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Inferring Relevant Cell Types for Complex Traits
by Using Single-Cell Gene Expression

Diego Calderon,1,* Anand Bhaskar,2,3 David A. Knowles,2,4 David Golan,5 Towfique Raj,6,7

Audrey Q. Fu,8,10 and Jonathan K. Pritchard2,3,9,10

Previous studies have prioritized trait-relevant cell types by looking for an enrichment of genome-wide association study (GWAS) signal

within functional regions. However, these studies are limited in cell resolution by the lack of functional annotations from difficult-to-

characterize or rare cell populations. Measurement of single-cell gene expression has become a popular method for characterizing novel

cell types, and yet limited work has linked single-cell RNA sequencing (RNA-seq) to phenotypes of interest. To address this deficiency, we

present RolyPoly, a regression-based polygenic model that can prioritize trait-relevant cell types and genes from GWAS summary statis-

tics and gene expression data. RolyPoly is designed to use expression data from either bulk tissue or single-cell RNA-seq. In this study, we

demonstrated RolyPoly’s accuracy through simulation and validated previously known tissue-trait associations. We discovered a signif-

icant association between microglia and late-onset Alzheimer disease and an association between schizophrenia and oligodendrocytes

and replicating fetal cortical cells. Additionally, RolyPoly computes a trait-relevance score for each gene to reflect the importance of

expression specific to a cell type. We found that differentially expressed genes in the prefrontal cortex of individuals with Alzheimer

disease were significantly enriched with genes ranked highly by RolyPoly gene scores. Overall, our method represents a powerful frame-

work for understanding the effect of common variants on cell types contributing to complex traits.
Introduction

Identifying the primary subset of cell types or states and

genes involved in complex traits is critical to the process

of developing mechanistic insights. For example, knowl-

edge that FTO (MIM: 610966) acts on IRX3 (MIM:

612985) and IRX5 (MIM: 606195) primarily in human

adipocyte progenitor cells enabled researchers to rigor-

ously define a novel thermogenesis pathway central for

lipid storage and obesity.1 And, focusing on distinct hu-

man human C4A (MIM: 120810) and C4B (MIM:

120820) isotypes, Sekar et al. highlighted the role of the

classical complement cascade (of which C4 genes are a crit-

ical component) and synapse elimination during develop-

ment in the brains of individuals with schizophrenia.2

In addition to estimating disease risk for individual var-

iants, genome-wide association studies (GWASs) have

proven useful for identifying trait-relevant cell types or tis-

sues. Assuming that variants affect phenotypes through

gene regulation, one can prioritize cell types for further

analysis with an enrichment of GWAS signal in cell-type-

specific functional genomic regions that affect gene regula-

tion. A series of studies have identified enrichment of

GWAS signal in sorted cell-type-specific3 or tissue-spe-

cific4 expression quantitative trait loci (eQTLs). Other

approaches (e.g., assay for transposase-accessible chro-

matin using sequencing [ATAC-seq], chromatin immuno-

precipitation sequencing [ChIP-seq], and RNA sequencing
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[RNA-seq]) have revealed an enrichment of GWAS signal

in cell-type-specific functional annotations.5–11 However,

these analyses are limited in cell-type resolution because

they either require samples with population variation

(which are infeasible to collect for many cell types) or

rely on functional assays that require thousands of cells

(which are challenging to collect for rare or uncharacter-

ized cell types). Thus, it remains difficult to evaluate

whether disease phenotypes are driven by tissues, broad

cell populations, or very specific cell types. Furthermore,

an inability to analyze difficult-to-characterize cell types

is a concern when scanning for links between traits and

cell types in complex tissues composed of many heteroge-

neous cell types. For example, describing the brain as the

primary pathogenic tissue responsible for schizophrenia

or Alzheimer disease (AD) is unsatisfying, but it remains

difficult to comprehensively collect functional informa-

tion from the plethora of brain cell types necessary for

standard GWAS enrichment analyses.

Meanwhile, single-cell gene expression technology has

offered insights into complex cell types.12–21 Additionally,

concerted efforts are underway for the development of

comprehensive single-cell atlases of complex human tissues

known to be associatedwith phenotypes of interest, such as

immune cell types for autoimmune disease and brain cell

types for neuropsychiatric disorders.22 However, to our

knowledge, no existing methods are designed to link novel

single-cell-based cell types and phenotypes of interest.
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Figure 1. RolyPoly Detects Trait-Associated Annotations by Using GWAS Summary Statistics and Gene Expression Profiles
(A) We model the variance of GWAS effect sizes of SNPs associated with a gene as a function of gene annotations, in particular gene
expression, while accounting for LD by using population-matched genotype correlation information. (Manhattan plot is based on
data from Willer et al.23)
(B) From a database of functional information (such as tissue or cell-type RNA-seq), we learn a regression coefficient ðbgkÞ that captures
each annotation’s influence on the variance of GWAS effect sizes. A deviation from the mean gene expression value of ajk results in an
increase of ajkbgk to the expected variance of gene-associated GWAS effect sizes. The value bg0 represents a regression intercept that esti-
mates the population mean variance. To check learned model parameters, we expect to see an enrichment of LD-informed GWAS gene
scores for genes that are specifically expressed in a tissue inferred to be trait relevant. Finally, from a model fit, we can prioritize trait-
relevant tissues and genes.
Thus, we developed RolyPoly, a model for prioritizing

trait-relevant cell types observed from single-cell gene

expression assays. Importantly, RolyPoly takes advantage

of polygenic signal by utilizing GWAS summary statistics

for all SNPs near protein-coding genes, appropriately ac-

counts for linkage disequilibrium (LD), and jointly ana-

lyzes gene expression from many tissues or cell types

simultaneously. Additionally, our model can utilize signa-

tures of cell-specific gene expression to prioritize trait-rele-

vant genes. Finally, we provide a fast and publicly available

implementation of the RolyPoly model.
Material and Methods

Overview of the Methods
The primary goals of RolyPoly are to identify and prioritize trait-

relevant cell types (or tissues) and genes (Figure 1). Similar models

have been developed to identify functional annotations impor-

tant for complex traits.7,11 However, unlike RolyPoly, these

methods focus on SNPs rather than genes. They require binary

input (e.g., whether or not a SNP is associated with a functional

annotation) instead of quantitative measurements (such as gene

expression). The most closely related method that focuses on

genes lacks an underlying model and does not take advantage of

the signal from SNPs that do not meet the stringent genome-
The American
wide significance threshold, potentially resulting in reduced po-

wer.10 We decided to take a highly polygenic modeling approach

to allow for the possibility that many genes might contribute to

the trait.24–26

At a high level, RolyPoly starts by learning about the relation-

ship between gene expression and estimated GWAS effect sizes

from a trait of interest (captured with our g model parameters,

described below). For example, we might expect to observe larger

GWAS effect sizes for cholesterol regulation at SNPs that affect

liver-specific gene expression because the liver is known to regu-

late cholesterol levels. Thus, on the basis of such an enrichment,

RolyPoly would learn that the liver is a trait-relevant tissue.

Next, we can use this knowledge to prioritize trait-relevant genes

by calculating a score (represented by h
gene
j , defined below) that

identifies genes upregulated in RolyPoly-inferred relevant tissues.

Continuing with our example, once we know that liver-specific

gene expression is associated with larger GWAS effect sizes,

RolyPoly would prioritize studying liver-specific genes in the

context of understanding cholesterol regulation (resulting in

larger hgene
j values). Below, we describe the details of how RolyPoly

carries out each of these steps.
GWAS Summary Statistics
Consider a fully polygenic GWAS model, ys ¼ xT

s bþ es, where ys is

the phenotypic measurement from individual s, xs is a vector of

genotypes at p SNPs for individual s, b is a vector of p SNP effects,
Journal of Human Genetics 101, 686–699, November 2, 2017 687



and es � Nð0; s2e Þ represents the stochastic environmental error.

Importantly, we assumed that the matrix of genotypes had been

scaled and standardized such that the mean was 0 and variance

was 1 for each SNP vector (and similarly for the trait ys). As others

have pointed out,27 this implies a biologically plausible and

computationally convenient relationship between allele fre-

quency and variance of effect sizes. Because this relationship was

not the focus of our study, we left the goal of generalizing this

relationship to future work. The main summary statistics released

by GWASs are per-variant effect estimates, which we refer to as bb.
Researchers typically calculate and report univariate effect-size es-

timates. These estimates represent the marginal standardized

regression coefficient and are calculated as bbi ¼ n�1XT
i y, where

Xi (note the change in case) represents standardized genotypes

for SNP i across n individuals (see Appendix A for derivation). If

we substitute the polygenic model for y into the estimation equa-

tion (see Appendix A for derivation), the sampling distribution of

the estimated SNP effect sizes corresponds to

bb ¼ Rbþ n�1XTe; (Equation 1)

whereR is the sample LDmatrix (i.e., rii0 is the Pearson correlation

values between genotype i and i0). We used this definition of esti-

mated GWAS effect sizes to develop a highly polygenic approach

that models the variance of these SNP effect sizes as a function

of annotation specificity of proximal gene expression.
Polygenic Model
For notational convenience, let g(i) represent the gene associated

with SNP i and Sj ¼ {i: g(i) ¼ j} be the set of SNPs associated with

gene j. We use the notation bS to denote the b coordinates whose

indices lie in set S. We assumed a priori that the true GWAS effect

sizes of SNPs in gene j follow the normal distribution

bSj � MVNð0; tjIÞ, where I is the
��Sj ��3��Sj �� identity matrix and tj

is the prior effect-size variance for all SNPs associated with gene j

and is modeled as a linear function. More specifically, tj is a linear

function of N annotations ajk (in this case, cell-type-specific gene

expression) with annotation coefficients gk and an intercept

term g0:

tj ¼ g0 þ
XN
k¼1

gkajk: (Equation 2)

RolyPoly estimates the parameter vector g, which captures the

influence of cell-type-specific gene expression on the variance of

GWAS effect sizes (see Figure 1B). Intuitively, if we estimate a large

coefficient for annotation k, then we expect larger GWAS effect

sizes around genes that are specifically expressed in annotation

k. On the other hand, it is possible to estimate negative values

for some annotation coefficients g. SNPs proximal to genes that

are specifically expressed in an annotation with a negative g esti-

mate are expected to have lower effect-size variance than the pop-

ulation mean.

According to this polygenic model, the expected value of the

vector of GWAS effect sizes around gene j is E½bbSj� ¼ 0, and the

covariance matrix is given by V½bbSj� ¼ tjRSjRSj þ s2e n
�1RSj, where

RSj denotes the principal R submatrix indexed by the SNPs in Sj
(see Appendix A for derivation). This model assumes that the ef-

fect size of each SNP around a gene j is drawn from a distribution

with amean of 0 and the same per-SNP variance of tj. However, we

expected other SNP annotations to affect the variance of a GWAS

effect size, such as the minor allele frequency (MAF) of the SNP.
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Therefore, we included P SNP-level features as covariates while

estimating the variance contribution of gene expression. Specif-

ically, we modified our model to use a per-SNP variance ni for

SNP i, given by

ni ¼ tgðiÞ þ
XP
l¼1

flbil; (Equation 3)

where tgðiÞ is the previously described (Equation 2) contribution of

gene-level annotations to the variance of SNP i, bil is the ith value

of SNP-level annotation l for SNP i, and fl is the annotation coef-

ficient for annotation l. The distribution for the vector of SNP

effects associated with a gene becomes

bbSj
� MVN

�
0;RSjDSjRSj þ s2

e n
�1RSj

�
; (Equation 4)

whereD¼ diag(v) is a diagonal matrix of SNP effect-size variances.

With this modification, we can estimate gene annotation regres-

sion coefficients while controlling for the contribution of SNP an-

notations to the variance of a SNP effect size. We present inferred

parameter estimates, including accounting for MAF as a SNP-level

covariate. MAF values were downloaded frommatched population

samples from the phase 3 VCFs of the 1000 Genomes Project.28

We chose a 10 kbwindow centered on the transcription start site

(TSS) of a gene because previous work has found that, across a

diverse set of cell types and tissues, most eQTLs consistently lie

in this region.29–32 During initial analysis, we observed similar

parameter estimates and strength of associations by using a larger

window size of 20 kb (Figure S1). Thus, for computational conve-

nience, we used a smaller 10 kb window size for results in this

study. However, the model description as presented generalizes

to larger window sizes or alternative approaches of SNP-gene asso-

ciation. One could rely on enhancer or chromatin maps from

ENCODE to incorporate potentially functional variants that are

farther away from the TSS. However, doing so would bias our anal-

ysis toward well-characterized cell types; thus, we did not include

distal elements. With this definition of SNP-gene association,

there are a few SNPs withmultiple associated genes.We duplicated

these SNPs and treated them as independent SNP-gene pairs.

Because RolyPoly infers parameters from hundreds of thousands

of SNPs, we do not expect this to contribute significantly to in-

ferred parameters.
Parameter Inference
To perform maximum-likelihood inference under our model, we

would have to compute the determinant and inverse of the

potentially high-dimensional covariance matrices involved in

Equation 4, which would be computationally challenging.

Instead, we adopted a method-of-moments approach in which

we fit the gene-level annotation coefficients gk and, if included,

the SNP-level annotation coefficients fl. Our model allows for

explicit formulas to be derived for the method-of-moments esti-

mators, which also greatly improves computational efficiency

and avoids convergence concerns that are common with other

inference approaches, such as expectation-maximization. If only

gene-level annotations are used, we fit the observed and expected

sum of squared SNP effect sizes associated with each gene, where

the expected value is given by

E

24X
i˛Sj

bb2

i

35 ¼ tjTr
�
R2

Sj

�
þ j Sj j s2

e n
�1; (Equation 5)
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where Tr represents the trace of amatrix (derivation inAppendix A).

We derived this expectation while recognizing that the expected

value of the squared [2 normof amean 0multivariate normal distri-

bution is the trace of the covariancematrix.Whenwe included SNP

annotation coefficients such that each SNP effect size had a variance

term ni,weperformed inferencebyfitting theobservedandexpected

squared effect size of each SNP, where the expected value is given by

E
hbb2

i

i
¼

�
RSjDSjRSj

�
ii
þ s2

e n
�1; (Equation 6)

where j ¼ g(i) and ðRSjDSjRSjÞii is the diagonal element of the ma-

trix corresponding to SNP i. Interestingly, by using an indicator

function rather than quantitative features, this model relates to

previous work33 (described in the Appendix A). We performed

block bootstrap34 to estimate standard errors, bsgk
, which we used

to compute a t-statistic, bgk=bsgk
, and corresponding p values. We

used a t-statistic because we used our bootstrap estimate of the

standard error rather than a known value. The purpose of the

block bootstrap is to maintain correlations present in the data

when sampling from the empirical distribution; thus, we parti-

tioned the genome into 100 non-overlapping blocks and sampled

from these blocks with replacement.35 Additionally, from the

bootstrap parameter estimates, we calculated empirical 95% confi-

dence intervals for each bgk. Unless otherwise specified, for our

analyses we performed 103 block bootstrap iterations. After

including an intercept term, bg0, we ranked tissues by strength of

associationwith the t-statistic or corresponding p value. As in stan-

dard regression, the intercept term estimates the population mean

of the response term, which in this case is the per-SNP variance of

a GWAS effect size.
Computing Trait-Relevance Gene Importance Scores

and the Proportion of Variance Explained by Individual

Annotations
Using a set of inferred gene annotation coefficients, bg, we calcu-

lated several quantities that summarize the contributions of

gene annotations to the phenotypic variance. First, we computed

h
gene
j ¼ PN

k¼1bgkajk, which can be used to rank trait-relevant genes.

Essentially, h
gene
j is a gene-expression-based prediction of the

variance parameter for gene j of a normal distribution from which

cis-GWAS effect sizes are drawn (Figure 1B). Thus, if h
gene
j is large,

we would expect larger cis-GWAS effect sizes. Note that this value

does not directly rely on GWAS effect-size estimates. Instead, h
gene
j

relies on GWASs indirectly through the RolyPoly-inferred parame-

ters. Additionally, we calculated the contribution of an annotation

k to a trait as hannot
k ¼ jbgk j

PM
j¼1ajk, whereM is the number of genes.

Through simulation, we showed that the true value of hannot
k af-

fects our power to detect trait-annotation associations. The total

contribution explained by all annotations, htotal, came from sum-

ming the individual annotation values, htotal ¼ PN
k¼1h

annot
k .

Finally, the proportion of an annotation’s unique contribution

to the variance of SNP effects, pannotk , was calculated as hannot
k =htotal.

To validate our gene importance values,h
gene
j , we compared them

withgene importance estimatesbasedon cis-GWASsummary statis-

tics and LD information. This gene score is an estimate of the

variance of GWAS effect sizes after inflation due to local LD is ac-

counted for; thus, we refer to it as the LD-informed gene score.

For this calculation,weused themethodologydescribed inLampar-

ter et al.36 and Liu et al.37 However, we used the same window size

around a gene as was used for RolyPoly. In addition to validating

h
gene
j , we used the LD-informed gene score to verify GWAS enrich-
The American
ment in specifically expressed genes of model-identified trait-

relevant tissues (i.e., quantile-quantile [Q-Q] plots in the Results).

If the main objective is to compute gene values, h
gene
j , and unbi-

ased parameter estimates are not required, then we include a pen-

alty on the [1 norm of the annotation coefficients. The penalty

strength is modulated with a l tuning factor, which is chosen on

the basis of cross validation. Regularization has the beneficial ef-

fect of shrinking parameter estimates of irrelevant tissues and

can result in more accurate gene-score prediction.
Simulation Setup
For clarity, we denote generated parameters and data with an

asterisk. In simulation results reported, we used 2 3 104 genes,

five simulated gene annotations, and one simulated SNP annota-

tion. We generated gene expression, a*, from a standard c2 distri-

bution and generated allele frequency as an example SNP annota-

tion, b*, from a standard uniform distribution. Recall that our

model annotation coefficients determine the influence that these

annotations will have on SNP effect sizes. For each simulated data-

set, we fixed annotation effects by sampling from a uniform distri-

bution: f� � uniformð0;10�5Þ for SNP annotation effects and

g�
k � uniformð0;10�5Þ for gene annotation effects. We combined

the simulated functional information and annotation coefficients

to calculate a per-SNP variance term. Thus, for each SNP effect, we

computed n�i ¼ t�gðiÞ þ
PP

l¼1f
�
l b

�
il, where t�gðiÞ ¼

PN
k¼1g

�
ka

�
jk. We com-

bined this per-SNP variance term with a per-SNP environmental-

error contribution set to s2e n
�1 ¼ 10�4 to arrive at the distribution

from which we generated simulated effects,

bb�
Sj
� MVN

�
0;RSjD

�
Sj
RSj þ 10�4RSj

�
; (Equation 7)

where D* is a diagonal matrix with simulated per-SNP variance

values. From this distribution, for each simulated gene, we

sampled 20 SNP effects. As input, our inference model takes SNP

effects, environmental errors (here set to 10�4), and annotations

and attempts to identify the true annotation effects. From this

setup, we determined whether our method implementation could

accurately infer generated SNP annotation effects, f�
l , and gene

annotation effects, g�
k.

Although ourmethod assumes that each SNP effect size is drawn

from the model distribution, it is likely that some GWAS effect

sizes come from a null distribution. To test robustness to this po-

tentialmodelmisspecification, we first sampled per-gene Bernoulli

random variables, pj � BernoulliðcÞ, where c represents the frac-

tion of causal genes (causal here simply implies sampling from

the non-null model). We sampled SNP effects for each gene as

bb�
Sj
�

8<:MVN
�
0;RSjD

�
Sj
RSj þ 10�4RSj

�
; if pj ¼ 1

MVN
�
0;10�4RSj

�
; if pj ¼ 0:

(Equation 8)

Varying the fraction of causal genes (parameter c) across simulated

datasets, we studied its effect on model inference.
Obtaining Gene Expression Databases and GWAS

Summary Statistics
We estimated annotation parameters for three gene expression da-

tabases. (1) The Genotype-Tissue Expression (GTEx) cohort in-

cludes RNA-seq from different individuals at many tissue sites.38

(2) We downloaded single-cell RNA-seq data on 3,005 single cells

from the hippocampus and cerebral cortex of mice from Ziesel

et al.20 (3) We obtained human single-cell RNA-seq data on cortex
Journal of Human Genetics 101, 686–699, November 2, 2017 689



samples from Darmanis et al.39 Within each gene expression data-

base, we standardized the distribution of gene expression across

samples with quantile normalization. Expression samples from

the same tissue or purified cell population were averaged. Single-

cell RNA-seq is notoriously noisy and sparse.40,41 Thus, to reduce

the impact of these effects, we averaged single-cell expression vec-

tors for common previously defined cell-type classes. We did not

systematically study how best to cluster single cells into cell types

given that there is already substantial literature on the sub-

ject.15,42–45 To compare across genes, we scaled, centered, and

then squared expression values across annotations. When using

an expression database from mice, we used only orthologous pro-

tein-coding genes with a one-to-one functional mapping (based

on the definition in Ensembl’s BioMart46).

We downloaded publicly available GWAS summary statistics

from ten traits from their respective publications: schizo-

phrenia,47 late-onset AD,48 fourmetabolic traits (high-density lipo-

protein [HDL] cholesterol, low-density lipoprotein [LDL] choles-

terol, total cholesterol [TC], and triglyceride levels [TG]),23

educational attainment (EA),49 height,50 extreme bodymass index

(BMI),16 and age-related cognitive decline (ACD).15 We restricted

our analysis to the autosomes, removed themajor histocompatibil-

ity complex (MHC) region for immune traits (chr6: 25–34Mb), and

removed rarer variants (MAF < 1%). We removed rare variants to

ensure that the common variant model fit the data appropriately.

For late-onset AD and ACD, in addition to using the entire set of

GWAS summary statistics, we ran RolyPoly after removing variants

from a 1 Mb window centered on the TSS of APOE (MIM: 107741;

chr19: 44,909,011–45,909,011). All referenced genome coordi-

nates are from UCSC Genome Browser build hg19.
Differential Gene Expression Analysis
For the analysis of h

gene
j enrichment in differentially expressed

(DE) genes of individuals with AD, we downloaded microarray

gene expression data from 230 samples of the prefrontal cor-

tex.51 We used Limma to analyze differential gene expression be-

tween case and control tissues.52 We mapped probes to genes by

using a mapping downloaded from Ensembl’s BioMart.46 If multi-

ple probes mapped to a single gene, we took the median expres-

sion value across all probes. Unless otherwise specified, we per-

formed Kolmogorov-Smirnov significance tests of gene-value

enrichment within DE genes.
Calculating RolyPoly Gene-Score Enrichment while

Accounting for Correlations among Gene Expression

Values
To assess the enrichment of RolyPoly gene scores among DE

genes, we calculated Spearman’s rank-correlation coefficient,

robs, between RolyPoly gene scores and differential-expression

t-statistics. A large robs value indicates enrichment of large

RolyPoly gene scores among DE genes. Assessing the significance

of robs by independently considering each gene is anti-conserva-

tive because of the correlation between gene expression levels of

co-regulated genes. Therefore, we generated an empirical sam-

pling distribution for r under the null of no association between

RolyPoly scores and t, which accounted for gene expression

correlation.

We estimated the variance-covariancematrix of gene expression

in healthy individuals, S. Because there were fewer samples than

genes, we used singular value decomposition (SVD) to represent

the low-rank S matrix. Under the null hypothesis, we generated
690 The American Journal of Human Genetics 101, 686–699, Novem
a gene expression matrix for both case and control samples by us-

ing the same distribution, Xi � MVNð0;SÞ. We had two sets of in-

dividuals: the set of healthy control individuals, H, and the set of

affected individuals, A (of equal size to the true data). For each

gene j, we computed a t-statistic by testing the difference between

the means of the healthy and affected simulated expression

values,

tj ¼
xAj � xHjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sAj
nA

þ sHj
nH

s ; (Equation 9)

where xj is the mean expression of gene j, sj is the sample variance,

and n is the sample size. We computed Spearman’s correlation co-

efficient, rsim, between tj and h
gene
j . We repeated the process of

generating expression and calculating rsim 103 times to generate

a null distribution, which we then used to evaluate the signifi-

cance of robs.
Calculating LD Correlation Values
We downloaded phase 3 VCFs of European individuals from the

1000 Genomes Project.28 We used PLINK v.1.90b1b to calculate

Pearson’s r values of SNPs within the default 1 Mb window.53
RolyPoly Implementation and Usage
We implemented our method for use through the rolypoly R

package, which is freely available and open source via CRAN and

at our Git repository (see Web Resources).
Results

Simulation

We used simulations (see Material and Methods) to verify

our implementation of RolyPoly and characterize proper-

ties of parameter estimation and hypothesis testing.

Across 500 data simulations, we found that RolyPoly-in-

ferred bgk parameters were unbiased estimates of the true

underlying effect g�
k (see Figure 2A). This is an important

property if we aim to accurately quantify the total contri-

bution of an annotation to a trait, hannot
k $hannot

k summarizes

the amount of signal present in the dataset to detect an as-

sociation between the trait and annotation k. In particular,

our power is strongly dependent on hannot
k (see Figure 2B),

where power refers to the probability that we correctly

reject the null hypothesis (i.e., bg < 0). It is likely that

some fraction of GWAS effect sizes are drawn from a null

distribution, which we do not currentlymodel in RolyPoly.

Thus, we investigated the effect of varying the fraction of

GWAS effects drawn from the model distribution and our

power to detect significant annotations. As expected,

when the fraction of genes simulated from the causal

distribution decreases, we lose power (see Figure 2B). How-

ever, even with 25% of genes (and downstream GWAS ef-

fect sizes) drawn from the causal distribution, we achieve

greater than 50% power for an annotation with hannot
k z

0.15. For context, in real data, we consistently observed

hannot
k values greater than 0.1.
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A B

Figure 2. Simulation Results
(A) Parameter inference is unbiased and accurate for a range of simulated g� effects. The red-dashed line represents the identity line.
(B) Power as a function of the g�

k and annotation values defined as hannot
k in the Material and Methods. Even when some SNPs are drawn

from the null distribution, we maintain reasonable power to detect associations.
For data generated under the model, we demonstrated

that our estimated parameters are unbiased and have low

levels of deviation around the true parameter values. Our

power to detect significant annotations is modulated by

the annotation effect, the annotation values, and the frac-

tion of effects drawn from the model distribution. Further-

more, in the setting where the effects are simulated from a

mixture of the model and null distribution, we still have

power to detect significant annotations.

Trait-Relevant Tissues Identified from GTEx Data

As a proof of principle, we ran our method on trait-associ-

ation data from publicly available GWAS traits and gene

expression data from 27 tissues of 544 individuals from

the GTEx project (data download and processing are

described in the Material and Methods).

In Table 1, we summarize the top two tissue-trait associa-

tions that passed a marginal significance threshold (p <

0.05) for seven GWAS traits. With a GWAS of extreme BMI,

we found associations with kidney (p ¼ 7 3 10�3) and thy-

roid (p ¼ 0.03) gene expression. Obesity is known to nega-

tively affect kidney function; however, from existing litera-

ture, it is ambiguous whether the tissue has a causal role in

determining BMI.55 Some studies have demonstrated a cor-

relation between thyroid function and weight.56,57 Others

have observed a link between BMI and brain gene expres-

sion.58,59We suspect that we did not observe such an associ-

ation because we composed the GTEx brain annotation by

aggregating gene expression across all 13 collected brain tis-

sues (this was the most heterogeneous tissue annotation

collected).Weobserveda significantenrichmentofEAsignal

for genes specifically expressed in the pituitary gland (p ¼
0.03) and brain (p ¼ 0.04), which corresponds with recent

analysis.49,60 For height, we detected an association with

muscle (p¼ 6310�10) andpituitary (p¼ 6310�7). Interest-

ingly, tumors in thepituitary areknownto lead togigantism,

characterized by excessive growth and height.61 Finally, for

severalmetabolic traits (TC, LDL, TG, andHDL),wedetected
The American
signals for the liver, small intestine, and adrenal gland, all of

which follow known biology.

Next, we examined the TCGWAS,23 given that its associ-

ation with liver has been unambiguously reported in the

literature. For inference, we used 121,312 SNPs that were

within 5 kb of a protein-coding gene. With p values from

our model, we ranked tissues by the strength of association

with TC (Figure 3, left). As expected, liver was the clear top-

associated annotation (p ¼ 23 10�4), and we estimated an

annotationcoefficientof 4310�6 (Figure3, right). Thus,we

estimated that the variance of TSS-proximal GWAS effect

sizes increases by 4 3 10�6 as normalized gene expression

in the liver increases by one unit (seeMaterial andMethods

for a description of gene expression normalization). The

small intestine wasmarginally associated (p¼ 0.01), which

follows from the fact that this organ has a central role in

nutrient absorption. Additionally, we observed some signal

for spleen (p¼ 0.04) and adrenal gland (p¼ 0.05). Although

the spleen is primarily thought of as an immune organ,

studies have shown a clear link between splenectomy and

lipid metabolism.62 Whereas the p value for adrenal gland

was identified with a q-value of 0.3, the 95% confidence in-

terval showed awide distribution of non-zero parameter es-

timates of large positive effect. Considering that the adrenal

gland plays a central role in the production of hormones

(many of which are synthesized from cholesterol or even

have an effect on cholesterol levels), this association is bio-

logically plausible.63

We wanted to verify that GWAS effect sizes were

enriched with association signal near genes that were spe-

cifically expressed in tissues with RolyPoly annotation co-

efficients significantly greater than 0. First, we calculated

LD-informed gene scores, which estimate the variance of

GWAS effect sizes from a cis window around each gene

while accounting for LD (see Material and Methods).

Next, we visualized the enrichment of these scores in spe-

cifically expressed gene sets by using Q-Q plots (Figure 4).

To define the set of tissue-specific genes, we sorted
Journal of Human Genetics 101, 686–699, November 2, 2017 691



Table 1. Top Trait-Relevant GTEx Tissues for Seven GWAS Traits
and Uncorrected p Values

Trait Tissue p Value

Height muscle 6 3 10�10

Height pituitary 6 3 10�7

TC liver 2 3 10�4

TC small intestine 1 3 10�2

LDL liver 2 3 10�3

LDL small intestine 2 3 10�2

TG adrenal gland 7 3 10�7

TG liver 2 3 10�2

BMI kidney 7 3 10�3

BMI thyroid 3 3 10�2

HDL liver 7 3 10�3

EA pituitary 3 3 10�2

EA brain 4 3 10�2

Corresponding GWAS abbreviations are as follows: TC, total cholesterol;23 LDL,
LDL cholesterol;23 TG, triglyceride levels;23 BMI, extreme body mass index;54

HDL, HDL cholesterol;23 and EA, educational attainment.49
normalized expression values for the tissue of interest and

identified the top 20% of genes as the tissue-specific gene

set. Correspondingly, we refer to the bottom 20% of genes

sorted by expression as the control set. We observed clear

enrichment of TC cis-GWAS signal within the set of genes

that were upregulated in the liver (Figure 4A). As a negative

control, we employed the same Q-Q plot approach to

determine whether there was GWAS signal around genes

specifically expressed in a tissue not found to contribute

significantly to TC. Within specifically expressed genes of

the skin tissue (Figure 4B), we did not observe an enrich-

ment of GWAS signal.
Neuropsychiatric Diseases and Single-Cell Gene

Expression

We next analyzed cell types identified from publicly avail-

able single-cell expression data from the human brain39

and several neuropsychiatric traits: ACD, late-onset AD,

EA, and schizophrenia. In total, we used 477 human single

cells from which gene expression data had been collected.

Using a principal-component analysis (PCA)-based clus-

teringapproach, theoriginal authors grouped the single cells

into six primary cell types and two clusters of fetal cortical

cells representing quiescent and replicating cell states. For

each gene, we averaged gene expression counts for all cells

within a cell-type cluster, thus reducing the noise across sin-

gle-cell measurements (see Material and Methods). Using

our model, we tested the association between each of the

traits and eight clustered cell types (Figure 5).

ACD is a trait characterized by a decline in cognitive

capability and decreases in brain volume, both thought

to be normal functions of aging. However, evidence sug-
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gests that the rate at which cognitive decline occurs is a

precursor to late-onset AD, hinting at a shared genetic ar-

chitecture.64 Thus, we were interested in whether signifi-

cant overlap of trait-associated cell types existed between

the two traits. For ACD, we observed a significant associa-

tion with fetal quiescent cells (p ¼ 0.03), which primarily

consist of neurons. Quiescent fetal cells differ from repli-

cating fetal cells in that they have begun to downregulate

neuronal growth factors such as EGR1.39 On the other

hand, we found an association between AD and microglia

(p ¼ 0.03) and astrocytes (p ¼ 0.03) but no enrichment for

fetal neurons (p¼ 0.8). To rule out an association driven by

the APOE locus, we reran RolyPoly while removing a 1 Mb

window centered on the APOE TSS. The significant micro-

glia association persisted (p ¼ 0.03), whereas the astrocyte

association did not (p ¼ 0.1). Thus, although the connec-

tion between astrocytes and AD is well studied,65 this

connection appears to be driven by few loci of large effect.

Notably, there is mounting evidence for amore central role

of microglia in AD;66,67 our analyses provide genetic evi-

dence in humans to support this hypothesis. Additionally,

our results suggest a role for microglia in AD but not ACD.

This finding is consistent with recent work demonstrating

that although lipid regulation pathways are enriched with

GWAS signal for both traits, immune pathways tend to

show AD-specific signal.68 Therefore, one could hypothe-

size microglial involvement during the transition between

ACD and AD.

For schizophrenia, we found a significant relationship

with oligodendrocytes (p ¼ 0.02) and fetal replicating cells

(p ¼ 0.01). The genetic basis of schizophrenia is even less

well understood than that of AD, but there is a significant

body of literature on oligodendrocyte dysfunction and

schizophrenia.69,70 Moreover, recent genetic association

studies have shown an enrichment of schizophrenia

GWAS signal within pathways of development.71–73

To validate these associations between traits and single-

cell cell-type clusters, we processed a single-cell dataset

(see Material and Methods) from mouse brains,20 which

included seven major brain cell types that had been previ-

ously identified. Because it includes only one-to-one hu-

man and mouse orthologs, we consider this dataset to be

an independent pseudo-human-brain single-cell dataset.

Thus, we used this dataset to validate our previous find-

ings. We limited our analysis to cell types overlapping be-

tween the human and mouse datasets; these included mi-

croglia and oligodendrocytes. For AD, we replicated the

significant association with microglia (p ¼ 0.01). Of note,

there was a cluster that included astrocytes and ependymal

cells; however, there was no significant association with

this cluster. With schizophrenia, there was a suggestive as-

sociation with the mouse-derived oligodendrocyte cell-

type cluster (p ¼ 0.09). Thus, from our analysis of mouse

single-cell data, we replicated two of our initial trait and

cell-type associations. Furthermore, we demonstrated

that if human data are not available, one could swap in

similar mouse data to guide initial analyses.
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Figure 3. TC and GTEx Tissue Ranking
(Left) Tissues are ranked by p value,
which represents the strength of associa-
tion with TC.
(Right) Corresponding parameter esti-
mates and 95% confidence intervals.
We also ran another closely related method, snpSEA,10

on these data. This method also integrates gene expression

with GWAS and aims to identify relevant tissue or cell

types. However, it does not take advantage of genome-

wide polygenic signal, and therefore its power is reduced.

As a result, snpSEA identified an association between mi-

croglia and AD in humans but not in mice (Figure S2).

RolyPoly Gene Scores Correlate with DE Genes in

Individuals with AD

We were interested in studying whether RolyPoly-inferred

model parameters could predict trait-relevant genes from

an independent dataset. Thus, we downloaded and pro-

cessed gene expression data from human prefrontal cortex

samples of 101 control individuals and 129 individuals

with AD (see Material and Methods and Zhang et al.50).

A total of 9,228 genes were DE with a q-value < 0.1%

(6,324 genes did not meet this threshold). Such a differen-

tial-expression study represents a data-driven approach to

identifying AD-associated genes (independently from

GWAS results). Additionally, we used summary statistics

from this experiment to test the ability of our model pa-

rameters to identify trait-relevant genes.

To establish a baseline,we tested the enrichment of LD-in-

formedgene-score estimateswithinDEgenes.We computed

these values by taking the variance of GWAS effect sizes
The American Journal of Human Genet
within 5 kb of a gene and incorpo-

rating information about LD (see

Material and Methods). Compared

with genes not found to be signifi-

cantly expressed, the set of DE genes

showed only weakly suggestive (p ¼
0.09) enrichment of these values.

As a first step to incorporating infor-

mation from RolyPoly-inferred model

parameters, we tested whether genes

that were specifically expressed in a

RolyPoly-inferred trait-relevant cell

type were enriched with larger differ-

ential-expression test statistics. We

identified the top 10% of genes specif-

ically expressed in the microglia cell

type (which our model identified as

significantly associated with AD).

Compared with a control set of genes,

this set of genes showed a significant

(p ¼ 1 3 10�8) enrichment of positive

values of the differential-expression

test statistic (Figure 6A, right). We per-
formed a similar analysis with a cell type for which RolyPoly

did not find evidence of AD association. There was no

enrichment of DE summary statistics within the set of genes

specifically expressed in fetal quiescent cells (Figure 6A, left).

From these observations, we reasoned that we could

rank the trait relevance of genes on the basis of RolyPoly-

inferred parameter estimates, bg, and gene expression. As

an example for AD, a gene that is specifically expressed

in microglia and astrocytes would be ranked higher than

a housekeeping gene. Thus, we defined the RolyPoly

trait-relevance gene score h
gene
j as a linear combination ofbg and normalized gene expression values (see Material

andMethods). Using themodel from the AD-specific panel

of Figure 5 and human brain single-cell gene expression,

we computed estimates of h
gene
j . Furthermore, we hypoth-

esized that h
gene
j values could predict DE genes. We found

that h
gene
j scores were significantly enriched within the

DE genes (p ¼ 73 10�18; Figure S3). However, it is possible

that correlations among co-regulated genes could result in

uncalibrated p values. Therefore, we designed a test that

accounts for the covariance structure between genes (see

Material and Methods). Using this test, we still identified

a significant association (p ¼ 4 3 10�3) between DE genes

and h
gene
j values (see Figure 6B).

For validation, we were interested in replicating our

enrichment of h
gene
j in DE genes in an independent dataset.
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A B Figure 4. TC and GTEx Q-Q Plot
Comparing Enrichment of LD-Informed
Gene Scores
Both plots show the p value from RolyPoly
for the association between the respective
tissue and TC.
(A) Q-Q plot comparing enrichment of LD-
informed gene scores in genes that are
uniquely expressed in the liver. To select
gene sets, we sorted genes by their normal-
ized expression in the liver and took the
top 20% of genes (red) and the bottom
20% of genes (blue).
(B) A similar plot stratifying gene values by
skin-specific gene expression (skin is not
predicted to have a role in cholesterol
regulation).
Sekar et al. performed laser-capture microdissection to

isolate astrocytes from ten healthy control individuals and

individuals with AD and then identified 227 DE genes.74

Of those genes, we predicted RolyPoly gene scores for 150

(70 of the 227 genes were not annotated as protein coding;

therefore, they were not measured in the single-cell experi-

ment). We replicated our previous result and identified a

significant (p ¼ 1 3 10�3) enrichment within DE genes

(Figure S4). We were unable to perform our enrichment

test that accounts for gene correlations because gene expres-

sion data were not available for this dataset.

Thus, we conclude that from GWAS and gene expression

data of healthy individuals, our model parameters capture

information about the relevance of a gene to a trait on the

basis of which cell types express the gene. Still, we cannot

discount the possibility that observed enrichments of dif-

ferential-expression test statistics are a result of changes

in cell-type proportions. However, in such a scenario, we

would have identified trait-relevant cell types that increase

or decrease in proportion and thus would be consistent

with our conclusion about RolyPoly parameters.
Discussion

We have described a polygenic model for analyzing single-

cell gene expression and GWAS summary statistics. Our re-

sults demonstrate that we can identify trait-relevant cell

types from complex tissues and prioritize genes for further

analysis.

Here, we discuss the following assumptions underlying

RolyPoly: (1) we focused on cis-GWAS effects (as opposed

to trans) because cis-SNPs tend to more consistently have

genome-wide effects, and larger effects, on the regulation

of gene expression.31,75–78 (2)Ourmodel treats neighboring

genes independently even though some might share cis-

SNPs, which could result in a correlation among nearby

SNP effect sizes.However,we corrected for this effect byper-

forming block bootstrap when computing standard errors

and empirical confidence intervals. (3) Because this was a
694 The American Journal of Human Genetics 101, 686–699, Novem
joint analysis (we estimated all annotation parameters at

the same time), including or excluding gene expression

data that are causal or correlated with causal cell types can

have an effect on inference (i.e., result in different model

parameter estimates). However, joint analysis is necessary

because analyzing each cell type separately would not con-

trol for potential overlap of specifically expressed genes. To

mitigate these effects, we suggest several approaches. First,

one could re-analyze a trait GWAS as more data become

available. Second, we recommend a cautious interpretation

of model parameters, which should be guided by

domain knowledge. Third and finally, with highly corre-

lated annotations, one could carry out an initial round of

feature selection before performing standard inference or

include regularization (described in the Material and

Methods). Even with these model assumptions, our results

are well supported by known biology, as shown in the anal-

ysis of tissues and brain cell types.

This is a promising step toward connecting single-cell

gene expression and GWAS summary statistics to identify

relevant cell types and genes. Although there is evidence

linking the immune system and microglia to AD in

mice,66 we have identified an enrichment of genetic

trait-association signal near genes specifically expressed

in human microglia. More generally, single-cell technolo-

gies represent an opportunity to discover and characterize

novel cell types and cell states.22 Thus, there is a need for

methods, such as RolyPoly, that can prioritize novel

cell types relevant to human phenotypes for further

study. Here, we focused on single cells clustered into

cell types; however, numerous alternative groupings

could be examined. For example, during cell stimulation,

there exists significant cell heterogeneity even within

classical marker-defined immune cell populations.79,80

Using RolyPoly, one could link these novel subpopula-

tions to autoimmune disease phenotypes. These analyses

should increase only as single-cell data become more

commonly available.

It is challenging to pinpoint causal genes from GWASs

because LD-related correlations among SNP effects
ber 2, 2017



Figure 5. Neuropsychiatric Trait Associations with Single-Cell-
Based Cell Types
Parameter estimates for age-related cognitive decline (ACD),
Alzheimer disease (AD), educational attainment (EA), schizo-
phrenia (SCZ), and single-cell-based cell-type clusters from the
human brain dataset.39 Range specifies the empirical bounds of
the 95% confidence interval. Estimates highlighted in red repre-
sent significant associations (p < 0.05).
confound the identification of causal variants. Moreover,

it is difficult to identify the target gene modulated by a

regulatory variant. Statistical methods that integrate

GWASs and eQTLs while accounting for the effects of

LD81,82 have proven useful. However, the eQTL data

might not be specific to the disease-relevant tissue or

cell type. To supplement these approaches, we suggest us-

ing the signature of gene expression and parameters from

our model to prioritize genes proximal to significant

GWAS variants for further analysis. Consider a region

with complex LD structure and significant trait-associa-

tion signal; ideally, one would rely on overlapping

eQTL information to identify the causal SNP and gene.
A B

h
gene
j values in DE genes. The significance of the observed Spearman

expression test statistic was evaluated with a null distribution gener
covariance structure (full details of this test can be found in the Mat

The American
But, without knowledge of the causal tissue, GWAS-

eQTL overlap with a non-causal tissue could be

misleading and complicate the task of collecting relevant

eQTL information. Instead, one could use annotation

parameter estimates from RolyPoly with tissue- or cell-

type-specific gene expression to calculate h
gene
j trait

importance values and prioritize genes within the local

GWAS region. Additionally, as we have shown, our

method can identify significantly associated tissues,

which one could prioritize for collection of population

samples for eQTL analysis.
Appendix A

Derivation of Univariate Effect Estimates

We follow much of the notation and derivation from Shi

et al.25 Starting with the definition of the annotation coef-

ficients (recalling that the genotype matrix has been

scaled),

bbi ¼
1

n
XT

i y;

we substitute the GWAS model,

bbi ¼
1

n
XT

i ðXbþ eÞ

¼ 1

n
XT

i X1b1 þ.þ 1

n
XT

i Xpbp þ
1

n
XT

i e;

and use the definition of Pearson’s correlation coefficient

once again by relying on the fact that the genotype matrix

has been scaled and centered,

bbi ¼
Xp

i0¼1

rii0bi0 þ
1

n
XT

i e:
Figure 6. RolyPoly-Inferred Model Pa-
rameters Predict DE Genes in the Prefron-
tal Cortex (PFC) of Individuals with AD
(A) Differential-expression test statistics (a
larger value represents genes that are upre-
gulated in the brains of affected individ-
uals) were significantly larger in the set of
genes specifically expressed in the micro-
glia cell type than in a control gene set
(right). We define the set of cell-type-spe-
cific genes as the top 10% specifically ex-
pressed genes. We compared them with
the control gene set, which includes
genes that deviate the least from average
gene expression. The differential-expres-
sion test statistic was not enriched in genes
specifically expressed in the fetal quiescent
cell type (left).
(B) Controlling for the effect of correlation
between gene expression values of co-regu-
lated genes, we observed an enrichment of

’s rank-correlation coefficient between h
gene
j and the differential-

ated from simulations, which accounted for the gene expression
erial and Methods).
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In the Material and Methods, we write the above expres-

sion with matrix notation. Others have described a similar

relationship among estimated effects, LD, and the true ef-

fect sizes.83

Derivation of Distribution Parameters of Effect

Estimates

Here, we describe the mean and variance of the estimated

SNP effects by using our polygenic model. The expected

value is computed as follows,

E
hbbi ¼ E

�
Rbþ ð1=nÞXTe

�
¼ RE½b� þ ð1=nÞXTE½e�;

and because we model the genetic and environmental ef-

fects with normal distributions with mean 0, we conclude

that E½bb� ¼ 0. Next,

V
hbbi ¼ V

�
Rbþ ð1=nÞXTe

	
¼ RVðbÞRþ �

1


n2
	
XVðeÞXT

¼ RDRþ �
s2
e



n
	
R;

whereD refers to the diagonal matrix of SNP effect-size var-

iances; in the second equality, we use the fact that R ¼ RT.

We use these values of the expectation and variance to

parameterize the multivariate normal distribution that de-

scribes the estimated GWAS effect sizes.

Derivation of Expected SNP Variance

Note that the distribution of the squared [2 norm of a

random vector drawn from a multivariate normal distribu-

tion with mean 0 is the trace of the covariance matrix.36,84

Thus, the expected value of the sum of squared SNP effect

sizes near gene j is given by

E

24X
i˛Sj

bb2

i

35 ¼ Tr
�
tjRSjRSj þ s2

e n
�1RSj

�
¼ tjTr

�
R2

Sj

�
þ j Sj j s2

e n
�1:

We derive this by using the linearity of the trace and re-

calling that R is a correlation matrix, and hence the diago-

nal elements are 1.When SNP annotations are included, we

model the expected value of the squared marginal SNP ef-

fect size. The marginal distribution of the squared SNP ef-

fect size around gene j is bbi � Nð0; s2e n�1 þ ðRSjDSjRSjÞiiÞ.
Finally,

E
hbb2

i

i
¼ Tr

�
s2
e n

�1 þ
�
RSjDSjRSj

�
ii

�
; where i˛Sj

¼ s2
e n

�1 þ
�
RSjDSjRSj

�
ii
:

Relationship to Previous Work

Rewriting (RDR)ii as
P

i0ni0 r
2
ii0 and substituting quantitative

feature values with an indicator function that signifies

whether a SNP is within a discrete annotation class, we
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arrive at an equation similar to the basic LD Score regres-

sion model,

E
�
b2
i

� ¼ �
s2
e



n
	þX

i0
ni0 r

2
ii0

¼ �
s2
e



n
	þXP

l¼1

fl

X
i0
1lðbi0 Þr2ii0 þ

XN
k¼1

gk

X
i0
1k

�
agði0 Þ

	
r2ii0 :

Note that we go from the first to the second line by

substituting n from Equation 3. Although themodels share

some similarities, our model is derived independently to

utilize the full quantitative data from single-cell gene

expression assays.
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Supplemental Data include four figures and can be foundwith this

article online at https://doi.org/10.1016/j.ajhg.2017.09.009.
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Web Resources

OMIM, http://omim.org/

rolypoly: Identifying Trait-Relevant Functional Annotations,

https://cran.r-project.org/package¼rolypoly

rolypoly source code, https://github.com/dcalderon/rolypoly

UCSC Genome Browser, https://genome.ucsc.edu/
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