tools to model a
much more complex reality a a “All models are wrong but some models

are useful”–George Box. As we shall see, the
twin concepts of population structure and
ancestry are powerful tools for studying
human history and the genetic basis of
disease. But you should remember that what
we call ’populations’ are models to
approximate a complex tangled web of past
migrations and mixtures of ancestors, and
nonrandom mating at different geographic
scales.

. Human populations are structured at a
range of geographic scales from the level of continents down to, in some
cases, differences between nearby towns or even extended families. As
we’ll see, different analyses focus on ancestry at different scales.

Moreover, population structure is not fixed over time. We are familiar
with the idea that modern societies are often melting pots of peoples
from many different places; but as we will discuss, ancient populations
were also highly mobile, and population mixing has been a constant force
in human genetic history.

Another key point is that each of us has ancestors from many locations
and likely even from all continents 365. As I will explain, estimated ge-
netic ancestry actually corresponds to complicated statements about which
groups of individuals have similar mixtures of ancestors.

For all these reasons, there is no single “correct” description of struc-
ture. As you read the next three chapters, pay attention to how different
methods, and different data sets, tell us about structure and ancestry at
a range of geographic and temporal scales; consider also what aspects of
history may be entirely invisible to us with any given data set.

Lastly, at the end of the chapter we will touch on another complicated
issue: namely, the relationship between ancestry and the socially-defined
concepts of race and ethnicity.
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The concept of clustering. In data analysis we often want to sort things
into groups of similar objects. This is called clustering. For example, con-
sider the following items in a grocery store:

ice cream, wine, tea, apples, oranges, onions, celery, sausages, steaks, frozen peas,
beer, milk, chocolates, coffee.

How might we cluster these into groups? Perhaps by food category:
{beer, wine, tea, coffee, milk}, {apples, oranges, onions, celery, frozen peas},

{sausages, steaks}, {ice cream, chocolates}.

Maybe you think some of these clusters are too broad – you might prefer
to split the drinks more narrowly:

{beer, wine}, {tea, coffee}, {milk}.

Or maybe you prefer to group by aisle in the store:
{beer, wine}, {tea, coffee}, {apples, oranges, onions, celery}, {milk, sausages,

steaks}, {ice cream, frozen peas}, {chocolates}

This example shows how clusters can capture meaningful structure in the
data. And yet you may be bothered that there’s no obviously “correct”
clustering: reasonable observers may differ on how finely to define the
clusters (should beer and tea be in the same cluster?) or on which fea-
tures to emphasize (are frozen peas more like onions or ice cream?) b

b Much the same is true for genetic data:
even when there is clear evidence for
population structure, the precise clustering
output depends on the choice of methods
and samples.

.

Our next example shows how we can do a bit better by allowing objects
to have membership in multiple clusters.

Suppose we want to cluster Wikipedia pages into topics on the basis of
the words they use. How should we do this? To illustrate this I picked
out interesting words from 7 different Wikipedia pages. The colors high-
light words with similar themes:

Jennifer Sewall CRISPR David sickle cell Manchester population
Doudna Wright gene editing Beckham disease United genetics

born genetics CRISPR football haemoglobin football genetics
school evolution gene Manchester blood club selection
patent born DNA born genetics England drift
mother died clinical career mutation title Wright

edit population engineering goal malaria Beckham synthesis
CRISPR selection nuclease wife selection goal evolution
genetic statistical therapy England allele record mutation
disease quantitative Nobel scored CRISPR Ferguson quantitative
Nobel enzymes patent corner therapy Premier statistical

How should we cluster these 7 Wikipedia pages?

Some of the same issues we saw in the grocery store example come up
again. Is the Jennifer Doudna page more related to the other biographies
(Wright and Beckham) or to CRISPR editing, which she developed?

To solve this, we introduce a concept called a topic 366. Each topic has
a characteristic set of word frequencies: for example we could define
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a topic named biography (blue), that uses words like born, died, school,
mother, career at higher frequency.

Crucially, we allow each page to have fractional membership in mul-
tiple topics. We might estimate that the Doudna page is 30% biography,
50% genome editing, and 20% genetics. In a formal model, this would mean
that 30% of the words in the Doudna page come from the word distribu-
tion for biography and similarly for the other topics.

Similarly, each topic contributes to multiple pages: here, evolution (olive-
color) contributes to at least three of the pages: Sewall Wright, Sickle Cell,
and Population Genetics.

In this chapter we use similar ideas to model population structure. In
this analogy, the Wikipedia pages are like people’s genomes, and the topics are
like different populations. Someone’s ancestry is defined by the mixture of dif-
ferent “topics” that are represented in their genome. We’ll explore a variety of
techniques for understanding ancestry.

Genotype clustering. Suppose we collect genotype data for a sample of
individuals, using SNPs spread across the genome.

First, it’s convenient to code the genotype data as integers. As elsewhere
in the book, we’ll code each possible genotype at a single SNP as the
number of alternate or derived alleles, with possible values of 0, 1, or 2:

AA → 0

Aa → 1

aa → 2

Then we can record a genotype data set in a matrix G, like this:

Figure 3.2: The genotype matrix, G. Each
entry, gi,l , contains the number of derived alleles
carried by individual i at SNP l. Each row gives
the full genotype for a single individual.

where the rows (indexed by i) represent individuals and the columns (in-
dexed by l for locus) represent the SNPs. Gi denotes a single row of G:
that is, the genotype for individual i.

Our goal in this chapter is to use G to study population structure.

Before we go on, take a moment to look at a hypothetical example of G, below.
Can you cluster the individuals into sensible groups by eye? If so, what criteria
did you use?
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Figure 3.3: Can you find structure in this
genotype matrix? We’ll return to this example
later.

Early work on genotype clustering. The first studies of individual an-
cestry came in the 1990s, with the discovery that a simple measure of ge-
netic distance can cluster individuals by continent 367.

One of the first examples came in a 1997 paper by Joanna Mountain and
Luca Cavalli-Sforza 368. They analyzed SNP data from 144 humans cur-
rently living in different parts of the world, at about 100 SNPs per person
369. They computed genotype distances between each pair of individuals,
like this:

Figure 3.4: A simple multi-SNP genotype
distance. Here the two rows show the genotypes
for two different individuals at L SNPs. The
genotype distance between the two individuals
is computed as the sum of the absolute genotype
difference at each SNP, divided by L.

Next, they used a statistical method called hierarchical clustering to fit
the pairwise distances between the 144 individuals. This results in a graph
that clusters pairs of individuals with shorter genetic distances closer together,
and pairs of individuals with greater genetic distances further apart. The
total line distance between any two individuals in the graph is roughly
proportional to the genetic distance between them:

Figure 3.5: Hierarchical clustering of indi-
viduals based on genotype distances (1997).
Each individual is represented by a tip on the
graph. Line distances are roughly proportional to
genetic distances. Key:

⋄ African
△ European
□ Oceanian
◦ East Asian

All of the individuals here are from native populations and not from

recent immigrant populations. Credit: Figure 5 from Mountain and

Cavalli-Sforza (1997). [Link] Used with permission.
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As you see above, this produced the remarkable result that, using a small
number of SNPs, individuals cluster according to continent.

Figure 3.6: Genetic distances within versus
between populations. Distances between two
individuals from the same population (green
path between two individuals from population
A) are only slightly shorter than between two
individuals from different populations (A to B).
The branch with the green arrow shows the
small extra distance between populations.

This graph represents something quite different from the coalescent trees
we talked about in previous chapters: here the clustering represents the
overall similarity of multi-SNP genotypes, and it averages information
over many independent SNPs. You should also notice some key points:

• Individuals from the same continent tend to appear together on the
tree, reflecting genotype similarity to one another.

• And yet, differences between continents are quantitatively small:
individuals from the same population are only slightly more sim-
ilar than individuals from different continents – see figure on the
right 370.

• No one SNP on its own would be enough to distinguish the dif-
ferent continental groupings; instead the signal comes from aver-
aging weak information across many SNPs.

As you see here, this early type of model was already quite informative,
but in the next few sections we’ll see how more advanced models, com-
bined with modern data, can provide far more information.

A genotype model with population structure. As in other parts of the
book, we’ll find it’s helpful to write down a simple model to understand
the data.

First we need a concept of populations: in our idealized model we as-
sume that populations are discrete groups of random-mating individuals.
We assume that, within populations, SNPs are in Hardy Weinberg equilibrium
and pairs of SNPs that are far apart in the genome are in linkage equilibrium.
Different populations will generally have different allele frequencies.

We need to define some notation.

Assume that there are K different populations, and we measure the geno-
types for a panel of individuals at L SNPs. We record the allele frequen-
cies in a matrix P, where pk,l to represents the derived allele frequency
at the lth SNP in population k. Pl will be a column of P corresponding to
the frequencies of SNP l in each of the populations:

Figure 3.7: The allele frequency matrix, P.
Each entry, pk,l , contains the allele frequency of
SNP l in population k.
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Next, the matrix Q contains the ancestry of each individual. Here, qi,k
represents the fraction of ancestry that individual i has from population
k. By analogy with our Wikipedia example, you can think of i as indexing
a single page, and qi,k saying what fraction of that page is generated from
topic k. I’ll give another example of this shortly.

Figure 3.8: The allele frequency matrix,
Q. Each entry, qi,k, contains the ancestry of
individual i in population k. For example if an
individual is from Population 2, then their row
would read (0, 1, 0, · · ··).

We’ll use Qi to indicate a single row of Q – the ancestry vector for indi-
vidual i.

A generative model 371. Now consider an individual i. Suppose I tell you
their ancestry, Qi, and the allele frequencies, P. How do we model their
genotype Gi?

To start, we’ll assume that an individual’s genome comes entirely from a
single population – this is known as a no-admixture model. Suppose that
individual i comes from population k. Then Qi will have a single entry of
1 in population k, and 0 for the other populations: e.g., {0, 0, 0, 1, 0}.

The genotype at SNP l results from a random sampling process like this:

Figure 3.9: Genotype sampling in the no-
admixture model. Qi tells us that individual
i is from population k (here k = 4). We then
look up the relevant allele frequency at SNP l for
population k. Then the genotype gi,l is the sum
of two random alleles, each sampled given the
allele frequency pk,l .

More formally, the genotype probabilities for SNP l are:

Pr(gi,l = 0) = (1 − pk,l)
2

Pr(gi,l = 1) = 2pk,l(1 − pk,l)

Pr(gi,l = 2) = p2
k,l (3.1)

where pk,l is the relevant allele frequency for the population and SNP.
These are simply the Hardy Weinberg proportions for population k.

We can compute the probability of individual i’s entire genotype, given their
ancestry Qi, by multiplying these probabilities across all L SNPs c

c The vertical bar notation | is math-talk for
‘given that’. Pr(Gi|k) can be read as ‘the
probability of observing genotype Gi given
that individual i comes from population k’.

:

Pr(Gi|Qi) =
L

∏
l=1

Pr(gi,l |Qi) (3.2)

This is known as the likelihood. It’s an important principle of statistical
theory that we should generally prefer models that produce the highest
likelihoods.
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The admixture model. The no-admixture model is very limiting because
it can’t handle the fact that many of us have recent ancestry from multi-
ple populations.

As in our Wikipedia example, we can make a much better model by al-
lowing people to have fractional ancestry in each population. For exam-
ple, suppose that K = 5, and a person has 1/4 of their ancestry from
population 1 and 3/4 from population 3, then qi = (0.25, 0, 0.75, 0, 0, 0).

This is known as an admixture model.

The way we interpret this is that each SNP allele now has to make two
“decisions”: what population does it come from, and then what allele is
it?

Figure 3.10: Genotype sampling in the ad-
mixture model. In this model, an individual
has fractional ancestry in each population. To
simulate a genotype, we would first pick the
population-of-origin for each allele at random
according to the ancestry probabilities in Qi.
These tell us where to look in P.,l for the relevant
frequencies for each allele (populations 2 and 4
in this example). Genotype gi,l is then the sum
of two random alleles, each sampled according to
the appropriate population frequency.

We can think of individual i as having a “personal” allele frequency for
SNP l that depends on their ancestry proportions. This personal allele
frequency is a weighted average of the allele frequencies across popula-
tions. In vector notation it’s the dot product of Qi and Pl :

Personal Allele Freq(i, l) = qi,1 pl,1 + qi,2 pl,2 + · · ·
= Qi · Pl (3.3)

Then the genotype probabilities for the admixture model are like those in
Equation 3.1 but using the personal allele frequency instead of pk,l

372. In
the basic model we assume that we can treat the information from each
SNP independently 373.

Estimating P. So far we’ve been assuming that P and Q are known. How
can we estimate these?

One standard approach is to start with labeled samples – for example,
samples of individuals like the YRI (Yoruba) or BEB (Bengali) from the
1000 Genomes Project [Link]. If we are willing to assume these are repre-
sentative of “true” populations then we can use them to estimate population-
specific allele frequencies:

Figure 3.11: Estimating allele frequencies.
If we have labeled population samples then we
can estimate population frequencies simply from
the column averages of the genotype data (di-
viding by 2 for allele frequencies rather than
genotypes). Here p̂1,l is the estimated frequency
in population 1 at SNP l.

As a technical point, people often add so-called pseudocounts to the
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allele counts data to avoid frequency estimates of zero as these can cause
problems in the downstream analysis; see 374.

Estimating Q: Ancestry Estimation. Next, if we have allele frequency
estimates P for reference populations, we can estimate ancestry of new
unknown individuals.

Suppose that I tell you somebody’s genotype Gi. How can you infer their
ancestry (starting with the no-admixture model)? We can estimate their
ancestry using a method called Bayes’ Rule of conditional probability 375.

If all possible source populations are equally likely, then the probability
that the individual comes from population k is simply proportional to the
probability of observing their genotype in population k: d

d The most probable source for the
individual is whichever population makes
their observed genotype most likely.

Pr(individual i from population k) =
Pr(Gi|k)

∑K
j=1 Pr(Gi|j)

(3.4)

The numerator is the likelihood of observing their genotype in popula-
tion k, while the denominator is a sum of the likelihoods over all popu-
lations 1 to K. Remember that Equation 3.2 shows how to compute this
likelihood.

Here’s how this works in a toy example assuming we know P: Figure 3.12: Population assignment of a
single individual. Here Gi shows the genotype
for an individual at 5 SNPs and P shows the
allele frequencies for each SNP in two different
populations.
The rows at the bottom show likelihood calcula-
tions assuming either k=1 or 2 (Eqs 3.1, 3.2).
The likelihood of any specific genotype is always
small, but the key point is that Population 1 has
much higher likelihood than Population 2.
The calculation to the right gives the posterior
probability this individual is from Population 1
(Eq. 3.4).

The admixture model is conceptually similar: we simply find the ances-
try vector Qi that maximizes the individual’s genotype data Gi given the
population allele frequencies (but the math is a bit more complicated) 376.

Genetic clustering: the Structure/Admixture model. Assignment tests
like this are fine if you’re willing to assume that you know how to define
the relevant populations in advance: for example based on sampling loca-
tion, self-defined group, or language.

But how would we know that pre-defined populations actually reflect
underlying structure in a sensible way? To address this limitation, a pa-
per from 2000 by Pritchard, Stephens, and Donnelly asked if we can infer
structure directly from the genotype matrix G e 377 e This type of approach has been used

widely for studying the population structure
of humans and other species. The original
algorithm, named Structure, is too slow for
genome-scale data and modern applications
use a faster method called Admixture.

Given the genotype matrix G we want to estimate both the allele frequencies, P
and ancestry of individuals, Q.

Some intuition. Where does the information come from to allow us to
identify populations? One way to think about this is that within populations
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we can expect alleles to be independent: that is, individual SNPs should be in
Hardy-Weinberg proportions, and unlinked SNPs should not be in LD.

But if we have a collection of individuals with different ancestries, this
creates correlations between the genotypes even at unlinked SNPs. Here’s
the hypothetical example I showed earlier. Notice how the coloring helps
us to explain the correlation structure across SNPs:

Figure 3.13: Inference of structure in a toy
example with K = 2 and no admixture.
Populations 1 and 2 are colored in red and blue
respectively.
The Q matrix shows population assignments for
each individual (the columns show fraction of
ancestry in each population).
The P matrix shows possible (true) allele fre-
quencies that could produce the observed data
(the rows show allele frequencies for each popula-
tion). You may like to suggest allele frequencies
for SNPs 4–10 as an exercise.

Of course in practice, we can’t infer the relevant populations by eye. We
won’t go into the algorithms in full detail, but the overall goal is to find
estimates of P and Q that maximize the likelihood of the genotype data
G. Roughly speaking, you can think of the Structure algorithm as search-
ing for a partition of individuals into K populations (with admixture)
that minimize Hardy-Weinberg and linkage disequilibrium within
populations.

In short, the approach is to start from a random guess about Q and then
iterate toward the true estimates roughly as follows:

• Initialization: Set the ancestry for each individual, Qi, at random
(typically from a uniform distribution).

• repeat
{

– Update P given Q: For each SNP, update the allele frequency
estimates according to the allele counts in each population.

– Update Q given P: For each individual, update their ancestry
estimate Qi given the allele frequencies.

} until converged.

Somewhat magically, this type of algorithm converges to sensible solu-
tions for P and Q. In Structure this is implemented as a fully Bayesian
model using Markov chain Monte Carlo; Admixture frames it as a maxi-
mum likelihood problem and performs optimization using an Expectation-
Maximization algorithm.

One last challenging question is how to choose the number of clusters
(K). As in the grocery store example at the beginning of the chapter, in-
creasing K usually corresponds to adding increasingly finer subdivisions,
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and there is usually not a single “best” choice of K 378. Instead, different
values of K reveal different aspects of the structure, as we’ll see below.

Structure in practice. The first large-scale application of the Structure
algorithm was by Rosenberg, Pritchard, and others in 2002

379, using a
worldwide sample of 51 populations from the Human Genome Diversity
Panel (HGDP) 380. The plot below is from an updated version of this data
set published by Jun Li and colleagues in 2008

381.

In this plot, each cluster (population) is given a different color. Each in-
dividual is represented as a thin vertical line, and the colors indicate pro-
portional membership in each of the 5 clusters:

Figure 3.14: Structure/Admixture plot of human populations. This study collected genome-wide SNP data from 931 indi-
viduals representing 51 indigenous human groups, listed at bottom. The data were fit under a version of the Structure/Admixture
model, assuming K = 5. The sampling labels were not used in the analysis. Credit: Figure 1A from Jun Li et al (2008). [Link] Used with permission.

Perhaps the most striking feature of the clustering results is that the main
genetic clusters in this analysis correspond roughly to continental group-
ings. This occurs despite the fact that the clustering algorithm did not use
population labels or geographic information.

Secondly, you’ll notice that some groups are mixtures of different clusters:
especially in the Middle East populations where there is a Middle East-
ern component (brown), but also variable amounts of ancestry from Eu-
rope (green), Central/South Asia (blue) and Sub-Saharan Africa (red)
382. These signals reflect the location of the Middle East as a geographic
crossroads that has experienced extensive immigration from each of these
other regions during the past few thousand years 383.

Similarly, the Uygurs, a Turkic population of northwest China, appear as
a mixture of multiple components including East Asian, Central Asian,
and European, reflecting their geographic and historical position as a
crossroads between these regions.

In certain other cases, there is highly variable ancestry within a population
sample: for example individuals in the Maya group (from Mexico) carry
varying amounts of admixture, mainly from Europeans, likely reflecting
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historical Spanish migration into Central America.

Finer-scale structure: Northeast Africa. This type of analysis also reveals
much finer-scale structure within regions of the world. For example, the
analysis below by Nina Hollfelder and colleagues 384 focuses on struc-
ture within Northeast Africa, and how it relates to geographically nearby
groups. As hinted at by the global analysis above, we see that this region
shows highly complex patterns of structure and mixing:

                     
               

   

Figure 3.15: Admixture analysis of northeast Africa and nearby populations. Populations are indicated along
the bottom, grouped by region. The rows show clustering results for different values of K, the number of assumed clus-
ters. Notice that different values of K emphasize different aspects of the structure in the data visualization.
Credit: Modified from Figure 2 of Nina Hollfelder et al (2017) [Link] CC-BY-4. See the original paper for additional values of K, and more interpretation.

At K = 4 the genotypes are modeled as varying mixtures of three main
components: a European/Middle Eastern cluster (green); a West African
Bantu cluster (orange) and a North African Nilotic cluster (blue) 385.

But at K = 10 the seemingly simple structure from K = 4 is broken down
into a variety of subgroups: for example splitting the green cluster into
European (green) and Middle Eastern clusters (brown); adding a light
purple cluster to describe East African ancestry found in the Ethiopian
populations as well as to lesser extents in the Sudanese and the Maa-
sai (Kenya); and a pink cluster most associated with the Ari and Gumuz
populations of Ethiopia.

I can’t do justice to the complex history and structure of North African
populations here, but you can read more about this topic here: 386 f

f We’ll see another application of Admixture
in Chapter 3.3, applied to populations in
sub-Saharan Africa.

.

Comments. As you can see from these examples, structure is usually both
highly complex, and hierarchically nested. Structure that may seem relatively
simple in the global analysis is revealed to contain additional structur-
ing within groups with more extensive local sampling of diverse ethnic
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groups.

Moreover, in this example we see almost every population shows extensive
admixture between clusters, reflecting the dynamic history of the region.
Admixture is a ubiquitous process in human populations, and we’ll talk
more about it in the next chapter.

Genetic clustering: PCA. A second major approach uses Principal
Components Analysis (PCA). PCA is widely used in data science as a
technique for linear dimension reduction in high-dimensional data 387.

Most relevant to us, PCA has become another hugely important tech-
nique for studying population structure in genetic data, sometimes re-
vealing different aspects of the data than Structure/Admixture g. g PCA is widely used in association studies

(GWAS) as a tool for removing confounding
effects of population structure (Chapter 4.5).As above, we start with a genotype matrix G, with I rows and L columns

(individuals x loci). One way to think of G is that it represents each indi-
vidual’s genotype as a point in L-dimensional space. Since L, the number
of SNPs, is extremely large, this is not directly useful for visualizing data.

PCA is an example of a technique for dimensionality reduction, which means
that it “projects” the data into a “low-dimensional” approximation of the
data that is far more useful for interpretation. In short, PCA tries to pre-
dict the genotype matrix G as a product of two much smaller matrices h

h A note on Greek letters: Λ is the upper
case Greek letter lambda; E is the upper-case
epsilon.

:
the “loadings” matrix Λ and the “factors” matrix F.

In this model the expected value for a single genotype (the red dot in G,
below) is predicted by the product of a row in Λ times a column in F. We
can visualize this here:

Figure 3.16: PCA is a low-dimensional ma-
trix factorization of the genotype data: it
estimates two low-rank matrices, Λ and F to
predict G as accurately as possible. The errors
in predicting G are contained in the matrix E ;
these are similar to residuals in regression. The
loadings matrix contains the ancestry of each
individual; this is what is shown in PCA plots.
Credit: Redrawn from Figure 1 of Barbara Engelhardt and Matthew

Stephens (2010) [Link]

Mathematically, the first PC is chosen to explain as much of the variance
in G as possible; each subsequent PC is chosen to explain as much of the
remaining variance that has not already been captured by earlier PCs. As
we’ll discuss in the upcoming box, there’s a strong mathematical connection
between PCA and the Structure model, if you think of Λ as serving the role of Q,
and F being like P; meanwhile the PCA representation is mathematically
more flexible (for better or worse, depending on context).

PCA provides a powerful tool for visualizing and modeling data. We’re
usually most interested in the individual loadings, Λ, which reflect the
ancestries of individuals. People often plot just the first two dimensions
of this, known as principal components or PCs.

As one example, in what may be the single most famous data visualiza-
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tion in human genetics, John Novembre and colleagues showed a remark-
able correspondence between geography and the PCA projection of Euro-
pean individuals. Novembre et al performed PCA on genome-wide SNP
data for 1387 European individuals.

They plotted each individual into a 2-dimensional scatterplot based on
their loadings in the first two PCs (i.e., the first two columns of the load-
ings matrix Λ). When each point was colored according to the country
of origin of their grandparents, the data showed a remarkable correspon-
dence between the position of individuals in the PC coordinate space,
and the geography of the populations in Europe:

Figure 3.17: Genes mirror geography
within Europe (2008). The plot shows the
PCA projection of 1387 European individuals.
Each two-letter code shows the projection of a
single individual, and the circled letters show the
average projections of individuals from the cor-
responding country. The map in the upper-right
gives the two-letter country codes. After slightly
rotating the PCA axes, the PCA projection re-
flects the geographic positions of countries to a
remarkable degree, with only minor distortions.
Credit: Figure 1A from John Novembre et al (2008). [Link] Used with

permission.

You may wonder why the population structure of Europe is so regular. In
theory, this kind of PCA pattern can result from stable population struc-
ture with short-range migration and drift 388. But in Europe, the lead PCs
arise because modern Europeans are derived from varying mixtures of
three different ancestral populations who spread into Europe from differ-
ent directions: Western Hunter Gatherers, who dominated Europe 10,000

years ago; Anatolian farmers who spread into Europe from modern-day
Turkey around 8000 years ago; and herders who spread from the Russian
steppes around 5000 years ago 389. We’ll revisit this in Chapter 3.4.

Optional details: PCA, and its relationship to Structure.

As above, with Structure, we start with a genotype matrix G, with I rows and L columns (individu-
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als x loci). For PCA it’s conventional to center and rescale the data to make a new genotype matrix G∗

where each entry g∗i,l is calculated as

g∗i,l =
gil − 2pl√
2pl(1 − pl)

, (3.5)

where pl is the allele frequency for SNP l in the sample. The numerator of this expression (gil − 2pl)
centers the genotypes so that every SNP has a mean of 0. The denominator (

√
2pl(1 − pl)) rescales the

data so that every SNP has variance ≈ 1. This effectively upweights rare SNPs so that every SNP con-
tributes equally to the PCA 390.

PCA provides a low-dimensional projection of the individuals into K dimensions. For data visualization,
K is usually chosen as 2, but people regularly use 10 or more PCs as covariates to control for structure
in GWAS analyses (Chapter 4.5). In matrix notation, we can write the PCA projection as predicting the
genotype matrix G∗ as a linear combination of two much smaller matrices 391:

E(G∗) = ΛF (3.6)

where the loadings matrix Λ is an n × K matrix, and the factors matrix F is K × L. Equivalently, we
can write this in terms of the expected genotype for a single SNP in a single individual:

E(g∗i,l) =
K

∑
k=1

λi,k fk,l (3.7)

where λi,k and fk,l are elements of the Λ and F matrices. The meaning of the expectation here is that
we predict the expected genotype matrix as well as possible given the individual ancestries (i.e., Λ) and
the allele frequency shifts for each population (i.e., F).

How are Λ and F chosen? I won’t go into the linear algebra here, but the key idea is that to get the first
principal component, we solve for the first column of Λ and row of F that minimize the squared er-
ror in predicting G∗. The second principal component then fits the “residual” error that is left behind
after removing the first principal component: i.e., it minimizes the squared error in G∗−Λ.,1F1,.. And
so on, for subsequent PCs 392.

Relationship between PCA and Structure. At first glance, PCA and Structure seem like very differ-
ent models 393. However, both algorithms essentially aim to estimate the allele frequencies in an indi-
vidual as a linear combination of K factors that reflect individual ancestry × population allele frequencies.
In the case of PCA we can rearrange Equation 3.7 to show that each individual genotype gil is predicted
as

E(gi,l) = 2pl + c
K

∑
k=1

λi,k fk,l (3.8)

where c is
√

2pl(1 − pl).

Meanwhile, in the Structure model, we can think of each individual i as having a “personal” expected
allele frequency ril at SNP l that depends on their ancestry vector Qi and the population allele frequen-
cies Pl :

ri,l =
K

∑
k=1

qi,k pk,l . (3.9)

191



Here, qi,k takes the place of the loading λi,k while pk,l takes the role of the factor fk,l . In Structure, the
individual’s genotype at this SNP is a binomial sample of two alleles given ri,l :

gi,l = Binomial(2, ri,l) (3.10)

However, there are important differences between the two models. Compared to PCA, Structure is mo-
tivated by an explicit genetic model, and hence the ancestry components q are non-negative and add
to 1 for each individual, while the allele frequencies p are required to be in [0, 1]. In contrast, in PCA,
both the λs and the f s are typically centered around 0 and can take on any real value. Since PCA min-
imizes total squared error, it also makes an implicit assumption that the squared errors (gi,l −E[gi,l ])

2

should be weighted equally across all SNPs. Unlike in Structure, the PCA factors are constructed to
be orthogonal to one another.

These specific differences between the algorithms, including the difference in how λ versus q are rep-
resented, often give rise to visualizations that may be more or less appealing for one or other method.
I find that PCA is usually easier to interpret for geographic structure at local scales, especially when
it is fairly continuous, as in the European example. However, for more complex structure, with mean-
ingful loadings on more than two dimensions, the standard PCA plots quickly become overplotted and
hard to interpret. For this reason, Structure/Admixture plots provide better visualization for compli-
cated structure with many distinct clusters as in the examples above.

So far we have been treating SNPs as independent. But we can poten-
tially gain a different type of information by looking at haplotype sharing
between individuals.

Haplotype-based clustering. When we use SNPs for clustering, we rely
on genetic drift to produce allele frequency differences between groups.
However, drift occurs very slowly in large populations, and allele fre-
quencies in closely related populations are extremely similar. But with
haplotype sharing, we may be able to identify pairs of individuals with
recent shared ancestors. Those pairs of individuals are more likely to
come from the same, or closely related, populations. Clustering approaches
that use this kind of information can often identify structure at remarkably re-
cent, and local, timescales.

One version of this, known as fineSTRUCTURE 394, starts from the Li and
Stephens copying algorithm that we covered in Chapter 2.3, in the context
of phasing and imputation. Other recent approaches have used sharing
of IBD (identity-by-descent) segments 395 and sharing of recent coalescent
events in an ancestral recombination graph 396 i

i For an ARG-based approach to this see
Chapter 3.3..

Recall that the Li and Stephens algorithm models each genome as a
copying path from a panel of other individuals. The key concept for
fineSTRUCTURE is that an individual should be more likely to copy
from individuals in the same, or closely related populations, than from
distantly related populations:
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Figure 3.18: The fineSTRUCTURE copying
process. In each example, a test chromosome
is modeled as a copying path through a panel of
other haplotypes. Individuals from the same pop-
ulation (red, blue, and green) tend to copy from
the same rows (as indicated at left). fineSTRUC-
TURE clusters individuals based on whom they
copy. (In practice, individuals are diploid, so each individual actually

makes two copying paths.)

fineSTRUCTURE starts by estimating a matrix of copying rates between
all pairs of individuals in the sample. It uses that matrix to cluster indi-
viduals into groups that share similar copying rates. Critically, in a large
sample, copying often takes place from individuals who are genetically
related within the last few tens of generations, and this provides power
to detect clusters of individuals with very recent shared ancestry.

Stephen Leslie and colleagues used this approach to study population
structure in Britain and Northern Ireland 397. The authors genotyped
2, 039 British individuals, sampled on the basis that all four grandpar-
ents were born close together. PCA and conventional Structure provide
only limited resolution in this data set.

FineSTRUCTURE clustered the individuals into 17 groups. These show
a remarkable agreement with geography, often identifying structure at
extraordinarily fine geographic scales:

Figure 3.19: Fine structure of Britain and
Northern Ireland. 2, 039 individuals were
clustered into 17 groups using fineSTRUC-
TURE. Each data point indicates the geographic
sampling location, and the symbols indicate
the assigned cluster. The bars at left and right
indicate labels assigned to each based on their
geographic distribution. Credit: Figure 1 from Stephen Leslie

et al (2015). [Link] Used with permission.
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For example in the southwest corner of England, the algorithm identifies
distinct clusters from the neighboring counties of Cornwall and Devon,
each of which is only about 50 miles across.

Even the clusters that are geographically dispersed in the plot above are
likely informative. For example, two clusters that are shared between
Northern Ireland and Scotland (in yellow and lime) likely reflect exten-
sive historical migration in both directions, including the Ulster Scots mi-
gration to Ireland in the 17th Century, and the Great Famine migration
from Ireland back to Scotland in the 19th Century.

We can expect that similarly high resolution estimates of genetic ancestry
will be attainable in many parts of the world, as high-density data are
increasingly available.

In summary, it’s interesting to contemplate the advances in resolution in studies
of population genetic structure since the early work from the 1990s, using ∼100
SNPs to identify continent-level clustering, to present day studies at or below
the scale of countries or even counties.

In the last sections of this chapter we step back a little to consider what cluster-
ing does, and doesn’t, tell us about ancestry and race.

Population clusters and their interpretation. Clustering techniques are
important because they play a central role in how we understand human
variation and human history, and are an essential tool for data analysis in
genome-wide association studies. And yet it’s also important to under-
stand what these models don’t teach us 398.

• First: What do the population clusters represent? One way to think
about this is in terms of an individual’s ancestors. Remember that each
of our genomes is made up of many segments of DNA, inherited from
many different ancestors. Going backward in time, you can think about
these ancestors as occupying a distribution across geographic space or
populations.

Perhaps counterintuitively, there’s a strong mathematical argument that
we all share pedigree ancestors within the past few thousand years 399.
Even when we look at individuals from different clusters – even from
different continents – they all share many ancestors.

Instead clustering works on something much more subtle: individuals who
are genetically similar – for example, the two blue individuals below – have sim-
ilar distributions of ancestors across space and time, while both differ from
the red individual. But if we go back a bit further in time, to the two up-
per time-slices, all three individuals have very similar distributions of
ancestors in space:
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Figure 3.20: You can think of genetically
similar individuals as having similar
geographic distributions of ancestors. The
cartoon shows the geographic distributions of an-
cestors for three individuals. Each slice shows the
locations of ancestors at a single point in time.
Individuals who cluster together have similar
geographic distributions of ancestors.

So, even though we all share many ancestors, a helpful way to think about
clustering is that individuals who cluster together tend to have similar distribu-
tions of ancestors at each point in time.

Different methods implicitly reflect distributions of ancestors at different
time-scales. Notably, fineSTRUCTURE and other haplotype-based meth-
ods can achieve high geographic resolution because they are designed to
detect similarity of ancestors at the most recent timescales.

• Second, while clustering techniques do clearly identify real signals of
structure in the data – e.g., consider the PCA of Europeans – it’s impor-
tant to be aware that the precise results are often sensitive to the numbers
of samples, precisely which samples are included, and the details of the
analysis 400.

In large part this is because true population structure is usually complex,
including both continuous variation and hierarchical levels of structure at
different geographic scales, and potentially non-random mating accord-
ing to ethnicity, religion, or social group. Clustering methods generally
capture the major axes of variation within this complex reality, so small
changes in the sample composition can change which aspects of the structure are
emphasized by the main PCs or population clusters.

B.

A.

PC1

PC2

Present-day PCA

Prehistoric genomes

projected into

present-day PCA

Figure 3.21: PCA of genomes from Europe
and the Middle East. A. PCA projection of
present-day samples; color code in inset map.
B. Prehistoric samples (5,000-12,000 years ago)
projected into the same PCA space (shown in
gray). Present-day genomes are mixtures of
ancient populations that no longer exist. Credit:

Unpublished figure kindly contributed by Clemens Weiß, CC BY 4.

• Third, clusters are not necessarily stable over historical time as popu-
lation movements, splitting, and merging are constant forces in human
evolution. For example, I mentioned above that the genomes of mod-
ern Europeans are mixtures of at least 3 distinct ancestral groups (west-
ern hunter gatherers, Anatolian farmers, and herders from the Russian
steppes) 401. For this reason, many inhabitants of Europe prior to the
Steppe admixture do not cluster especially closely to any modern day
populations. What we might describe in modern samples as “European
ancestry” did not exist in anything like the current form until just 5,000

years ago.

This complex genetic history of Europe was largely invisible to us until
the application of ancient DNA techniques starting around 2010. Simi-
lar complexities have emerged almost everywhere that ancient DNA is available.
Thus, we should think of population clusters as relating only to the pop-
ulation structure detectable in the available samples.
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• Last, human genetics doesn’t occur in isolation from the rest of society,
and there’s an important concern that our concepts can be misinterpreted
by nonscientists. In particular, the use of clusters may encourage patterns
of typological thinking: i.e., the incorrect notion that humans fall into a
limited set of distinct forms or types j 402. j This topic relates to cultural concepts of

race, which we discuss next.
Moreover, the clustering techniques we use may sometimes exaggerate
the homogeneity within groups, and the differences between them. A
compelling essay by Graham Coop argues that we should move away
from a focus on ancestry groups to focusing on genetic similarity 403.

Coop proposes that one should say, for example: ’ “Graham is genetically
similar to the GBR 1000 genome samples (on the first 10 principal components)”
rather than “Graham has Northwestern European genetic ancestry” ’ 404. He
notes that while statements about similarity may seem awkward, they
side-step the limitations of clumping all humans into a finite number of
discrete groups (and their mixtures). For additional nuanced discussion
about when ‘similarity’ or ‘ancestry’ may be most appropriate see 405.

Race and ancestry. So far we have talked at length about population
structure and genetic ancestry. We close this chapter by touching on the
complicated relationship between ancestry and popular conceptions of
race as used in cultural settings. Race categories are socially constructed
labels that group people based on features such as ancestral origins, cul-
ture, and often physical characteristics such as skin pigmentation and
hair type. Conceptions of race and ethnicity vary among countries, and
can change through time, but generally have some imprecise relationship
with the concept of ancestry.

The term race is not easily defined, but ‘race’ is usually thought of as re-
lating to ancestral origins and physical characteristics. In the US, current
conceptions of race include categories such as Black/ African American,
White and Asian k. The term ethnicity is also used in the US as another k A sobering look at how the US Census has

categorized Americans since 1790 can be
found at the Pew Research Center: [Link].

categorization alongside race: these categories usually include a cultural
component: for example, Latino/ Hispanic, which identify people from
Latin America or Spanish-speaking countries, respectively. Brazil – an-
other country with diverse ancestry – classifies people somewhat differ-
ently, and the official census includes categories of branco (white), pardo
(brown or mixed), preto (black), amarelo (yellow/ East Asian), and indige-
nous. (Brazilians living in the US might self-identify for census purposes
as both Latino and a race category.)

A common source of confusion is that race/ethnicity categories usually
overlap–though imperfectly–with genetically-inferred ancestry categories.
For example, as we will discuss in the next chapter, most African Amer-
icans have mixed west African and European ancestry, albeit in varying
proportions. Latinos often have mixed ancestry including potentially var-
ious native American groups, European, and west African, though the
proportions vary greatly across individuals.
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Which is more relevant: race, or ancestry? l In genetics research and l For a deeper dive into this topic I recom-
mend the National Academies Report on
Population Descriptors [Link], including
especially Chapter 5 and Table 5.1.

clinical genetics (and for the purpose of this book), the concept of ances-
try is more precise and, usually, more relevant than race. I’ll give three
examples. First, in genome-wide association mapping, genetic ancestry
can act as a confounding variable, and may lead to biased effect-size esti-
mates and spurious signals if not controlled for within the analysis (we’ll
cover this topic in a later chapter). Second, a completely different issue
arises in clinical genetics, where it is common to screen patients for rare
variants in known disease-causing genes, as such variants may underlie
the disease. A standard filter would be to ignore variants that are found
at appreciable frequencies in healthy control samples; this kind of filter is
less useful if we don’t have enough control samples of similar ancestry to
the patient. Third, for studies of human population genetics, it’s usually
more useful to focus on genetic ancestry.

But for many other situations in research and healthcare, race/ ethnic-
ity may actually be more relevant than ancestry. For example, social cate-
gories of race/ethnicity often correlate with many aspects of lived
experience such as culture, the neighborhoods people live in, resourcing
of public schools, health-care access, and experiences of discrimination.
All of these factors affect health outcomes, and all are likely more related
to social perceptions of race than to genetically-measured ancestry. Thus,
race can serve as a label that correlates with important, but hard to mea-
sure, environmental aspects of environment. When using measures of
race in research, however, is important to avoid the facile assumption that
racial differences – for example in health and disease – are mainly due to
genetic differences between ancestries. There is a common tendency in
society, and even among some geneticists, to over-emphasize the role of
genetics, and under-emphasize the role of systemic environmental effects
406.

In this chapter we have discussed methods for studying contemporary population
structure and recent admixture. In the next chapter we’ll expand on the theme of
admixture between populations.
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