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A central goal of genetics is to understand the links between genetic variation and disease. Intui-
tively, one might expect disease-causing variants to cluster into key pathways that drive disease
etiology. But for complex traits, association signals tend to be spread across most of the
genome—including near many genes without an obvious connection to disease. We propose
that gene regulatory networks are sufficiently interconnected such that all genes expressed in dis-
ease-relevant cells are liable to affect the functions of core disease-related genes and that most
heritability can be explained by effects on genes outside core pathways.We refer to this hypothesis
as an ‘‘omnigenic’’ model.
The longest-standing question in genetics is to understand how

genetic variation contributes to phenotypic variation. In the early

1900s, there was fierce debate between the Mendelians—who

were inspired by Mendel’s work on pea genetics and focused

on discrete, monogenic phenotypes—and the biometricians,

who were interested in the inheritance of continuous traits

such as height. The biometricians believed that Mendelian ge-

netics could not explain the continuous distribution of variation

observed for many traits in humans and other species.

This debate was resolved in a seminal 1918 paper by R.A.

Fisher, who showed that, if many genes affect a trait, then the

random sampling of alleles at each gene produces a

continuous, normally distributed phenotype in the population

(Fisher, 1918). As the number of genes grows very large, the

contribution of each gene becomes correspondingly smaller,

leading in the limit to Fisher’s famous ‘‘infinitesimal model’’

(Barton et al., 2016).

Despite the success of the infinitesimal model in describing

inheritance patterns, especially in plant and animal breeding,

it was unclear throughout the 20th century how many genes

would actually be important for driving complex traits. Indeed,

human geneticists expected that even complex traits would be

driven by a handful of moderate-effect loci—thus giving rise to

large numbers of mapping studies that were, in retrospect,

greatly underpowered. For example, an elegant 1999 analysis

of allele sharing in autistic siblings concluded from the lack of

significant hits that there must be ‘‘a large number of loci

(perhaps R15).’’ This prediction was strikingly high at the

time but seems quaintly low now (Risch et al., 1999; Weiner

et al., 2016).

Since around 2006, the advent of genome-wide association

studies, and more recently exome sequencing, has provided

the first detailed understanding of the genetic basis of complex

traits. One of the early surprises of the GWAS era was that, for
typical traits, even the most important loci in the genome have

small effect sizes and that, together, the significant hits only

explain a modest fraction of the predicted genetic variance.

This has been referred to as the mystery of the ‘‘missing herita-

bility’’ (Manolio et al., 2009). The mystery has since been largely

resolved by analyses showing that common single-nucleotide

polymorphisms (SNPs) with effect sizes well below genome-

wide statistical significance account for most of the ‘‘missing

heritability’’ of many traits (Yang et al., 2010; Shi et al., 2016).

Rare variants with larger effect sizes also contribute genetic vari-

ance (Marouli et al., 2017), especially for diseases with major

fitness consequences (Simons et al., 2014) such as autism and

schizophrenia (De Rubeis et al., 2014; Fromer et al., 2014; Purcell

et al., 2014).

A second surprise was that, in contrast to Mendelian dis-

eases—which are largely caused by protein-coding changes

(Botstein and Risch, 2003)—complex traits are mainly driven

by noncoding variants that presumably affect gene regulation

(Pickrell, 2014; Welter et al., 2014; Li et al., 2016). Indeed,

many studies have shown that significant variants are highly

enriched in regions of active chromatin such as promoters and

enhancers in relevant cell types. For example, risk variants for

autoimmune diseases show particular enrichment in active chro-

matin regions of immune cells (Maurano et al.; 2012; Farh et al.,

2015; Kundaje et al., 2015).

These observations are generally interpreted in a paradigm in

which complex disease is driven by an accumulation of weak

effects on the key genes and regulatory pathways that drive

disease risk (Furlong, 2013; Chakravarti and Turner, 2016).

This model has motivated many studies that aim to dissect

the functional impacts of individual disease-associated variants

(Smemo et al., 2014; Sekar et al., 2016) or to aggregate hits to

identify key disease pathways and processes (Califano et al.,

2012; Jostins et al., 2012; Wood et al., 2014; Krumm et al.,
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Figure 1. Genome-wide Signals of Association with Height
(A) Genome-wide inflation of small p values from the GWAS for height, with particular enrichment among expression quantitative trait loci and single-nucleotide
polymorphisms (SNPs) in active chromatin (H3K27ac).
(B) Estimated fraction of SNPs associated with non-zero effects on height (Stephens, 2017) as a function of linkage disequilibrium score (i.e., the effective number
of SNPs tagged by each SNP; Bulik-Sullivan et al., 2015b). Each dot represents a bin of 1% of all SNPs, sorted by LD score. Overall, we estimate that 62% of all
SNPs are associated with a non-zero effect on height. The best-fit line estimates that 3.8% of SNPs have causal effects.
(C) Estimated mean effect size for SNPs, sorted by GIANT p value with the direction (sign) of effect ascertained by GIANT. Replication effect sizes were estimated
using data from the Health and Retirement Study (HRS). The points show averages of 1,000 consecutive SNPS in the p-value-sorted list. The effect size on the
median SNP in the genome is about 10% of that for genome-wide significant hits.
2015). For several diseases, the leading hits have indeed

helped to highlight specific molecular processes—for example,

uncovering the role of autophagy in Crohn’s disease (Jostins

et al., 2012), and roles for adipocyte thermogenesis (Claussnit-

zer et al., 2015) and central nervous system genes in obesity

(Locke et al., 2015).

But despite the success of these earlier studies, we argue that

the enrichment of signal in relevant genes is surprisingly weak

overall, suggesting that prevailing conceptual models for com-

plex diseases are incomplete. We highlight some pertinent fea-

tures of current data and discuss what these may tell us about

the genetic architecture of complex diseases.

Distribution of GWAS Signals across the Genome
Early practitioners of GWASwere dismayed to find that, for most

traits, the strongest genetic associations could explain only a

small fraction of the genetic variance (Manolio et al., 2009).

This was taken to imply that there must be many causal loci,

each with small effect sizes (Goldstein, 2009). Subsequent ana-

lyses soon provided direct evidence for this in the case of schizo-

phrenia (Purcell et al., 2009) and showed that, together, common

variants can explain much of the expected heritability (Yang

et al., 2010). While traits vary greatly in terms of both the impor-

tance of the largest-effect common variants and of higher-pene-

trance rare variants (Loh et al., 2015; Shi et al., 2016; Sullivan

et al., 2017), it is now clear that polygenic effects are important

across a wide variety of traits (Shi et al., 2016; Weiner

et al., 2016).

One key question that has been under-studied to date is the

extent to which causal variants are spread widely across the

genome or clumped into disease-relevant pathways. However,
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it is known that the heritability contributed by each chromosome

tends to be closely proportional to its physical length (Visscher

et al., 2006; Shi et al., 2016), hinting that causal variants may

be fairly uniformly distributed. And recent data show that causal

variants can be surprisingly dispersed even at finer scales. A pa-

per from Alkes Price and colleagues estimated that 71%–100%

of 1-MB windows in the genome contribute to heritability for

schizophrenia (Loh et al., 2015).

Here we explore a second example—namely, height—for

which very large GWAS datasets are available (Figure 1). While

height is often thought of as the quintessential polygenic trait,

recent work shows that the genetic architecture of height is actu-

ally broadly similar to that of a wide variety of other quantitative

traits and diseases ranging from diabetes or autoimmune dis-

eases to BMI or cholesterol levels. Thus, we use height to illus-

trate the extreme polygenicity typical of many complex traits

(Shi et al., 2016; Chakravarti and Turner, 2016).

A height meta-analysis from the GIANT study reported 697

genome-wide significant loci that, together, explain 16% of

the phenotypic variance (Wood et al., 2014). But a quantile-

quantile plot comparing the distribution of p values against

the expected null distribution shows that the distribution of p

values is hugely shifted toward small p values (Figure 1A),

such that common variants together explain 86% of the ex-

pected heritability (Shi et al., 2016). The inflation is stronger

in active chromatin and in expression quantitative trait loci

(eQTLs), consistent with the expected enrichment of signal

in gene-regulatory regions.

We next used ashR to analyze the distribution of regression

coefficients from the set of all SNPs (Stephens, 2017). ashR

models the GWAS results as a mixture of SNPs that have a



true effect size of exactly zero, with SNPs that have a true effect

size that is not zero. Using this approach, we estimated that,

remarkably, 62% of all common SNPs are associated with a

non-zero effect on height (this includes both causal SNPs as

well as nearby SNPs that are correlated through linkage disequi-

librium; Figure 1B). Given that the typical extent of linkage

disequilibrium (LD) is around 10–100 kb (International HapMap

Consortium, 2005), this implies that most 100-kb windows in

the genome include variants that affect height. Stratifying the

ashR analysis by the LD score for each SNP (Bulik-Sullivan

et al., 2015b), we see a clear effect that SNPs with more LD part-

ners are more likely to be associated with height. Under simpli-

fying assumptions (see Supplemental Information), the best-fit

curve suggests that�3.8% of 1000 Genomes SNPs have causal

effects on height.

As validation, we used the regression estimate from each

SNP in the height meta-analysis to predict its direction of ef-

fect on height (Figure 1C) and then examined the extent to

which SNP effects are consistent in a smaller, independent da-

taset from the Health and Retirement Study (Juster and Suz-

man, 1995). In brief, we computed the mean replication effect

sizes of height-increasing alleles as determined by GIANT. Un-

der the null hypothesis of no true signal, the replication effect

sizes would be centered on zero; when there is true signal,

the observed mean effect sizes can be considered a lower

bound on the true effect sizes due to occasional sign errors

in GIANT.

Strikingly, we find clear enrichment of shared directional

signal for most SNPs, even for SNPs with p values as large

as 0.5 (Figure 1C). Across all SNPs genome-wide, the median

SNP is associated with an effect size of 0.14 mm, which is

approximately one-tenth the median effect size of genome-

wide significant SNPs (1.43 mm). We also obtained similar re-

sults starting from a smaller family-based GWAS, confirming

that the signals are not driven by confounding from population

structure (Supplemental Information). Putting the various

lines of evidence together, we estimate that more than

100,000 SNPs exert independent causal effects on height,

similar to an early estimate of 93,000 causal variants based

on a different approach (Goldstein, 2009) (Supplemental Infor-

mation).

In summary, we conclude that there is an extremely large num-

ber of causal variants with tiny effect sizes on height and, more-

over, that these are spread very widely across the genome, such

that most 100-kb windows contribute to variance in height. More

generally, the heritability of complex traits and diseases is

spread broadly across the genome (Loh et al., 2015; Shi et al.,

2016), implying that a substantial fraction of all genes contribute

to variation in disease risk. These observations seem inconsis-

tent with the expectation that complex trait variants are primarily

in specific biologically relevant genes and pathways. To explore

this further, we turn next to data on functional enrichment of

signals.

Enrichment of Genetic Signals in Transcriptionally
Active Regions
As shown above for height, GWAS signals tend to be mark-

edly enriched in predicted gene regulatory elements. In partic-
ular, many groups have shown that disease-associated SNPs

are enriched in active chromatin and particularly in chromatin

that is active in cell types relevant to disease (Trynka et al.,

2013; Farh et al., 2015; Finucane et al., 2015; Kundaje et al.,

2015). Similarly, signals also aggregate near genes that

are expressed in relevant cell types (Hu et al., 2011; Wood

et al., 2014).

An intuitive interpretation is that the cell-type-based regula-

tory maps point us toward cell-type-specific regulatory ele-

ments that control specific functions of those cells and thereby

drive disease biology. Indeed, the relevant papers often

describe these analyses as highlighting ‘‘cell-type-specific’’ as-

pects of regulation. But given that the heritability signal is so

widespread, we wanted to understand whether the signal is

specifically concentrated in chromatin that is active in just the

relevant (or related) cell types, as opposed to chromatin that

is broadly active.

To explore this question, we used active chromatin data

measured in ten broadly defined cell-type groups (e.g., im-

mune, central nervous system (CNS), cardiovascular, etc.).

A region was considered active in a cell-type group if it was de-

tected as active for any cell type in that group. We applied

stratified LD score regression—a method that estimates how

much different classes of SNPs contribute to heritability (Finu-

cane et al., 2015). We focused on three well-powered GWAS

studies that showed clear enrichment within a single cell-type

group in a previous analysis: Crohn’s disease (immune), rheu-

matoid arthritis (RA, immune), and schizophrenia (CNS) (Finu-

cane et al., 2015).

While there are strong cell-type effects, these are largely inde-

pendent of the breadth of chromatin activity. For example, we

observed that SNPs in chromatin that is broadly active across

most cell types make substantial contributions to heritability.

On average, SNPs in broadly active elements contribute roughly

as much to heritability as do SNPs in cell-type-specific active

chromatin (only for RA are these significantly different;

Figure 2A). Meanwhile, SNPs in chromatin that is inactive or is

active only in irrelevant cell types contribute little or no heritabil-

ity, thus providing an important negative control.

For an alternative viewpoint, we also considered breadth of

gene expression. We estimated the contribution of SNPs in or

near exons for genes with different expression profiles. Based

on GTEx data, we identified genes that are particularly highly

expressed in particular tissue groups, as well as broadly ex-

pressed genes (GTEx Consortium, 2015). As shown for schizo-

phrenia (Figure 2B), SNPs near genes that are expressed in

the brain contribute substantially to heritability, while genes

that are specifically expressed in other tissues contribute little

or nothing. Perhaps intuitively, SNPs near genes expressed

specifically in brain contribute more heritability per SNP than

SNPs near genes with broad expression profiles. However,

only a modest fraction of all brain-expressed genes are specif-

ically upregulated in brain. Hence, broadly expressed genes

actually contribute more to the overall heritability than do

brain-specific genes.

In summary, genetic contribution to disease is heavily concen-

trated in regions that are transcribed or marked by active

chromatin in relevant tissues, but there is little enrichment for
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Figure 2. Heritability Tends to Be Enriched

in Regions that Are Transcriptionally Active

in Relevant Tissues
(A) Contributions to heritability (relative to random
SNPs) as a function of chromatin context. There is
enrichment for signal among SNPs that are in
chromatin active in the relevant tissue, regardless
of the overall tissue breadth of activity.
(B) Genes with brain-specific expression show the
strongest enrichment of schizophrenia signal (left),
but broadly expressed genes contribute more to
total heritability due to their greater number (right).
cell-type-specific regulatory elements versus broadly actively

regions. As expected, there appears to be little or no genetic

contribution from regions that are inactive in these tissues. To

investigate the question of GWAS specificity further, we next

examined evidence for enrichment of associated genes in spe-

cific functional categories.

Weak Enrichment of Genetic Signals by Functional
Categories
We considered the contributions of genes from different func-

tional ontologies. As expected, we found that the genetic

signals for the two autoimmune diseases (Crohn’s and RA)

were most enriched in ontologies corresponding to ‘‘immune

response’’ and ‘‘inflammatory response,’’ whereas schizo-

phrenia heritability was most enriched in nervous-system-

related genes with ontologies such as ‘‘ion channel activity’’
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and ‘‘calcium ion transport’’ (Figure 3).

However, these enrichments were rela-

tively modest, and for all three diseases,

we observed a strong linear relationship

between the sizes of the functional cate-

gories and the proportion of heritability

that they contributed. Broad functional

categories contribute more total trait her-

itability than do genes in apparently dis-

ease-relevant functional categories, and

for all three diseases, the largest contrib-

utor to heritability was simply the largest

category, namely protein binding.

Moreover, these results are markedly

different from analysis of rare variants

implicated in schizophrenia. Recent

studies of rare variants have consistently

found enrichment of synaptic genes and

other gene sets involved in neuronal func-

tions within de novo, rare, and CNV poly-

morphism sets (Table 1). In contrast, anal-

ysis of the 108 genome-wide significant

loci from GWAS found examples of hits in

relevant genes but no ontology categories

that were significant overall (Ripke et al.,

2014), consistent with the weak enrich-

ment described above for the heritability

analysis of the same data. Together, these

results suggest that the types of genes de-
tected in rare variant studies—whichcandetect highlydeleterious

variants with large effect sizes—play more direct roles in schizo-

phrenia than do genes identified from GWAS based on common

variants.

An Extended Model for Complex Traits
In summary, for a variety of traits, the largest-effect variants are

modestly enriched in specific genes or pathways that may play

direct roles in disease. However, the SNPs that contribute the

bulk of the heritability tend to be spread across the genome

and are not near genes with disease-specific functions. The

clearest pattern is that the association signal is broadly en-

riched in regions that are transcriptionally active or involved in

transcriptional regulation in disease-relevant cell types but ab-

sent from regions that are transcriptionally inactive in those cell

types. For typical traits, huge numbers of variants contribute to



Figure 3. Gene Ontology Enrichments for Three Diseases, with Categories of Particular Interest Labeled
The x axis indicates the fraction of SNPs in each category; the y axis shows the fraction of heritability assigned to each category as a fraction of the heritability
assigned to all SNPs. Note that the diagonal indicates the genome-wide average across all SNPs; most GO categories lie above the line due to the general
enrichment of signal in and around genes. Analysis by stratified LD score regression (Finucane et al., 2015).
heritability, in striking consistency with Fisher’s century-old

infinitesimal model.

To make sense of these observations, we propose an ‘‘omni-

genic’’ model of complex traits (Figure 4). First, we assume that

most traits can be directly affected by amodest number of genes

or gene pathways with specific roles in disease etiology, as well

as their direct regulators (Chakravarti and Turner, 2016).We refer

to these as ‘‘core genes.’’ Such genes will tend to have biologi-

cally interpretable roles in disease, such as the roles of IRX3 and

IRX5 in controlling adipocyte differentiation, with consequent ef-

fects on obesity (Claussnitzer et al., 2015), or the role of the C4

genes on synaptic pruning in development, thereby affecting

schizophrenia risk (Sekar et al., 2016). Furthermore, when core

genes are damaged by loss of function or other particularly

damaging mutations, we can anticipate that these will tend to

have the strongest effects on disease risk (although the actual

degree of increased risk conferred by the largest effect-size mu-

tations varies greatly across traits; Krumm et al., 2015; Marouli

et al., 2017). In practice, the sorting of core genes from peripheral

genesmay be on a graduated scale, as opposed to a binary clas-

sification.

Second, we need to understand why core genes generally

contribute just a small part of the total heritability and how

most genes expressed in relevant cell types could make non-

zero contributions to heritability. To resolve this, we propose

that cell regulatory networks are highly interconnected to the

extent that any expressed gene is likely to affect the regulation

or function of core genes.

At this time, our understanding of cellular regulatory networks

remains incomplete, but the relevant connections likely include

all layers of interactions among cellular molecules, including

transcriptional networks, post-translational modifications, pro-

tein-protein interactions, and intercellular signaling (Furlong,
2013). In particular cases, it has been possible to elucidate the

most important wiring connections in gene regulatory networks

that drive development or disease (Davidson, 2010; Chatterjee

et al., 2016). However, we still have very limited knowledge of

how weaker effects such as expression QTLs percolate through

the entire regulatory network. Nonetheless, research in network

theory finds that most real-world networks tend to be highly in-

terconnected; this is referred to as the ‘‘small world’’ property

of networks (Watts and Strogatz, 1998; Strogatz, 2001). Specif-

ically, many kinds of networks have structures consisting of

distinct modules of connected nodes but also frequent long-

range connections. Under these conditions, any two nodes in

the graph are usually connected by just a few steps.

If this is the case in cellular networks, then any gene that is ex-

pressed in a disease-relevant tissue is likely to be just a few steps

from one or more core genes. Consequently, any variant that af-

fects expression of a ‘‘peripheral’’ gene is likely to have non-zero

effects on regulation of the core genes and thereby incur a small

effect on disease risk. Crucially, because the total set of ex-

pressed genes may outnumber core genes by 100:1 or more,

the sum of small effects across peripheral genes can far exceed

the genetic contribution of variants directly affecting the core

genes themselves.

Our model posits that information flows from regulatory var-

iants, e.g., by affecting chromatin activity, to cis regulation of

nearby genes and ultimately to affect the activity of other

genes. cis-eQTLs (cis-acting expression quantitative trait

loci) may in turn affect mRNA or protein levels of other un-

linked genes via the regulatory network (i.e., the variants

would also be trans-acting eQTLs for genes elsewhere in the

genome) but might also affect other functions such as post-

translational modification or subcellular localization. At pre-

sent, detection of trans-QTLs is challenging in current sample
Cell 169, June 15, 2017 1181



Table 1. Summary of Gene Sets that Show Functional Enrichment in Recent Large-Scale Papers on Schizophrenia

Variant Type Gene Set/Ontology Enrichment P Value Reference

Rare ARC p = 1.6 3 10�3 Purcell et al. (2014)

voltage-gated calcium channel p = 1.9 3 10�3

de novo ARC p = 4.8 3 10�4 Fromer et al. (2014)

N-methyl-D-aspartate receptor (NMDAR) p = 2.5 3 10�2

CNV ARC p = 1.8 3 10�4 The Psychiatric Genetics Consortium (2016)

Synaptic gene p = 2.8 3 10�11

GWAS glutamatergic neurotransmission not significanta Ripke et al. (2014)

synaptic plasticity

Studies of rare and de novo variants and CNVs—which tend to identify larger-effect variants—show clearer evidence of enrichment than seen in

GWAS. The p values are shown without multiple testing correction, but corrected p values are <0.05.
aConsistent with studies of rare variants, Ripke et al. (2014) identified associated loci near several genes involved in glutamatergic neurotransmission

and synaptic plasticity, but these categories did not show a statistically significant enrichment for GWAS hits. ARC: activity-regulated cytoskeleton-

associated scaffold protein.
sizes (Westra et al., 2013; Jo et al., 2016), but it is estimated

that �70% of mRNA heritability is determined by trans-acting

factors (Price et al., 2011). Moreover, many trans-QTLs may

act through protein networks and thus may not be detectable

from RNA, though current data on trans-acting controls of pro-

teins are very limited (Battle et al., 2015; Chick et al., 2016;

Sun et al., 2017).

Lastly, many diseases are mediated through multiple cell

types—for example, different immune cell subsets for autoim-

mune disease or even unrelated tissues such as brain and adi-

pose tissue for obesity. Furthermore, although GWAS hits are

highly enriched in active chromatin, only a modest fraction can

currently be explained by known eQTLs (Chun et al., 2017). This

gap may imply that many risk variants affect expression only in

narrowly defined cell types or under precise conditions such as

immune stimulation (Alasoo et al., 2017). When disease risk is

mediated through multiple cell types or highly specialized cell

types, we anticipate that the cellular networks would vary across

cell types (Price et al., 2011; Sonawane et al., 2017). The quanti-

tative effect of any given variant would then be an average of its

effect size in each cell type, weighted by cell type importance.

In summary, the omnigenic model of complex disease pro-

poses that essentially any gene with regulatory variants in at

least one tissue that contributes to disease pathogenesis is likely

to have nontrivial effects on risk for that disease. Furthermore,

the relative effect sizes are such that, since core genes are

hugely outnumbered by peripheral genes, a large fraction of

the total genetic contribution to disease comes from peripheral

genes that do not play direct roles in disease.

Widespread Pleiotropy

There has recently been considerable interest in identifying

particular variants with pleiotropic effects on different traits (Cot-

sapas et al., 2011; Pickrell et al., 2016) as well as in identifying

pairs of traits with correlated genetic effects (Bulik-Sullivan

et al., 2015a). However, the observation that genetic signals

are spread broadly across the genome implies that pleiotropy

may be ubiquitous (Visscher and Yang, 2016).

Indeed, the omnigenic model predicts that virtually any variant

with regulatory effects in a given tissue is likely to have (weak) ef-

fects on all diseases that are modulated through that tissue.
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Many eQTLs are active in all tissues, and consequently these

may have weak effects on most or even all traits.

We refer to this form of pleiotropy as ‘‘network pleiotropy,’’ i.e.,

the principle that a single variant may affect multiple traits

because those traits are mediated through the same cell type(s)

and hence regulated through the same network(s)—and not

because the traits are directly causally related. Traits that share

core genes or whose genes are close in the network will tend to

have correlated effects. Conversely, traits that are mediated

through the same tissue but have no overlap of core genes

may show little or no correlation in effects even though many

causal variants are shared.

If network pleiotropy is widespread, this raises challenges

for the interpretation of genetic correlations and for Mendelian

Randomization studies (Bulik-Sullivan et al., 2015a; Davey Smith

and Hemani, 2014). Mendelian Randomization generally as-

sumes that pleiotropy between traits that are not causally

related—also referred to as ‘‘type I pleiotropy’’ (Wagner and

Zhang, 2011)—is rare. It remains to be determined whether the

effects of network pleiotropy would be strong enough to drive

significant signals in practice, especially if the core genes are

far apart in the network.

Evolutionary Change of Complex Traits

The observation that many traits are affected by huge numbers

of variants also has important implications for studies of evolu-

tionary change. Within the evolutionary community, there has

been great interest in identifying particular genetic variants that

are responsible for adaptive changes, both within and between

species (Vitti et al., 2013). While this work has produced a num-

ber of interesting examples, we argue that these are not likely to

be representative of most evolutionary change. Instead, most

adaptive changes may proceed by polygenic adaptation, i.e.,

species adapt by small allele frequency shifts of many causal

variants across the genome (Pritchard et al., 2010). For example,

if 105 variants affect height by 0.15 mm each, then even a small

shift in average allele frequencies could generate a large shift in

average height; e.g., a 0.5% genome-wide increase in the fre-

quency of ‘‘tall’’ alleles would generate a 15 cm shift in average

height. There is now a growing collection of examples of recent

polygenic adaptation in humans, especially for morphometric



Figure 4. An Omnigenic Model of Complex

Traits
(A) For any given disease phenotype, a limited
number of genes have direct effects on disease
risk. However, by the small world property of
networks, most expressed genes are only a few
steps from the nearest core gene and thus may
have non-zero effects on disease. Since core
genes only constitute a tiny fraction of all genes,
most heritability comes from genes with indirect
effects.
(B) Diseases are generally associated with
dysfunction of specific tissues; genetic variants
are only relevant if they perturb gene expression
(and hence network state) in those tissues. For
traits that are mediated through multiple cell
types or tissues, the overall effect size of any
given SNP would be a weighted average of its
effects in each cell type.
traits including height, BMI, and infant birth size (Turchin et al.,

2012; Field et al., 2016).

We anticipate that many of the more dramatic phenotypic dif-

ferences seen between species are also driven by an accumula-

tion of tiny effects and that larger-effect differences are likely to

be exceptions to the rule. For example, there are�40 million sin-

gle-nucleotide differences between humans and chimpanzees. If

1% of these affect chromatin function or other aspects of regu-

lation, then there could easily be a half-million differences be-

tween the two species with small but nonzero effects on pheno-

types (these need not all be adaptive), and these would likely

dominate the contributions of a handful of large-effect loci.

Turning to the within-species level, one important open ques-

tion is whether pleiotropic effects limit how many traits can be

selected for at once. As described above, pleiotropy is likely

ubiquitous in the genome. Thismay place constraints on the abil-

ity of selection to shift allele frequencies, as a change in the fre-

quency of one variant must be balanced by changes at other

sites. Does this effectively limit the number of independent poly-

genic traits that can be simultaneously selected? There has been

previous consideration of the extent to which pleiotropy shapes
variation and adaptation (Barton, 1990;

Walsh and Blows, 2009), but we believe

this area is ripe for further exploration in

the light of modern data.

Future Directions
Huge numbers of genes contribute to the

heritability for complex diseases. This

fact raises fundamental questions about

how genetic variation perturbs genetic

systems to produce phenotypes. We

have proposed one possible model, and

it will be important to test this and

perhaps others. There are deep chal-

lenges to fully understanding the impact

of very small effects in organismal sys-

tems, so we believe there is great need

to develop cell-based model systems

that can recapitulate aspects of complex
traits. Furthermore, we still have limited understanding of

cellular networks, and it will be important to develop highly pre-

cise, high-throughput techniques for mapping networks in

diverse cell types, especially at the protein level. We suggest

the following key questions and tests of the omnigenic model:

d For a variety of representative traits: How many distinct

variants and how many genes contribute causal variation?

What fraction of this variation is in non-core genes? Which

traits are closer to (or further from) the omnigenic extreme?

d Are there variants that affect expression in the cell types

that drive a particular disease but have no effect on disease

risk? While traits vary in terms of the importance of the

largest-effect variants, the strongest form of the omnigenic

model predicts that essentially all regulatory variants active

in relevant cell types would contribute non-zero effects.

d If most genetic variants act through cellular networks,

then what mediates these connections? Transcriptional

regulation, post-translational modification, protein-

protein interaction, and intercellular signaling may all

contribute. What is the nature and frequency of long-range
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interactions in cellular networks? How do network archi-

tectures vary across cell types and tissues?

d As we get increasingly precise measurements of the

percolation of genetic variation through cellular networks,

can we infer the effects of peripheral genes from their rela-

tion to core genes?

d Is the conceptual distinction between core genes and pe-

ripheral genes useful for understanding disease, and if so,

how should core genes be defined? One possible formal

definition is that, conditional on the genotype and expres-

sion levels of all core genes, the genotypes and expression

levels of peripheral genes no longer matter. Less formally,

we might think of core genes as the genes that (if mutated

or deleted) have the strongest effects, as seen for large-ef-

fect mutations in autism (Krumm et al., 2015). Or we might

think of core genes simply as the genes with interpretable

mechanistic links to disease. Alternatively, some diseases

may not even have core genes—instead, the global activity

of all genes might help to set cellular system states that

determine cellular function and disease risk (Preininger

et al., 2013).

Our model also raises questions about the next generation of

mapping studies. One goal of gene mapping is to identify core

genes and pathways that drive disease. These provide mecha-

nistic insights into disease biology and may suggest druggable

targets. The biggest hits from GWAS have helped to pinpoint

important core genes. After these have been found, the next

most promising step is to hunt for lower-frequency variants of

larger effects, which likely contribute little to heritability but

may implicate additional core genes. Deep sequencing has

not been uniformly successful for all traits (possibly due to

insufficient sample sizes; Marouli et al., 2017), but following

the identification of the biggest association hits among com-

mon variants, large-scale sequencing is the most promising

next step. In the short-term, exome sequencing is likely the

most cost-effective approach, given current evidence that

larger-effect variants are more likely to affect protein-coding

sequences.

Nonetheless, large-scale genotyping data will continue to be

valuable for two reasons. First, very deep association data will

be essential for developing personalized risk prediction. Second,

these data will be essential for modeling the flow of regulatory in-

formation through cellular networks. For a complete understand-

ing of disease genetics, we will want to know why increased

expression of gene X increases risk for diseases Y and Z. For

this, we will need to understand cellular networks much better

and to have estimates of disease risk in very large samples.

In summary, many complex traits are driven by enormously

large numbers of variants of small effects, potentially implicating

most regulatory variants that are active in disease-relevant tis-

sues. To explain these observations, we propose that disease

risk is largely driven by genes with no direct relevance to disease

and is propagated through regulatory networks to a much

smaller number of core genes with direct effects. If this model

is correct, then it implies that detailed mapping of cell-specific

regulatory networks will be an essential task for fully understand-

ing human disease biology.
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