
3.2 Population structure: II. More about admixture

People often conceptualize human populations as static, homogeneous groups,
perhaps with recent mixing in the age of modern travel.

But genetics teaches us that population mixing – known as admixture – is ubiq-
uitous. Evidence of population mixing, both ancient and recent, has been found
practically everywhere that scientists have looked for it. Here we explore theory
and methods for studying admixture.

Figure 3.23: Moai sculpture from Rapa Nui
(Easter Island) in eastern Polynesia. Later in
this chapter we discuss how admixture analysis
sheds light on the peopling of Rapa Nui. Credit:

Aurbina, [Link] Public Domain.

Recent population admixture. I’ve emphasized that populations have
been continually splitting and merging throughout human evolution.
These population mergers are known as admixture events – referring to
the sudden mixing of distinct genetic groups.

The concept of admixture is closely related to migration, but in population
genetics ‘migration’ usually refers to low levels of gene flow continuously
over many generations as opposed to abrupt mixing events 407.

Many populations in the world are recently admixed (within the last
∼100–1000 years, say). For example, in the US, many individuals who
identify as Native American have recent ancestry from both Native Amer-
ican and European groups; Hispanics often have recent Native American,
European, and occasionally African ancestry; and most African Ameri-
cans have both recent African and European ancestry 408.

Meanwhile, most populations are also products of deeper admixture.
For example, ancient DNA tells us that what we might think of as a rel-
atively homogeneous group, modern Europeans, are actually a mixture
of at least three highly divergent human groups that no longer exist, plus
admixture from Neanderthals.

Figure 3.24: Examples of genetically-documented admixture events. The flow chart shows an assortment of
major admixture events from the past 20 KY of human history. Credit: Figure 2 from Joseph Pickrell and David Reich (2014) [Link].

Models of Admixture. To understand admixture, let’s start with a sim-
ple scenario: Two populations mix in a single mixing event t generations
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in the past. We write the initial mixing proportions as w from popula-
tion 1 and 1 − w from population 2. We assume that mating occurs at
random with respect to ancestry, and that chromosomal blocks are selec-
tively neutral 409 a

a Notice the analogy between w and q: we
use w for mixing proportions of populations
and, as before, q for the ancestry proportions
of individuals.

.

In the first generation after the mixing, each chromosome comes entirely
from one population or the other; but over time recombination breaks the
chromosome segments into smaller and smaller ancestry blocks:

Figure 3.25: A basic admixture model. The
cartoon shows ancestry patterns in a popula-
tion after admixture, for a single chromosome in
many individuals. As the chromosomes recom-
bine with one another, the ancestral blocks get
smaller over time.

You can think of the genome of a person in generation t as stitching to-
gether blocks of chromosomes from different ancestors who lived at the
time of the initial mixture event. Whenever successive blocks come from
ancestors with different ancestries (one red, and one blue), this results in
an ancestry switch 410.

How large are these unrecombined blocks at generation t? In each gener-
ation, recombination events occur at a rate of 1 per Morgan, by definition
b b Recall that Morgans are a measure of

recombination distance (Chapter 2.3).
Recombination distances are usually
reported in centiMorgans (cM); 1 cM
contains an expected 0.01 recombination
events per generation.

. So after t generations, we get on average t recombination events per
Morgan, and the average size of the blocks is 1/t Morgans (or equiva-
lently 100/t cM). For example, after t = 10 generations, the average block
size is 10 cM, a bit less than 10 megabases.

Lastly, how does this relate to the Structure/Admixture model of the last
chapter, in which we treated each SNP independently? It turns out that
if we mainly care about estimating genome-wide ancestry fractions (Q),
it’s ok to ignore the details of the ancestry blocks. This is because in a
genome-wide SNP set, we’ll find about the right fraction of SNPs in blue
blocks versus red blocks so we still get an unbiased estimate of Q 411. But
as we’ll see, by using a more detailed model, we can learn a great deal
about the admixture process itself.

Admixture in African Americans. One of the most studied examples of
recent admixture is among African Americans. During the 18th and 19th
Centuries, as a result of the transatlantic slave trade, there was extensive
gene flow from European slave owners into the African American popu-
lation.

Typical African American individuals carry around 20% European ances-
try in a series of blocks of ∼10–15 MB. You can see this illustrated in the

199



left-hand panel below, where the blue blocks represent chunks of Euro-
pean ancestry within a single African American genome:

Figure 3.26: Admixture in African Amer-
ican individuals. A. Inferred ancestry blocks
in a single African American individual. The
colored segments on each chromosome show es-
timated ancestry of each of the two homologs.
Phasing between blocks is generally unknown.
B. Distribution of African ancestry in a sample
of individuals from the MESA cohort. Average
African ancestry in this cohort is 79%. Credit:

Unpublished figure kindly contributed by Roshni Patel, CC BY 4
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The highest rates of admixture into the African American population
occurred in the early-to-mid 1800s, roughly 6 generations before the
present 412. This means that the average size of European blocks is about
100/6 ≈ 17cM (or roughly 13 MB) c. c In terms of our model, w, representing

African ancestry, is 0.8, and t is 6.
One last point is that the human genetics literature usually discusses ad-
mixture with a certain detachment, but it’s important to consider that
most of the European admixture component in African Americans re-
flects the genetic legacy of slave ownership 413 414. It’s been estimated
that the pedigree of a typical African American individual contains around
50 distinct European ancestors 415.

Methods for detecting and measuring admixture. In the remainder
of this chapter, we’ll discuss three main types of methods for studying
admixture. We’ll end with two examples involving admixture in Native
Americans and in Polynesia, respectively, and revisit these ideas with hu-
man archaic admixture in Chapter 3.4 d: d Some of the upcoming methods are quite

specialized for admixture studies and if you
prefer you can skip to the examples.• Chromosome painting: detection of admixture blocks, as shown in

the African American example above. Works best when the blocks
are very large and/or the population allele frequencies are quite
diverged;

• Decay of admixture LD: measurement of the genome-wide effect of
admixture on LD. Powerful for dating admixture events;

• Covariance of allele frequencies: robust detection of admixture
events can be powerful even for subtle signals.

Chromosome Painting. How can we infer ancestry blocks in admixed
individuals, as in Panel A above? This process is known as chromosome
painting and is used for many applications in recently admixed popula-
tions 416.
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To formalize this, consider the admixture process for one chromosome
in a single admixed individual. We denote this individual’s genome-
wide ancestry as q1 from population 1, and q2 from population 2 (where
q1 + q2 = 1). I’m going to assume that we can treat each of the two
homologs in an individual one-at-a-time. (In practice we usually don’t
know the haplotype phase of SNPs – i.e., which SNP alleles come from
which homolog at large chromosomal distances – so in data analysis we
need to extend the algorithm to deal with this phase uncertainty.)

We introduce a vector, Z, where each element zl is either 1 or 2, to indi-
cate which population this homolog is from at SNP l. As we scan along
the chromosome, Z forms a sequence with occasional switches corre-
sponding to ancestral recombination events: for example, the z values
might be

1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2. (3.11)

We model Z using a probability model known as a Markov chain that
tells us what to expect for z at SNP l + 1, given z at SNP l. Specifically,
we assume that the ancestry of the first SNP on the chromosome, z1, is a
random draw from this individual’s ancestry proportions:

Pr(z1 = 1) = q1 (3.12)

Pr(z1 = 2) = q2 (3.13)

We then define the transition probabilities. Let rl be the recombination
distance in Morgans between SNP l and l + 1. Then the expected number
of recombination events between the two SNPs in the last t generations is
rlt. The probability of having zero recombination events in this interval
–i.e., that the two SNPs come from the same ancestral block – is e−rl t. We
compute the transition probabilities as follows:

Probability of no recombination = e−rl t; (3.14)

in that case, zl+1 = zl

Probability of at least 1 recombination = 1 − e−rl t; (3.15)

then with probability q1, zl+1 = 1, and otherwise 2.

Importantly, notice that when there is a recombination event (Equation
3.15), this does not mean that the ancestry necessarily switches. Instead,
the next block is a random draw depending on the individual’s ancestry.
For an individual with high ancestry in one population (like most African
Americans), most block changes do not result in an ancestry switch.

Of course we can’t observe Z directly, but the genotype data depend on
Z. Whenever a chromosome chunk comes from population 1 the allele
frequencies in that block reflect frequencies in population 1, and other-
wise they reflect population 2. This means that we can infer which parts
of the chromosome come from each population, but of course we cannot
detect block changes that did not also result in an ancestry switch.

This model lends itself to a statistical algorithm for chromosome painting
called a Hidden Markov Model (HMM), that decodes the ancestry along
each chromosome 417 418.
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Admixture creates LD at different scales. The presence of these ances-
try blocks has important implications for one of our old friends: linkage
disequilibrium (LD). Recall from Chapter 2.3 that LD refers to correla-
tions between the genotypes at different SNPs.

When I introduced LD, I discussed how it can be generated by the fact
that nearby sites tend to share much of the same coalescent genealogy
(i.e., the ancestral recombination graph), going back over hundreds of
thousands of years. It’s important to be aware that population structure
also generates LD, but at much larger genetic distances, and it decays
much faster with time.

It’s helpful to conceptualize LD in admixed populations at three different
length scales 419:

• Background LD (up to ∼100 Kb): This is the type of LD that is
found within populations due to the structure of coalescent ge-
nealogies (Chapter 2.3). The length-scale depends on the relative
rate of recombination to coalescence (4Nr).

• Admixture LD (up to multi-Mb): As we discussed above, genomes
of admixed individuals consist of blocks of ancestry from one par-
ent population or the other. When the parent populations have dif-
ferent allele frequencies, this creates correlations between SNPs in
the same block. This type of LD depends on the size of ancestry
blocks (which have a mean size of 100/t cM) and can be detectable
over background LD for tens of generations.

• Mixture LD (Genomewide): When different individuals in the pop-
ulation have different ancestry (i.e., different q) this creates LD even
between unlinked SNPs. This is the kind of signal used by Structure
and PCA, and it decays very rapidly – at rate of (1/2)t – becoming
undetectable within a few generations of random mating.

The decay of admixture LD provides an important quantitative signal
that we can use to date admixture events, as follows.

Optional details: The decay of Admixture LD. Recall that the most basic measure of LD is denoted
D. If we have two SNPs with alleles A, a at the first SNP, and B, b at the second SNP, then D is com-
puted pAB − pA pB, where pAB is the frequency of the AB haplotype, and pA and pB are the frequen-
cies of A, and of B, separately. If genotypes at the two SNPs are independent, then D = 0.

We extend the notation to look at what happens to D following an admixture event. As before, pop-
ulations 1 and 2 mix together in proportions w and 1−w. We denote D in the two parental popula-
tions as D1 and D2, respectively, and D(0)

m denotes D in generation 0 in the mixed population. D1 and
D2 reflect any background LD prior to population mixing.

The first key result 420 is that, immediately following admixture, initial LD in the admixed population
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is:

D(0)
m = wD1 + (1 − w)D2︸ ︷︷ ︸

Background LD

+ w(1 − w)δAδB︸ ︷︷ ︸
Mixture/Admixture LD

(3.16)

where δA is the allele frequency difference for allele A between the two populations: δA = p1,A − p2,A;
and similarly δB measures the frequency differences at the other SNP. The background LD term rep-
resents LD that is present in the initial populations, and is only relevant for SNPs that are extremely
close. The mixture/admixture LD term measures LD that is created by mixing together individuals with
different allele frequencies genomewide.

Next, consider pairs of SNPs that are further apart than the typical scale of background LD: let’s say
more than about 100 kb. Then D1=D2= 0. Recall from Chapter 2.3 that if the two SNPs are separated
by a recombination distance r, then recombination will reduce the admixture LD Dm at a rate (1− r)
per generation. If the SNPs are very far apart, or even unlinked, then r ∼ 0.5, and D(t)

m decays to zero
within a few generations of random mating.

But if the SNPs are within a few centiMorgans in the genome, LD is maintained for tens of generations
– hundreds or even thousands of years. We can predict the decay of admixture LD as follows. After
t generations we have:

D(t)
m = (1 − r)t

[
w(1 − w)δAδB

]
︸ ︷︷ ︸

Admixture LD

. (3.17)

Rearranging, we see that

D(t)
m

δAδB
= (1 − r)t × w(1 − w) (3.18)

To fit this model to data, we can consider all pairs of SNPs in the genome that are separated by some
recombination distance r. The intercept at r = 0 is an estimate of w(1−w) and allows us to estimate
the initial mixing proportions, and the decay rate is a function of the mixture time t. For more on these
methods see 421. We’ll show an application next.

This theory of admixture LD can be used to estimate the date of admix-
ture events, provided that we know the allele frequencies in the parental
populations.

One example of this considers the genetic impact of the so-called Bantu
expansion in Africa. It’s long been hypothesized, based on linguistic
data, that a group of populations known as Bantu Speaking Peoples ex-
panded south and west out of Cameroon starting around 3000 years ago.
Genetic evidence confirms this expansion, showing that it created a wave
of admixture with local populations, as Bantu-ancestry populations spread
south and east across most of sub-Saharan Africa 422 e. e You can read more about African genetic

history in the next chapter.
The example below comes from work by Joe Pickrell and colleagues 423

studying the genetic structure of the distinctive Khoisan populations of
southern and eastern Africa. Pickrell et al showed that all of these popu-
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lations carry Bantu admixture, to varying degrees.

The plot below shows the decay of admixture LD as a function of recom-
bination distance in a Khoisan population, the Jul’hoan (black dots).

Figure 3.27: Admixture LD in a southern
African population. The plot shows the decay
of admixture LD in Jul’hoan as a function of re-
combination distance (black dots). The grey data
show a negative control: testing for admixture
from Jul’hoan into Bantu. The plotted values are computed

using a function similar to the left-hand side of Equation 3.18, averaged

over many pairs of SNPs at similar recombination distances; the data use

allele frequencies from Khoisan and Bantu as the two donor populations.

Credit: Figure 2a from Joseph Pickrell et al 2012. CC BY-NC-SA 3.0.

As you can see, admixture LD in the Jul’hoan extends to about 5 cM (i.e,
around 6 MB) – far beyond the typical range of background LD f f One way to think about this signal is that

if an individual carries an allele that is more
common in Bantu at one SNP, then they are
more likely to carry a Bantu allele at a
nearby SNP; this correlation decays over
about 5 cM, a lengthscale that reflects the
date of admixture.

. The
rate of decay of admixture LD reflects the timing of admixture: the data
show that w=6% of Jul’hoan ancestry comes from Bantu admixture
about 35 generations (or 1000 years) ago.

We’ll see another example of this technique in Chapter 3.4 where it’s
used to date the admixture of humans and Neanderthals (Figure 3.86).

Ancient admixture, allele frequency covariances, and F statistics. The
last important class of methods focuses on allele frequencies instead of
LD. The key idea is that if a population carries ancestry from multiple
sources then, immediately after admixture, its allele frequencies are a
weighted average of the source populations:

Figure 3.28: Expected allele frequency in an
admixed population is simply a weighted av-
erage of the frequencies in the source populations.
Here, w and 1 − w are the mixing proportions.

For a recent admixture event, we can estimate the allele frequencies in the
source populations and use those to estimate w. For example we could
use this to estimate the amount of Bantu admixture in the example above.

But if admixture took place further back in time, then it gets more com-
plicated because the population frequencies are changing through drift
and we don’t know the allele frequencies of the parental populations at
the time of admixture. As usual, we’ll need a model to understand this
g

g This model extends the Nicholson-
Donnelly model of drift from Chapter 2.4 to
trees of populations.

424.

As the first building block for a model, we consider a variant with
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frequency p0 in an ancestral population, and frequency p1 in a modern
population. Recall that for a neutral allele, the expected change in fre-
quency down each branch is zero:

E[p1 − p0] = 0 (3.19)

and the expected squared change in frequency (i.e., the variance) is

E[(p1 − p0)
2] ≈ T

2Ne
p0(1 − p0) (3.20)

where T is the elapsed time and Ne is the effective population size 425.

Noting that the mean squared change in frequency (left-hand side of
Equation 3.20) down a branch is proportional to the elapsed time T, we’ll
refer to the mean squared change as a branch length 426.

Figure 3.29: Genetic drift from an ancestral
frequency p0. The cartoon shows the distribu-
tion of p1 given p0. The variance of p1 is propor-
tional to the elapsed time divided by population
size; we use the variance as a measure of branch
length.

Next, how does this look if we have multiple populations related by a
population tree? A key implication of our model is that drift along dif-
ferent branches is independent 427 428:

Figure 3.30: Drift is independent along dif-
ferent branches, implying that the covariance
of p1 and p2 is 0.

Notice that the quantity E[(p1 − p0)(p2 − p0] measures the covariance of
frequencies between populations 1 and 2, so in this tree we expect zero
covariance between these two populations.

What about for populations that share a branch? Using the assumption
that drift is independent along each branch we can show the following:

Figure 3.31: Covariance along shared
branches.

As you can see, the drift from root to tip is given by the sum of the branch
lengths: for example a + b for population 1. And the covariance for two
populations is given by the sum of the shared branch-length: namely a in
the case of populations 1 and 2 together.

We can use these simple rules to compute variance-covariance matrices
for any bifurcating tree. For example:
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Figure 3.32: Variance-covariance matrix for
a simple tree. The entries in the matrix show
the expected values of the product of the row
labels times column labels:
e.g., E[(p1 − p0)(p2 − p0)] = a.

In short, we calculate expected values of the form E[(pi − p0)(pj − p0)] as the
sum of the branches shared between i and j. This simple calculation rule
extends directly to larger trees as well.

What about admixture? The tree below shows a similar relationship among
the populations, but with an admixture event contributing a fraction w of
the ancestry to Population 3:

Figure 3.33: A simple admixture graph. The
way to interpret this is that a fraction of w of the
ancestry in population 3 comes via the left-hand
branch, and 1 − w from the right-hand branch.

The red admixture arrow effectively creates alternative paths that alle-
les can take: an allele observed in Population 3 may have come down
the left-hand branch (with probability w) or down the right-hand branch
(with probability 1 − w). If we consider someone from Population 3, dif-
ferent parts of their genome come from a mixture of two different trees,
like this:

Figure 3.34: The admixture graph above can
be viewed as a weighted mixture of these
two trees. Different parts of an individual’s
genome can follow one or other graph, with prob-
abilities w and 1 − w, respectively.

Now the covariances are a weighted sum of the covariances in these two
different trees:
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Figure 3.35: Covariance matrix for the ad-
mixture graph above. Entries in red reflect the
admixture event and entries in black do not.
Note: c1 + c2 is written as c to match the previous matrix.

and the variances are weighted sums of variances 429. Notice how the ad-
mixture graph results in a more complicated covariance structure than
the tree without admixture. In particular, there is no model without admix-
ture that could provide a good fit to these data.

Now that we have developed some theory, how can we use it to detect
admixture in data?

One important approach known as the F statistics was developed by
Nick Patterson, David Reich, and colleagues 430 h. We focus here on one h We’ll cover a related concept, D statis-

tics, when we get to archaic admixture in
Chapter 3.4.

of the F statistics, F4, which is defined in terms of the allele frequencies in
four populations at a time:

F4(Pop1, Pop2; Pop3, Pop4) = E[(p1 − p2)(p3 − p4)] (3.21)

where Pop1...Pop4 represent four population samples, p1...p4 are the cor-
responding sample allele frequencies, and where the expectation is taken
over all SNPs 431 432.

The key idea here is that if Pop1 + Pop2 form an independent clade from
Pop3 + Pop4 then the drift is independent in the two clades (Panels A
and B below). This means that F4 should be zero. But if there’s gene flow
between clades then F4 ̸= 0 regardless of how we label the populations
(Panel C) 433:

Figure 3.36: Examples of F4 tests. The ex-
pected value of F4(1, 2; 3, 4) is given by the over-
lap of the path from Pop1 → Pop2 with the path
from Pop3 → Pop4. Panels A and B show ex-
amples for trees without admixture, for different
permutations of the populations in the F test.
In both cases, one of the permutations results in
F4 = 0. In Panel C, Pop2 is formed by admix-
ture of ancestors of Pop1 and Pop3. No F4 test
equals zero.

We may not know in advance which populations might be most closely
related, in which case we can compute F4 while permuting the labels of
Pop1, Pop2, Pop3, and Pop4. If none of the permutations have F4 = 0 this
implies that there is no simple unadmixed tree for the four populations. Hence,
F4 provides a formal test for whether four populations can be fit by a simple tree.
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F-tests have been used widely to test for admixture among populations,
and show that past admixture among human populations is virtually
ubiquitous: in well-powered data sets it is usually difficult to find pop-
ulations that do not show evidence for past admixture 434.

Admixture graphs. While F tests provide a powerful framework for de-
tecting admixture in up to four populations at a time, we often want to
understand the relationships among larger groups of populations. We
can represent these relationships using so-called admixture graphs. These
graphs represent the process of both splits and admixture in the history
of a set of populations.

Figure 3.37: Gratuitous image of a knight
fighting a snail. A great mystery of medieval
books is that the margins were often decorated
with unrelated images of knights battling snails!
Nobody knows why – but I like to think they
were simply to add humor to dense sections of
text. Credit: [Link], from the Gorleston Psalter, England, 1310-1324,

British Library MS 49622, f. 193v.

One main approach to estimating admixture graphs is to search for graphs
that satisfy the F test results for all combinations of populations (imple-
mented by Admixtools and Mixmapper 435). A second approach is to es-
timate graphs directly from the sample covariance matrix of population
allele frequencies (implemented by TreeMix and AdmixtureBayes 436 437).

One example using a global set of populations is shown below. The left-
hand panel shows a traditional branching tree of population relation-
ships; however this is a poor fit to the data as many population sets fail
F tests. The right-hand-panel adds additional admixture events, shown
by dashed lines. For example the graph shows North Asian populations
as a mixture of East Asian ancestry and a component related to the an-
cestors of Native South Americans (Surui and Karitiana). Middle East-
ern/North African populations are modeled as a mixture of West African
(Mandenka and Yoruba) and European ancestry 438.

Figure 3.38: Estimated admixture graph of
human populations. A. Traditional neighbor-
joining tree of 30 human populations. B. Admix-
ture graph estimated using the tool Mixmapper.
Dashed lines represent admixture events. Figure 4

from Mark Lipson et al (2013) [Link] CC-BY-NC

F tests as a ‘tracer dye’ for ancient population movements. F tests are a
powerful tool for studying ancient admixture and gene flow. Even small
amounts of ancestry inherited from a divergent population can leave a
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signal in the allele frequency data tens of thousands of years later. David
Reich has likened the signals of divergent alleles to tracer dyes, explaining
that they are “like the heavy metals injected into patient’s veins in hospitals to
track the paths of their blood vessels in an MRI scan” 439.

Figure 3.39: Migration path of early native
Americans through Beringia. The ice sheets
blocked southward migrations until ∼16 KYA.
Paleo-American sites at Clovis and Folsom date
to ∼13 KYA. Credit: Roblespepe [Link] CC BY-SA 3.0.

One striking application where these have been used is to understand
the peopling of the Americas 440. Native Americans descend from one
or more migration events through a region called Beringia that connects
Eastern Siberia to present-day Alaska. Siberia and Alaska are now sepa-
rated by a narrow strip of water called the Bering Straits, but during the
last Ice Age, when sea levels were lower, Beringia formed a land bridge
between the two continents.

When the first Americans reached Beringia, they were initially blocked
from spreading southward by large ice sheets. As the ice receded, around
16,000 years ago, humans spread rapidly to colonize the north and south
American continents 441.

While many details of this story remain hotly debated, we’ll address one
question here: Who were the source population(s) for the first Americans?

It was long assumed that native Americans descend from the ancestors
of modern Siberians and other east Asians. This seems intuitive based
on geography. It’s also supported by the traditional tree of populations
shows above in Panel A of Figure 3.38 – the two south American popu-
lations (Surui and Karitiana at the top) are closest to the northeast Asian
populations, including the Yakut from Siberia.

Figure 3.40: Known range of Ancient North
Eurasians, who lived ∼20–30 KYA, and con-
tributed ancestry to both native Americans and
Europeans. Credit: [Link] [Link] CC BY SA 4.0.

But Panel B of Figure 3.38 shows something very surprising: an addi-
tional admixture branch from the ancestors of Europeans. This connec-
tion between Native Americans and Europeans has shown up in several
different analyses. How should we understand this?

Figure 3.41: Paleolithic engraving of
mammoth on ivory, by Ancient North
Eurasians, Mal’ta, Siberia. Credit: José-Manuel Benito

[Link] Public Domain.

The observation was largely enigmatic until the 2014 sequencing of
ancient DNA from remains of a boy who lived 24,000 years ago in south-
central Siberia 442. This boy’s genome (known as Mal’ta-1 or MA-1) is
a representative of an early Siberian population that we now call the
Ancient North Eurasians. Remarkably, genetic data show that Ancient
North Eurasians (or related populations) contributed ancestry to both
modern Europeans and native Americans!

But that wasn’t the end of the surprises. The next year, in 2015, Pontus
Skoglund and colleagues 443 reported a result that is perhaps even harder
to make sense of: some indigenous populations from the Amazon share a small
but statistically significant amount of allele frequency covariance with present-
day Australasians, including native Australians, Papuans, and Andaman
Islanders!

Here’s a simplified admixture graph that represents our current under-
standing of the sources of native American populations:
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Figure 3.42: Admixture model for the ori-
gin of native American populations. Red
lines indicate admixture edges, with weights
given as percentages. Redrawn based on Figure 2 of Skoglund

et al (2015) [Link] and Figure 3 of Araújo Castro e Silva et al (2021)

[Link].

Note: The model was fitted using specific pop-
ulations or samples including Mbuti (central
African), MA1 (ANE), Pima (north American),
Mixe (central American), Surui and Karitiana
(south American), Han (east Asian), and Onge
Andaman Islanders (Australasian).
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The affinity with Australasians remains highly enigmatic. The shared
ancestry is unrelated to Polynesians, arguing against a migration event
across the Pacific to south America. The signal is not found in other na-
tive American populations. The signal shows a rapid decay of LD, indi-
cating that it is an ancient event (though it has not been dated precisely).

In thinking how to interpret this, it’s helpful to remember the lesson of
the European affinity to native Americans: it’s not that Europeans them-
selves are ancestors of native Americans, but that both Europeans and
native Americans carry a tracer dye of Ancestral North Eurasian ancestry.

Together these points suggest the existence of an unknown source pop-
ulation that contributed both to gene flow through Beringia, as well as
dispersing southward to contribute to Australasian populations. The mi-
gration of this unknown ancestry through Beringia may have been mixed
with other first Americans, but it must have been a separate event from
the main dispersal that gave rise to north and central American popula-
tions, given that this signal is only found in the Amazon.

As you can see, the “tracer dye” of DNA has presented us with both in-
sight and puzzles about the deep relationships among human groups.
Hopefully these puzzles will be resolved in future with additional an-
cient DNA samples!

We close the chapter with an example where admixture analysis has re-
solved another long-standing question in anthropology.

Case study of admixture: Native American and European admixture in
Polynesia. Our last example comes from a study of more-recent admix-
ture, in Pacific Islanders.

Polynesia is a vast region of the central and south Pacific comprising
more than a thousand remote islands. Polynesia was settled by seafarers
who spread eastward across the sea from south-east Asia and Melanesia
over a period of several thousand years, reaching eastern Polynesia by
about 1000 years ago. This general model is supported both by archaeo-
logical and linguistic evidence as well as genetic similarity between the
Polynesians and populations in Oceania 444.

Figure 3.43: Islands of the central and
south Pacific. Easter Island (Rapa Nui) is
located in eastern Polynesia, 4,300 miles east
of New Zealand and 2,100 miles west of Chile.
Credit: Kahuroa [Link]. Public Domain.
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Although the main ancestry in Polynesia is from Oceania, there has long
been debate about whether there may also have been prehistoric con-
tact between eastern Polynesia and native central or south Americans.
One line of evidence for early contact is the presence of south American
crops including sweet potato in Polynesia, but it has also been argued
that sweet potato may have spread independently of humans 445.

Figure 3.44: Ancestor figure from Rapa Nui.
Crafted in wood, bird bone, obsidian. Credit: [Link]

Public Domain.

Moreover, the ocean distance between Polynesia and south America would
have been extremely daunting for early sea travelers: the eastern-most is-
land in Polynesia is Rapa Nui, also known as Easter Island, located some
2, 100 miles from the west coast of South America. In 1947, the Norwe-
gian explorer Thor Heyerdahl famously navigated a hand-built balsa
wood raft from Peru to eastern Polynesia to argue for the plausibility of
south American migration into Polynesia, but claims of a link between
prehistoric Americans and Polynesia have remained highly controversial.

But this is a question that should be resolvable using the techniques of
this chapter. In 2020, a group led by Alex Ioannidis and colleagues col-
lected genome-wide SNP data from 807 Polynesians representing 17 is-
land populations, and compared these to data from Pacific coast native
Americans and Europeans 446.

As expected, many of the islands had signals of European admixture
following post-colonial contact. But, much more remarkably, the study
also found compelling evidence for a small but clear genetic contribution
from native Americans! This is illustrated here:
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A. Chromosome painting of a Rapa Nui individual B. Size-distributions of ancestry blocks in Rapa Nui

Polynesian

European
Native 
American

Unpublished plots provided by Alex I, April 2024
Figure 3.45: Admixture blocks in Rapa Nui (Easter Island). A. Chromosome painting for a single Rapa Nui indi-
vidual who is approximately 50% Polynesian (blue) and 50% European (red). Short blocks of Native American ancestry
(green) are embedded within the Polynesian segments. B. Ancestry block (tract)-length distributions. The plot shows total
numbers of ancestry blocks at each size, summed across 64 Rapa Nui individuals.
Credit: Unpublished images kindly provided by Alex Ioannidis, CC BY 4. Original study: [Link].

Panel A illustrates the results of chromosome painting 447 in a typical in-
dividual from Rapa Nui, where they had the largest sample size. Notice
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the Native American ancestry blocks in green, embedded in a genome
that is otherwise mainly of mixed Polynesian and European ancestry.

Panel B shows the overall size distribution of blocks within the popula-
tion. As you can see, the Native American ancestry blocks are generally
much shorter than the European and Polynesian ancestry blocks, indi-
cating that they date to an earlier admixture event: the authors estimate
20 generations for Native American, compared to 6 generations for Euro-
peans. The authors found their best-fitting source for the Native Amer-
ican ancestry was in northern South America–most likely a population
related to modern-day Colombians i. i Notice that the large ancestry blocks in

Rapa Nui (∼10 cM) show that Native
American admixture was quite recent, in
contrast to the Australasian gene-flow into
South Americans where admixture LD is
very short (∼0.2 cM), showing that
admixture event was ancient.

The study found evidence for earlier native American admixture into
other Polynesian populations; the earliest date estimate is 1150 AD on
the island of South Marquesas. These earlier dates roughly coincide with
the time that Polynesians were completing their spread to the farthest
reaches of Polynesia, making it possible that some islands may even have
had American habitation before Polynesians arrived 448.

This story shows another example of the fantastic power of DNA to act
as a tracer dye for past events in human history, both recent and ancient
– in this case resolving a question that anthropologists had argued about
for nearly a century.

In the last two chapters we have discussed methods for studying contemporary
population structure and admixture. In the next two chapters we’ll outline the
huge advances in using population genetics to study the deeper relationships
among human populations.
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