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a b s t r a c t

We describe a new approximate likelihood for population genetic data under a model in which a single
ancestral population has split into two daughter populations. The approximate likelihood is based on
the ÔProduct of Approximate ConditionalsÕ likelihood and Ôcopying modelÕ of Li and Stephens [Li, N.,
Stephens, M., 2003. Modeling linkage disequilibrium and identifying recombination hotspots using single-
nucleotide polymorphism data. Genetics 165 (4), 2213Ð2233]. The approach developed here may be used
for efficient approximate likelihood-based analyses of unlinked data. However our copying model also
considers the effects of recombination. Hence, a more important application is to loosely-linked haplotype
data, for which efficient statistical models explicitly featuring non-equilibrium population structure have
so far been unavailable. Thus, in addition to the information in allele frequency differences about the
timing of the population split, the method can also extract information from the lengths of haplotypes
shared between the populations. There are a number of challenges posed by extracting such information,
which makes parameter estimation difficult. We discuss how the approach could be extended to identify
haplotypes introduced by migrants.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Population structure is a common feature of natural genetic and
phenotypic variation ( Mayr, 1942). For some applications, sum-
marizing this structure by identifying subgroups and quantify-
ing the extent of differentiation between them may be sufficient
(e.g.Pritchard et al., 2000). However, the aim is often to make more
explicit statements about the evolutionary history of the popula-
tions. While some structured populations may be modeled as a
system of populations at equilibrium with respect to gene flow,
researchers are often interested in non-equilibrium situations. In
particular, at the interface of population genetics and phylogeny
we are faced with the challenge of modeling population splitting.
Accurate estimates of parameters such as the sizes of the popu-
lations, the times at which they separated, and how much sub-
sequent interbreeding there has been would be very valuable. If
mechanisms limiting interbreeding between the populations have
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arisen, then fitting these models may allow us to decide whether
this has occurred in parapatry or allopatry ( Hey, 2006; Becquet
and Przeworski, 2009). Furthermore, the identification of func-
tional loci (such as those involved in reproductive isolation or
local adaptation) will be facilitated by knowledge of population
history, effective population size and gene flow elsewhere in the
genome (Hey and Nielsen, 2004; Becquet and Przeworski, 2009).

Although there is a well-developed theory of population genetic
processes that generate data under these types of scenarios (see
e.g.Wakeley, 2008), it is often very difficult to compute likelihoods
for models of interest. Therefore, in this paper we describe a
promising alternative approach that approximates the standard
likelihood function. We start by specifying a particular model of
population structure, and describing some of the approaches that
have been developed for this type of problem.

We focus on the most basic model of population splitting (see
for example Wakeley and Hey, 1997), in which an ancestral
population splits instantaneously into two daughter populations
(see Fig. 1). The parameters of the model are the three effective
population sizes ( Na in the ancestral population; N1 and N2

in the two daughter populations), the number of generations
since the splitting event ( G), and the per-generation per-base
pair probabilities of mutation and recombination ( µ and r)
respectively. Since our aim in this paper is to explore the utility
of a new approximate likelihood, we focus on a simple version
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Fig. 1. Our model of population splitting without gene flow. Here, Na, N1 and N2

indicate the effective population sizes in the ancestral population, and in the two
daughter populations, respectively. G is the number of generations since the split of
populations 1 and 2. The parameters F1 and F2 represent the amount of drift in the
two daughter populations since the split.

of the model in which all three population sizes are equal
(Na = N1 = N2 = N). The model with unequal population sizes is
a straightforward generalization, described briefly in Section 3.2.
As is typically the case in population genetics, the data in fact
contain information about the parameters ( G, µ, r) on the time-
scale on which genetic drift occurs, rather than on a time-scale of
generations (see e.g. Wakeley, 2008). Thus our model in fact uses
the relative rate parameters θ = 2Nµ and ρ = 2Nr , and the
parameter F = G/2N which represents the amount of drift that has
occurred in the daughter populations since the split. Note that, as in
many coalescent-based models of population genetics, our model
of N diploids is equivalent to a model of 2 N haploids ( Wakeley,
2008). Also note that θ and ρ are often defined to be twice the
values that we use in this paper.

1.1. Types of data

Historically, non-recombining loci such as mitochondrial DNA
have often been used to fit these models, but there is a growing
awareness of the statistical and biological limitations of such
data sets (e.g. Hey and Machado, 2003). Therefore much research
now focuses on using data from multiple unlinked regions of the
genome, which reflect multiple realizations of the genealogical
process. Often researchers will type a set of completely unlinked
markers (e.g. microsatellites or SNPs) scattered around the
genome, in which case the data can be summarized without loss of
information by the counts of the different alleles in each population
at each locus. The expectations of various quantities can be derived
under a model without migration ( Wakeley and Hey, 1997), and
the likelihood of a particular configuration of allele counts at a
locus may be computed analytically for a model with no migration
and where mutation since divergence can be ignored (e.g. Nielsen
and Slatkin, 2000; Nicholson et al., 2002; Roychoudhury et al.,
2008), or alternatively can be estimated accurately under more
general models using coalescent simulations.

While useful, completely unlinked loci offer only incomplete
information about the genealogical process. One consequence
is that there is relatively low power to distinguish between
isolation models with and without migration ( Nielsen and Slatkin,
2000), although multiallelic markers, such as microsatellites,
hold additional information. With linked markers, the data are
potentially informative about both migration and splitting times,
as one can hope to learn about the variability (i.e. the distribution),
over loci, of the pairwise coalescence times between the two
populations ( Wakeley, 1996). The distribution is informative,

because under a model with no gene flow, the coalescence times
between different populations necessarily predate the time at
which the population split; in contrast, if there has been some
low rate of gene flow, the coalescence times between populations
are more variable, as some lineages migrate and thus coalesce
more recently ( Wakeley, 1996). However, unlinked sites provide
little more information than the expectation of these times.
For loosely linked data, information about the timing of the
population split and subsequent migration is captured by the
lengths and similarities of haplotypes shared between populations,
as ancestrally shared or migrant haplotypes are broken up by
recombination and diverge by mutation over time (e.g. Pool
and Nielsen, 2008). For example, if two individuals in different
populations are found to be identical across a large chromosomal
region, then this may be strong evidence for recent gene flow, since
such data may be unlikely under a pure split model.

1.2. Methods for linked data

Therefore, attention has turned to developing methods that
consider a collection of genomic regions with linkage within each
region, and free recombination between regions. Such data contain
information about the joint distribution of times in the genealogies
underlying the data, and thus potentially contain much more
information about the parameters of interest. However, statistical
inference in this setting is difficult: the likelihoods cannot be
computed analytically and are difficult to estimate by simulation
since the observed data will be very improbable, or impossible,
on the vast majority of genealogies simulated from the coalescent
prior (see e.g. Stephens, 2001). This problem has given rise to
a large literature on full-, summary- and approximate-likelihood
methods for linked data, a very brief overview of which now
follows.

Nielsen and Wakeley (2001) and Hey and Nielsen (2004) devel-
oped a full likelihood inference scheme for the isolation and mi-
gration model, implemented by the IM software which can handle
a set of independent fully linked loci. However, these approaches
are limited, as extending them to allow intralocus recombination
is challenging even under simple demographic models ( Fearnhead
and Donnelly, 2001; Nielsen, 2000). This requirement of full link-
age is a potentially serious drawback. Firstly, low-recombining
chromosomal regions may be atypical ( Hilton et al., 1994); sec-
ondly, authors frequently trim the regions used in order to fit the
no-recombination requirement, which may result in bias ( Hey and
Nielsen, 2004); and finally, this requirement limits the size of con-
tiguous region that can be analyzed and hence the information
available.

Summary likelihood methods are based on replacing the data
with low-dimensional summary statistics, which allow likelihoods
and posterior densities to be estimated, typically by simulation
(Pritchard et al., 1999; Beaumont et al., 2002; Cornuet et al.,
2008). This approach has been extended to models of population
splitting both with gene flow ( Becquet and Przeworski, 2007)
and without ( Leman et al., 2005; Putnam et al., 2007). Intralocus
recombination can be incorporated straightforwardly, simply by
allowing recombination in the simulated genealogies (e.g. Becquet
and Przeworski, 2007). However, the flexibility and relative ease of
computation come at the expense of losing information, and none
of the existing approaches use summaries of the data that capture
detailed information about haplotype structure.

A promising recent development in population genetics infer-
ence is the use of approximate likelihood approaches. One such ap-
proach was developed by Li and Stephens (2003, henceforth, ÔÔLSÕÕ)
for inferring recombination rates. They developed a new model for
population genetic data that is simplerÐand more computationally
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tractableÐthan standard models. An attractive feature of the LS for-
mulation is that it contains a formal model of haplotype structure,
described in detail below.

The LS approach has been applied to inference in a diverse set
of problems including estimating the parameters of recombination
(Li and Stephens, 2003), mutation ( Cornuet and Beaumont, 2007;
Roychoudhury and Stephens, 2007), gene conversion ( Gay et al.,
2007; Yin et al., 2009) and diversifying selection ( Wilson and
Mcvean, 2006). It has also been used as a tool for modeling
haplotype structure Ð rather than for formal parameter estimation
Ð in genotype imputation and association mapping ( Marchini et al.,
2007), HLA typing ( Leslie et al., 2008) and in models of population
admixture ( Price et al., 2009) and clustering ( Hellenthal et al.,
2008).

In this study, we extend the LS approach to estimate the
parameters of a model of population splitting. While LS approaches
are computationally convenient, they rely on ad hoc simplifications
of standard population genetic models, such as the coalescent.
As such, a key challenge in extending the approach is to develop
approximations that are suitable for the new problem. Our
approach to this will be a central focus of the paper.

1.2.1. The original Li & Stephens model
There are two main innovations in the LS approach. The first is

that it computes a likelihood for the full data by breaking it down
into a Ôproduct of approximate conditionalÕ (PAC) probabilities.
Consider an observed set of haplotypes, H = h1, . . . , hn. The basic
inference problem is to compute (and maximize) the likelihood
of the haplotype data H, with respect to the parameters φ of
a population genetic model. The likelihood can be written as a
product of conditional probabilities:

L(H; φ) = pφ(h1)pφ(h2|h1) . . . pφ(hn|h1, . . . , hn" 1). (1)

However, these conditional probabilities are unknown for most
models of interest, and the framework proposed by LS is based
instead on the PAC likelihood

Lpac(H; φ) = öpφ(h2|h1) . . . öpφ(hn|h1, . . . , hn" 1). (2)

Here, terms of the form öpφ(hk+ 1|h1, . . . , hk) denote the (approx-
imate) conditional probability of the (k + 1)th haplotype, condi-
tional on the first k haplotypes, as a function of φ. We will refer to
these as ÔAC probabilitiesÕ. Note that under neutrality the uncon-
ditional likelihood of the first haplotype does not usually depend
strongly on the model of population history. Therefore, following
LS, we set öpφ(h1) = 1, and omit this term from our notation.

The second innovation of LS was to introduce a simple model
for population genetic data under which these AC probabilities
may be computed. We will refer to this as their ÔÔcopying
modelÕÕ. The model is an approximation which captures many
aspects of the coalescent with recombination, without suffering
from the computational difficulties that have hindered attempts
to incorporate recombination into coalescent-based MCMC and
importance sampling schemes. At a basic level, LS can be thought
of as providing a simple model for simulating haplotype data. We
will first briefly describe LS in terms of the simulation problem, and
then turn to how the LS model can be used for inference.

Consider first the simple case of data at a single SNP. Given k
allele copies simulated so far, a new one is simulated by choosing
one of the k uniformly at random: the new allele is said to ÔcopyÕ the
chosen allele and, unless a mutation occurs, it is assigned the same
allelic state as the copied allele. (The genotype of the first allele
is set arbitrarily; e.g., to carry allele 0.) LS set the probability of
mutation to be a decreasing function of k, to reflect the expectation
that alleles added later in the order tend to match those already
sampled (see Li and Stephens, 2003, for details).

Now consider simulating haplotypes at a set of loosely linked
sites. Let Xl be the label of the haplotype copied at site l by the new
haplotype. LS extended their model to include recombination by
introducing correlation between the Xs at nearby sites: unless a
ÔswitchÕ occurs,Xl+ 1 is the same as Xl. If there is a switch, then the
haplotype that is copied at the next site is a draw from the uniform
prior on the k previously-sampled haplotypes (including the one
that was being copied at site l). Thus the new haplotype is modeled
as a mosaic formed of stretches copied from the haplotypes already
simulated. Specifically, the probability distribution of the random
variables denoting who is copied at each site ( X1, X2, . . . , XL) is a
Markov chain along the sites. The switch events were intended to
mimic the effects of recombination, and the transition probabilities
of this Markov chain are controlled by a recombination parameter
ρ. As for mutation, the switch probability is also a decreasing
function of k. This reflects the fact that a haplotype added into a
large sample tends to be similar to at least one other haplotype
over a large genetic distance.

Computing the likelihood. There is a large set of possible values
of the sequence X1, . . . , XL, i.e. which haplotype is copied by the
new haplotype at every site along the sequence, which we will
refer to as ÔpathsÕ through the missing data. To compute the AC
probability of the new haplotype öpφ(hk+ 1|h1, . . . , hk) under this
copying model, the paths are treated as missing data. Thus the
AC probability is computed by averaging the data probability over
the prior probability distribution on the paths. The Markov chain
prior means that this can be done efficiently using standard hidden
Markov model (HMM) methods (e.g. Rabiner, 1989). It is then
straightforward to calculate the PAC likelihood from these AC
probabilities according to Eq. (2).

One drawback of the scheme is that the use of approximate
probabilities in Eq. (2) means that the likelihood depends on the
order in which the haplotypes are added to the sample. LS found it
satisfactory for inference to sum over a small set of random orders,
keeping the set of orders the same over the parameter values the
likelihood was estimated for.

1.3. Coalescing and copying

Full likelihood approaches for linked data, such as that
implemented in the IM software ( Hey and Nielsen, 2004, 2007),
typically involve explicitly modeling aspects of the ancestral
history of the sample such as the genealogical topology, the
branch lengths, details of movements of ancestral lineages, or the
types of ancestral haplotypes (see e.g. Stephens, 2001). The PAC
likelihood and copying model of LS may be seen as an ad hoc
approximation of such a full likelihood scheme. From this point
of view, when modeling the new haplotype, its descent from the
ancestral lineages of the existing sample is mimicked by forming
it as a mosaic of chunks copied from present-day haplotypes
with occasional ÔmutationsÕ, and the uncertainty regarding its
relationships with ancestral lineages of the existing sample is dealt
with by averaging over all possible copying paths.

Throughout this paper we make this link between the copying
process and the coalescent fairly explicit. That is, we consider
copying haplotype X to be analogous to coalescing with the
ancestral lineage of haplotype X at some time in the past.
With this analogy in mind, we construct our copying model
by deriving approximate probabilities and expectations under a
coalescent model. This interpretation also lies behind the work
of LS, who modeled the probabilities of mutation and switching
(i.e. recombining) as decreasing functions of k, reflecting the
fact that haplotypes added into an already large sample coalesce
rapidly with other haplotypes, leaving little time for mutation or
recombination (see Ewens (1990) for a discussion of this sequential
sampling construction of the coalescent process).
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Fig. 2. A schematic depiction of the copying process of our model at a single site. The figure depicts the situation when computing the approximate conditional probability
of the seventh haplotype, having already added three haplotypes from each population into the sample ( k1 = k2 = 3). The left side (red) illustrates a possible genealogy
of the previously sampled haplotypes (although note that we do not model the genealogy explicitly). The right side (blue) illustrates our approximate copying model for a
new haplotype sampled in population 2. With probability p(S = d) the lineage coalesces within the daughter population. In our approximate copying model this occurs at
a fixed time td = E(Tcoal |S = d), and the new haplotype copies any of the existing k2 haplotypes with equal probability. Otherwise, the new lineage survives back into the
ancestral population (state S = a). In that case, it coalesces with a lineage from either population, at fixed time ta = E(t|S = a). The copying probabilities are weighted to
reflect the different fixation rates in the two populations; the weighting factor involves the expected proportion E(Jp/(J1 + J2)), where Jp is the unknown number of ancestral

lineages entering the ancestral population from population p. This expected proportion will differ from 1
2

if k1 #=k2 (as well as in the asymmetric drift case, F1 #=F2). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

However, it should be noted that there is no formal correspon-
dence between the coalescent process and the LS copying process.
For example, it will often be the case that the ancestral lineage
of the new haplotype coalesces with a lineage that is ancestral to
several sampled lineages (haplotypes) at site l. In that case it is
less clear which haplotype the new haplotype should be said to be
copying at site l. This lack of exact correspondence between the ge-
nealogical process and the process under which the approximate
likelihood is computed is a feature of the ÔcopyingÕ approximation
in general; it is not specific to the model of population history con-
sidered here.

2. A new PAC scheme for the population splitting model

2.1. Overview of the new method

In this paper we develop a PAC copying model for data sampled
from two populations that have split from a common ancestral
population, using the same framework of ÔcopyingÕ and ÔswitchingÕ
outlined above. We first give a brief intuitive overview of the
method. We then fully specify our model for unlinked sites
and present results for unlinked data, and subsequently present
our model of linkage and results for linked data. A schematic
representation of our model is given in Fig. 2. In order to model
the effect of the splitting event, we specify that copying occurs
at one of two ÔlevelsÕS: ancestral ( S = a) or daughter ( S = d).
We think of copying at the daughter level as corresponding to
the new lineage coalescing at some point prior (measuring time
backwards from the present) to the fusion of the populations;
copying at the ancestral level corresponds to the new lineage
surviving back to the ancestral population before coalescing with
another lineage. Note that since there is no gene flow between the
daughter populations only haplotypes from the same population
may be copied at the daughter level, whereas haplotypes from
either population might be copied ancestrally. Recall that in order
to simulate a new allele at site l under the unstructured copying
model of LS, one generates the latent variable Xl and then copies
that haplotype (possibly with mutation). In contrast, under our
structured copying model, one first chooses the level of copying
Sl, and then conditional on Sl chooses the label Xl of the copied
haplotype.

A complete description of our model requires specifying the
following three quantities. The values that we use are based

on approximating the standard coalescent model of population
splitting.

Aprior on thehidden copying states (Sl, Xl) at a single site. This is
based on modeling the probability that, looking backwards in time,
the newly sampled lineage survives to the ancestral population
without coalescing with any of the other lineages sampled from
that population. When F is large, the prior probability of Sl =
a is small, which corresponds to an expectation under the prior
that allele frequencies in the two populations will have diverged
substantially from the ancestral frequency. Conditional on copying
at the daughter level ( Sl = d), the new lineage can copy
any of the lineages sampled from the same population, with
equal probability. Conditional on Sl = a, the new lineage is
allowed to copy any of the allele copies sampled from either
population; if there are expected to be more ancestral lineages
deriving from one population than the other, then the ancestral
copying probabilities are weighted accordingly. The latter situation
occurs when the number of previously-sampled lineages differs
between the populations, and also when drift is asymmetric. The
prior probabilities are described in detail in Section 3.1.1, and the
extension to asymmetric drift is described briefly in Section 3.2.

The probability of the new allelic state, conditional on the state
of the copied allele and the level at which copying occurred. To
model the fact that copying an allele at the ancestral level implies
a deeper coalescence time, we make the copying fidelity lower for
Sl = a, by assuming that the time available for mutation is equal to
the expected coalescence time, given Sl. This is described in detail
in Section 3.1.2.

These two quantities, together with the PAC likelihood (Eq. (2)),
specify our model for unlinked sites. In Section 3.2 we study
estimators of the scaled split time under this model. Our model
for linked variation requires the following third quantity to be
specified.

Transition probabilities between the hidden copying states at
adjacent sites. There is a large set of possible sequences of hidden
states (S1, X1), . . . , (SL, XL), which we refer to as ÔpathsÕ through
the missing data. The transition probabilities between states at
consecutive sites specify a Markov chain prior on those paths,
which is intended to capture the correlation between sites due
to linkage. Our transition probabilities (described in Section 4.1)
are parameterized in a way that attempts to capture important
features of the genealogical process with recombination under the
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Fig. 3. The copying process in the new PAC model for loosely linked data illustrated
with an example path through the missing data. A new haplotype is added to a
sample of four ( k1 = 2, k2 = 2; population labels are given on the right hand
side). At each site along the haplotypes, small circles represent which of the two
alleles is present (filled or open). Each of the 4 haplotypes has its own color. The
new haplotype at the bottom is made up as a mosaic of these colors, indicating
which of the four haplotypes is copied at each site ( X1, X2, . . . , XL), and letters ( d
and a) indicate which level this copying occurs at ( S1, S2, . . . , SL). For each of the
5 copied sections, a schematic genealogy is drawn above that might correspond to
the state of the copying process below. In the trees, the new lineage is depicted in
black. Although the relationships of the colored lines in the genealogies are depicted
as remaining the same, note that this is not an assumption of the model.

population splitting model. Thus the new haplotype is modeled
as a mosaic of sections of haplotype copied from one of the
previous haplotypes, where points at which there is a switch in the
haplotype being copied correspond to recombination events.

When F is large we have already seen that the prior at a
single site places relatively little weight on ancestral copying.
Our transition probabilities have the effect that these occasional
stretches of ancestral copying are short, since the deep split time
gives plenty of time for recombination. Therefore, the haplotype
is expected to resemble others from the same population over
long stretches. Conversely, when there has been less drift since
the split, higher prior probability is associated with copying longer
sections of ancestral haplotypes. We capture these properties of
the genealogical process with recombination by using expected
coalescence times in the daughter and ancestral populations
to model the opportunity for recombination (switching) in our
approximate copying process.

Fig. 3 illustrates a possible sequence of hidden states. The
values of X along the haplotype are indicated by the haplotype
coloring, and the values of S are indicated by the sequence of letters
underneath. The path that is illustrated is one that might have
high prior probability when F is relatively large because, firstly,
the sections that are copied at the daughter level are much longer
than those copied ancestrally, and secondly, the ancestral-level
copying has made more errors (mutations) than the daughter-level
copying.

Computing the likelihood. To compute the AC probability we have
to consider the set of all possible paths (S1, X1), . . . , (SL, XL). The
prior probability of one of these paths will depend on the value of
the parameters F and ρ, as well as on the numbers k1 and k2 of
haplotypes added so far from each population. The AC probability,
öpφ(hk1+ k2+ 1|h1, . . . , hk1+ k2 ), corresponds to the probability of the
data averaged over this prior probability distribution on possible
paths and, as in LS, can be computed in an efficient manner using
the forward algorithm for hidden Markov models (HMMs; see e.g.
Rabiner (1989) and Appendix A ).

As in LS, the approximations made in our PAC model make
the likelihood depend upon the ordering of the haplotypes, and

we average the likelihood of a dataset over a small set of random
orders of haplotypes. For the results presented here we constrain
these random orders to sample a haplotype from each of the two
populations in turn.

3. Unlinked data

3.1. Methods: Unlinked

In the unlinked case the likelihood for the alignment of
haplotypes may be computed as the product of the likelihoods for
individual sites. Therefore, in this section we will use hi to refer
to an allele copy at a single site rather than an entire haplotype.
The problem of computing the likelihood is now reduced to
computing the approximate probability of a new allele hk1+ k2+ 1

given the alleles h1, . . . , hk1+ k2 observed so far, as a function of the
model parameters. To do so we now specify our prior probability
distribution on the hidden copying states Sl $ {a, d} and Xl $
{1, . . . , k1 + k2}, as well as the mutation probability conditional
on the level at which copying occurs.

3.1.1. The prior on Sl and Xl
In contrast to LS, under our population splitting model the prior

probability on Xl is uniform only in the unstructured case F = 0. To
model the structure we introduce an additional state Sl, the prior
probability distribution of which is given by the probability p(Sl =
a) that the new lineage coalesces in the ancestral population, given
the amount of drift in the population from which it was sampled,
and the number of lineages already sampled from that population.
The probability is a decreasing function of both the latter two
quantities, capturing the idea that few lineages make it back to
the ancestral population in populations that have experienced
considerable drift, and that lineages added later in the order
are a priori more likely to coalesce in the daughter population
and so resemble alleles already sampled within that population.
The probability can be calculated exactly for a coalescent model
(Eq. (31) , Appendix C.1 ).

Conditional on Sl, we use the following prior probability
distribution on Xl:

p(Xl = i|Sl = d) =






1

kz!
if zi = z!

0 otherwise
(3)

p(Xl = i|Sl = a) = E

(
Jzi

J1 + J2

)
1

kzi
. (4)

Here, zi $ {1, 2} is the population label of sampled lineage i,
and kzi refers to the number of lineages sampled so far from
population zi. z! is shorthand notation for zk1+ k2+ 1, i.e. the label
of the population from which the new lineage is sampled. Jzi is the
unknown number of distinct ancestral lines that enter the ancestral
population, starting with kzi lines in daughter population zi. The
expectation can be calculated using the transition probabilities in
TavarŽ (1984) (Appendix C Eq.(32) ). Note that although quantities
such as p(Sl = a) and p(Xl = i|S) depend on k1, k2, and F , this
dependence is generally left implicit in our notation.

In words, conditional on copying in the daughter population,
the prior on Ôwho you copyÕ has zero weight on alleles from
the other population, and is uniform over alleles from the same
population. The prior, conditional on copying ancestrally, allows
any allele to be copied but takes into account the numbers of
allele copies sampled so far from each population ( k1 and k2). This
prior extends straightforwardly to the case of unequal drift in the
daughter populations, as discussed in Section 3.2.
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3.1.2. Mutation probability
Conditional on copying in the daughter population, the

probability that the new allele is identical to the copied allele
should be (as in LS) an increasing function of kz! , since when kz!
is large we expect the new lineage to coalesce rapidly into the
existing tree. Furthermore, since Sl = a implies a more ancient
coalescence time than Sl = d whatever the value of k1 and k2, the
ancestral copying fidelity is lower. The approach we take is to view
the mutation probability in terms of the opportunity for mutation
before the copying (coalescence) time ts. We set this time to its
expectation

ts = E(Tcoal|S = s; k1, k2, F), (5)

where Tcoal is the coalescence time of the (k1 + k2 + 1)th lineage.
These expectations can be computed exactly using results from

TavarŽ(1984) and Fu and Li (1993) (see Appendix C ). The mutation
probabilities used are based on the assumption that either 0 or
1 mutations occurred on the branch joining the new line to the
existing tree and are

u(hk1+ k2+ 1|hi, s) = p(hk1+ k2+ 1|Sl = s, Xl = i; k1, k2, F)

=
{

1 " exp(" ÷θ ts) if hk1+ k2+ 1 #=hi

exp(" ÷θ ts) if hk1+ k2+ 1 = hi.
(6)

An exception occurs when k = 1 in which case 2 ta is substituted
for ta in order to account for the time on the branch ancestral to
the first line ( S = d is impossible for the second line sampled, as
the random orderings are chosen such that haplotypes are sampled
alternately from each population).

The value of ÷θ depends on the way in which the sampled
loci were ascertained. If the loci were selected without regard
to whether or not they show polymorphism (resequencing data),
then ÷θ would be treated as a parameter of the model to be
estimated. Alternatively, if loci were only included if they were
polymorphic in the sample (SNP data) then, following LS, an
arbitrary small value of ÷θ is used. For the results presented in
this paper we used ÷θ = 1/E(Ttotal ), where Ttotal is the expected
total length of the full genealogy with n tips, given the sample
configuration and the model parameters. This can be calculated
exactly ( Wakeley and Hey, 1997) but in the implementation
described here we used an approximation ( Appendix C.3 ).

3.1.3. Calculating the likelihood of unlinked data
The AC probability under the isolation model is obtained by

averaging the mutation probability over the prior probability
distribution on the missing data:

öpφ(hk1+ k2+ 1|h1, . . . , hk1+ k2 ) =
∑

s${d,a}

k1+ k2∑

i= 1

u(hk1+ k2+ 1|hi, s)

%p(S = s, X = i).

Let øu(hk1+ k2+ 1|s) =
∑k1+ k2

i= 1 u(hk1+ k2+ 1|hi, s)p(X = i|S = s)
denote the emission probability averaged over which allele is
copied, given that S = s. Then the AC probability under isolation
without gene flow is

öpφ(hk1+ k2+ 1|h1, . . . , hk1+ k2 ) = p(S = a)øu(hk1+ k2+ 1|S = a)

+ (1 " p(S = a))øu(hk1+ k2+ 1|S = d). (7)

Eqs.(2), (6) and (7), together with the expressions for p(S = a)
and ts given in Appendix C , specify an algorithm for computing the
PAC likelihood under the isolation without gene flow model, for a
single ordering of alleles. The likelihoods that we actually use are
an average of these quantities over a random sample of orderings,
subject to taking alleles alternately from the two populations.
For the results in this paper we have used 10 random orderings.
We implemented the algorithms described in this paper in R(R
Development Core Team, 2008).

5

4

3

2

1

0

0

1 2 3 4 5 6 7 8 9 10

Fig. 4. A comparison of log likelihood curves for F between the PAC (black) and
coalescent (red) models. The set of panels show results for all distinct allele count
configurations at a single SNP. Each panel shows log likelihood surfaces for a data
set at a single SNP, with 10 allele copies sampled from each population. Within each
panel, the x axis ranges from F = 0 to F = 0.7; y-axis values range upwards from
2 log-likelihood units below the maximum. Average PAC likelihood surfaces are in
black (individual orderings in grey); coalescent likelihood surfaces are in red. The
integers along the bottom and left-hand side of the plot are minor-allele counts in
the two populations, specifying the data which were used to compute the likelihood
surfaces in the corresponding panel. For example, the panel which lies in the row
labelled 2 and in the column labelled 4 corresponds to a data set in which there
are 4 copies of the minor allele out of 10 in population 1, and 2 copies out of 10 in
population 2. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

3.2. Results: Unlinked

For unlinked data, likelihood surfaces for F under the standard
coalescent model can be estimated accurately by simulation, and
our first check on the performance of the new method is to
compare these with likelihood surfaces computed under the new
PAC model. In order to compute these ÔÔcoalescentÕÕ likelihoods for
SNP data, we first estimate the probabilities of all possible single-
site allele-count configurations, conditional on the occurrence of
a single mutation, as the average lengths of branches (relative
to the total length of the genealogy) that would lead to those
configurations in 10 6 genealogies simulated from the prior. The
likelihood for a data set comprising multiple sites is, under the
assumption of no linkage, given by multinomial sampling with cell
probabilities equal to the allele-count configuration probabilities,
and cell counts equal to the number of sites observed to have those
allele-count configurations. An alternative is to compute the allele-
count configuration probabilities using the results in Wakeley and
Hey (1997). Fig. 4 shows log likelihood surfaces for multiple sets of
data at a single diallelic locus, with a sample of 10 allele copies from
each daughter population. As described in Section 3.1.2, these PAC
likelihoods for SNP data are computed using a fixed, small value
of θ . The PAC model does not use information about the ancestral
and derived states of the alleles, and the panels correspond to the
36 possible non-equivalent allele-count configurations. The shapes
of the surfaces and the locations of the maxima are broadly similar,
although it is evident that for several of the configurations the
PAC likelihood surface is less tightly curved around the maximum,
indicating that the data are slightly less informative about F under
the PAC than under the coalescent model. In Fig. 5, likelihood
surfaces are shown for two data sets of 60 SNPs, simulated with
different values of F . Encouragingly, there is close agreement
between the coalescent and PAC likelihood curves.

We investigate the performance of the new maximum PAC
likelihood estimator of F by simulating data sets from the infinite-
sites coalescent model for a range of true F values, using the
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Fig. 5. Inference for F in the unlinked model using the PAC (black) and coalescent
(red) models. The plots show relative log likelihood surfaces for two data sets of 60
unlinked SNPs each. The vertical dotted lines indicate the value of F used to simulate
data. Results from the PAC likelihood are plotted in black (different orderings in
grey); the coalescent log likelihood is in red. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

software ms (Hudson, 2002). In all cases our simulated data
sets comprise 10 sampled haplotypes in each population, i.e. we
assume that the organisms are haploid or that the haplotype phase
was known in advance. For SNP data we simulate datasets with 60
unlinked SNPs for a range of F values. (The SNP number was chosen
to match the study design of Conrad et al. (2006)). These data sets
were simulated by picking 60 SNPs at random from data generated
with a large value of θ . For the resequencing data we simulated
data at 17,000 unlinked sites by simulating 17,000 independent
genealogies and applying mutations to each at rate 4 Nµ = 2θ =
10" 3 (this value of θ was chosen so that the expected number of
segregating sites was approximately 60 at F = 0). Likelihoods for
resequenced data were computed using the value of θ used in the
simulations. For both the coalescent and PAC inference schemes we
estimate the likelihood at a grid of F values with grid-spacing 0.01,
and take the grid point with the maximum estimated likelihood as
the MLE.

Fig. 6 illustrates the behaviour of the öFpac estimator under the
unlinked model. We construct a confidence interval around the
MLE by taking the most extreme grid points whose log likelihood
was within 2 of the maximum log likelihood grid point. In Table 1
we give the coverage of this confidence interval, and the root mean
square error of the estimators. There is little bias, and the results for
the PAC method for the SNP data are very similar to those obtained
by using computationally intensive coalescent simulations. Indeed
there is a strong linear correlation between the MLE from the PAC
and coalescent inference approach ( Fig. 7). These results suggest
that, despite the approximations, the performance of our PAC
copying model at estimating the parameter F is indistinguishable
from that of a full likelihood estimator.

For simplicity of presentation we have concentrated on a model
in which there has been equal drift in each daughter population.
In practice however, investigators frequently need to fit models
in which drift has been quite strongly asymmetric (e.g. Hey,
2005; Anderson and Slatkin, 2007). Our method naturally extends
to this more general case of unequal population sizes ( N1 #=
N2 #= Na). Briefly, in the expression for the prior probability
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Fig. 6. Unlinked model: Estimation of F . Each panel shows the distribution of
MLEs for 1000 data sets simulated with the indicated value of F . Likelihoods were
evaluated at points of a grid of F values with spacing 0.01. The boxplots indicate
25%, 50% and 75% quantiles. Long horizontal black bars indicate the location on the
y-axis of the true value of F . For resequenced data the model was provided with the
per-site value of θ used in the simulations.

Table 1
Coverage rates and Root Mean Square Error of the MLE under the unlinked
model for SNP data for a range of values of F . The coverage rates use intervals
containing values with log-likelihood within two units of the maximum (see text).

Ftrue
0 0.05 0.1 0.15 0.2 0.25

Coverage
PAC 0.98 0.96 0.97 0.96 0.97 0.97
Coalescent 0.98 0.95 0.96 0.95 0.95 0.95
RMSE
PAC 0.01 0.03 0.04 0.04 0.05 0.06
Coalescent 0.01 0.03 0.03 0.04 0.05 0.06

of copying ancestrally (Eq. (31) , Appendix C.1 ), F is replaced
by the population-specific parameter Fz! . Conditional on copying
ancestrally, the prior on which haplotype is copied is weighted
towards haplotypes from the population which has experienced
less drift, by conditioning the expectation in Eq. (4) on F1 and F2

in addition to k1 and k2. ρ and θ are replaced by values scaled by
the appropriate population size when considering recombination
and mutation events in the different populations. We note that our
estimators from unlinked SNPs in the unequal drift case seem to
perform reasonably well, although the estimated drift parameters
(F1 and F2) show some tendency to be more similar than those used
to generate the data (results not shown).

4. Loosely linked data

4.1. Methods: Linked

With loosely linked data, correlation is anticipated between the
patterns of polymorphism at nearby sites (over and above that
induced by population structure), as a result of limited recombi-
nation. Modeling this phenomenon is in general challenging, but
failure to do so (i.e by treating the sites as unlinked) will have two
undesirable effects: firstly, valuable information that is present
in the data about the genealogy along the chromosome will be
lost; secondly, confidence intervals can be too narrow, and thus
would fail to have the nominal coverage. Since the likelihood can
no longer be computed as a product of likelihoods at individual
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Fig. 7. Unlinked model: Estimation of F . Each panel shows the joint distribution of
coalescent (x-axis) and PAC (y-axis) MLEs for 1000 SNP data sets simulated with the
indicated value of F . Darker colors indicate higher local density of points. Grey lines
indicate the true value of F , and the line y = x. Red crosses lie at the mean value
of the MLEs. Likelihoods were evaluated at points of a grid of F values with spacing
0.01. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

sites, we now switch notation so that hi refers to haplotype i, as
opposed to a single allele copy as it did in the previous section.

Recall that our model involves, at each site l, the unknown
copying states Sl (the level at which copying occurs) and Xl (the
identity of the haplotype that is copied). Whereas the unlinked
case simply required the specification of the prior distribution
on (Sl, Xl) at a single site, in the linkage model the copying
states at nearby sites are not independent under the prior. Hence
it is less straightforward to specify the joint prior distribution
on the copying states (S1, X1), . . . , (SL, XL) at all sites. As in LS,
we use a Markov chain for this prior. Therefore, in addition
to the marginal (single-site) prior on (Sl, Xl), we also specify
transition probabilities between (Sl, Xl) and (Sl+ 1, Xl+ 1). These
govern properties such as the expected length of stretches of
ancestral copying, and must be appropriately parameterized by
model parameters such as F , as well as by k1 and k2. The other
parameter that features in these transition probabilities is ρl,
which corresponds to the population-scaled recombination rate
between sites l and l + 1. We focus on the case of constant
recombination rate along the chromosome, so ρl corresponds to
the population-scaled, per base-pair rate of recombination ( ρbp)
multiplied by the physical distance between site l and l + 1.
Variation in recombination rates along the chromosome could be
incorporated simply by setting the ρl individually, according to
an estimated genetic map. Since we view (Sl = s, Xl = i) as a
statement about the way in which the new lineage coalesces in
to the existing genealogy at site l, in order to parameterize the
transition probabilities we consider how recombination can result
in changes to this genealogical structure.

The transition probabilities have the following form:

p(Sl+ 1 = s&, Xl+ 1 = i&|Sl = s, Xl = i) = pR(Sl+ 1 = s&|Sl = s)

%p(Xl+ 1 = i&|Sl+ 1 = s&) + I(i&= i, s&= s)p(NR|Sl = s). (8)

In this expression I() is an indicator function that takes the value
1 if its argument is true and 0 otherwise, and p(NR|Sl = s) is

the probability, given that copying is at level s, that there is no
recombination between sites l and l + 1, resulting in no change
of state ( i& = i, s& = s). p(Xl+ 1 = i&|Sl+ 1 = s&) is the probability
of copying haplotype i&given copying at level s&, and is the same
as in the no-linkage model (Eqs. (3) and (4)). The tricky part here
is pR(Sl+ 1 = s&|Sl = s), which is the probability, given copying at
level s at site l, that a recombination occurs between sites l and
l + 1 and that as a result copying occurs at level s&at site l + 1. Our
copying process is an approximation to the coalescent model and
so our aim is that, for example, pR(Sl+ 1 = a|Sl = d) approximates
the probability, conditional on coalescence of the new lineage in its
own population at site l, that there is recombination between sites
l and l + 1 and the genealogy is altered in such a way that at site
l + 1 the same line now coalesces in the ancestral population.

We approximate the transition probabilities by considering
different classes of genealogical rearrangements which could give
rise to the copying transition in question, as illustrated in Fig. 8.
That figure is divided into four panels, corresponding to the four
different transitions ( d ' d, d ' a, a ' d and a ' a). Within
each panel, the different classes of genealogical rearrangement are
identified by a number (i)Ð(v). We now explain the expressions
that we use for the quantities p(NR|Sl = s) and pR(Sl+ 1 = s&|Sl = s)
in more detail. When describing the genealogical motivation for
these expressions, we will refer to the ancestral lineage of the
haplotype that is copied at site l as the ÔÔcopied lineageÕÕ.

4.1.1. Transition probabilities under the linkage model
Transitions from the daughter population. We consider two
possibilities involving recombination: a recombination occurs on
either the new lineage or the copied lineage, prior to their
coalescence (event Rdc ; genealogies i and iii in the d ' a and the
d ' d panels of Fig. 8). The coalescence time of these lineages
is assumed to be the conditional expectation td. Therefore for the
probability of no recombinationÑand thus no change in stateÑwe
use

p(NR|Sl = d) = 1 " p(Rdc) (9)

where

p(Rdc) = 1 " exp(" 2ρltd). (10)

If there is a recombination, the new lineage subsequently coalesces
into the tree at the next site either in the daughter ( S& = d) or
ancestral ( S& = a) population. Following from Eq. (9), in principle
the probability of the transition as a result of recombination should
be

pR(Sl+ 1 = s&|Sl = d) = p(Rdc)p(Sl+ 1 = s&|Rdc). (11)

However, evaluating e.g. p(Sl+ 1 = a|Rdc) requires averaging the
probability of surviving back to the ancestral population over the
unknown number of uncoalesced lines at the unknown time of the
recombination event; in practice we substitute the marginal (prior)
probability p(S = s&) (Eq. (31) , Appendix C.1 ), which is larger than
p(S = s&|Rdc) in the case s&= d and smaller in the case s&= a.

Transitions from the ancestral population. In the case of a ' a
and a ' d we classify the recombination events according to
whether they occur on the new lineage in the daughter population
(event Rn

d), on the copied lineage in the daughter population (event
Ro
d) (genealogies i and iii in Fig. 8) or on either line in the ancestral

population, before they coalesce (event Rac ) (genealogies ii and
iv). The length of time available for recombination in a daughter
population is F , and in the ancestral population we approximate it
by ta" F . Thus we approximate the probability of no recombination
(genealogy v) by

p(NR|Sl = a) = (1 " p(Rn
d ( Ro

d ( Rac)) (12)
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Fig. 8. Transitions between daughter and ancestral copying states. The four panels correspond to the four possible transitions between copying levels ( d ' d, d ' a,
a ' d and a ' a). Within each panel, we illustrate the various classes of genealogical rearrangement that we consider when approximating the probability of that panelÕs
copying transition. Each class of genealogical rearrangement is illustrated by a diagram of a genealogy of two lineages (in black): the new lineage (marked with an asterisk),
and the lineage that it copies at site l. In each genealogy diagram, a thick blue line represents the barrier to gene flow separating the daughter populations. At site l + 1, the
lineage that is copied may be different as a result of recombination in the history of the two samples between sites l and l + 1. Red lines represent lineages at site l + 1, and
the way they are drawn reflects the way in which the probability of the event being depicted depends on their fate (i.e. on when they coalesce into the rest of the genealogy).
Short red rising lines indicate that the transition probability depends only on the occurrence of the recombination event, and not otherwise on the fate of the recombinant
line. Long red rising lines indicate that the lineage must remain distinct and enter the ancestral population, prior to its eventual recoalescence. A horizontal terminus to the
red line indicates that the line must recoalesce in the daughter population. Red lines without an initial horizontal section do not require a recombination to have occurred
(i.e. they already existed at site l). The five types of event are, (i) recombination on the new lineage in the daughter population, (ii) recombination on the new lineage in
the ancestral population, (iii) recombination on the copied lineage in the daughter population, (iv) recombination on the copied lineage in the ancestral population, (v) no
interrupting event (note that this last event can only contribute to the probability of ÔtransitionsÕ to the same haplotype at the same level ( s&= s, i&= i)). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

where

p(Rn
d ( Ro

d ( Rac) = 1 " exp(" 2ρlta). (13)

The case a ' d is relatively straightforward as only a recombi-
nation event on the new lineage in the daughter population (ge-
nealogy i), followed by recoalescence in the daughter population,
can effect this transition. Thus the expression that we use for the
a ' d transition probability as a result of recombination is

pR(Sl+ 1 = d|Sl = a) = p(Rn
d)p(S = d|Rn

d), (14)

where p(Rn
d) = 1 " exp(" ρlF). Again, we substitute the

unconditional prior probability p(S = d) for p(S = d|Rn
d).

The casea ' a is more complex, as this transition can result
from any of the following (mutually exclusive) combinations of
events:

¥ a recombination on the new lineage in the daughter population
(genealogy i), followed by ancestral recoalescence; probability
p(Rn

d)p(S = a|Rn
d);

¥ no recombination on the new lineage in the daughter popula-
tion, but recombination on the copied lineage in the daughter
population, (genealogy iii); probability (1 " p(Rn

d))p(R
o
d)

¥ recombination on neither the new or copied lineage in the
daughter population but an ancestral recombination on one or
other lineage, (genealogies ii and iv); probability (1 " p(Rn

d (
Ro
d))p(Rac).

Thus the expression we use for the a ' a transition probability
as a result of recombination is

pR(Sl+ 1 = a|Sl = a) = p(Rn
d)p(S = a) + (1 " p(Rn

d))p(R
o
d)

+ (1 " p(Rn
d ( Ro

d))p(Rac) (15)

where

p(Ro
d) = p(Rn

d) = 1 " exp(" ρlF)

p(Rn
d ( Ro

d) = 1 " exp(" 2ρlF)

p(Rac) = 1 " exp(" 2ρl(ta " F)), (16)

and again we have substituted the marginal (prior) probability
p(S = a) instead of p(S = a|Rn

d).

4.2. Results: Linked

We now explore the properties of our PAC scheme for loosely
linked regions. Again, we focus on the symmetric case in which the
amount of drift has been the same in the two daughter populations,
and in which the ancestral population had the same effective size
as the daughter populations. In keeping with LS and much of the
subsequent development of PAC copying models (e.g. Yin et al.,
2009; Marchini et al., 2007; Leslie et al., 2008; Price et al., 2009;
Hellenthal et al., 2008), we focus here on estimation under the
model for SNP data rather than resequencing data (methodological
aspects of fitting the linkage model to resequencing data are
discussed in Appendix B ).

To illustrate how our method uses the information in linkage,
and to provide a comparison with LS, we begin by investigating
the ability of our method to estimate the recombination parameter
ρ (where ρ is ρbp multiplied by the length of the genomic
region simulated). Fig. 9 illustrates the relationship between the
maximum PAC likelihood estimator öρpac, and the true value of ρ.
Since this relationship may vary with the value of F used in the
simulation, and when fitting the model, the figure displays results
for data simulated using four different values of F . In each case the
true value of F was used when fitting the model. When the data are
simulated without recombination, öρpac is generally close to zero. As
can be seen in Fig. 9, our estimates of ρ are biased, but there is a
linear relationship between ρ and öρpac, the slope of which varies
between 0 .25 at F = 0 and 0 .45 at F = 0.2.

Whereas LS were primarily concerned with estimating the
recombination rate, our focus here is on estimating the drift
parameter F . The linkage model incorporates information about
the lengths of haplotypes shared within and between populations
into the estimation of F , and therefore these estimates are
influenced by the value of ρ used when fitting the model. Fig. 10
illustrates the dependence of öFpac on F , for some different values
of ρ. It is evident that if the value of ρ is increased, the model
responds by lowering the estimate of F . A partial explanation of
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Fig. 9. Dependence of öρpac on ρ. 60 SNPs were simulated using the specified value
of ρ for the region, for four different values of F . When fitting the model to estimate
öρpac for each region, F was fixed at its true value. The line y = x is shown in light
gray. The results of a linear regression of öρpac on ρ are shown as a black line and an
equation in each panel.
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Fig. 10. Linkage model: Estimation of F (symmetric drift, SNP data). The x-axis
indicates the value of F used to simulate the data. For each value of F , 200 data
sets of 60 SNPs were simulated with 4 Nr = 2ρ = 50. Above each value of F ,

distributions of öFpac MLEs are illustrated with boxplots. The 3 boxplots correspond
to different values of ρ used when fitting the model. The boxplots indicate 25%, 50%
and 75% quantiles of the MLEs and the mean MLEs are indicated by a solid black
dots. Horizontal black bars indicate the location on the y-axis of the true value of F .

this phenomenon is provided by considering stretches of similarity
between haplotypes from different populations. The distribution
of lengths of such stretches under the prior is determined by the
product ρF = rG. Therefore if ρ is increased, then the model
responds by decreasing the estimate of F .

Although no value of ρ results in unbiased estimation of F
across the range of F values we investigated, it is possible to almost
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Fig. 11. Bias correction under the linkage model. The figure shows the distribution
of MLEs for 100 data sets simulated with the value of F indicated along the x-axis.
The boxplots indicate 25%, 50% and 75% quantiles of the MLEs and the mean MLEs
are indicated by solid black dots. Horizontal blue bars indicate the location on the y-
axis of the true value of F . MLEs from the bias-corrected linkage model (see text) are
shown in blue. MLEs resulting from analysing the same data under the no-linkage
model are shown in red. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

completely correct this bias. To do this we fit a linear model

öFpac ) a + bFtrue (17)

for the öFpac MLE estimates, using a fixed value of ρ across a
range of simulations with different Ftrue. We then construct a new
estimate with reduced bias by removing the linear component
of the bias (öFpac " a)/b. We did this for the values of ρ shown
in Fig. 10, using 100 simulations for each Ftrue to estimate the
coefficients a and b and then using these to correct MLEs from
another 100 simulations. We chose to use the corrected MLEs
from 0 .5 % ρ as these produced the estimates with the least
remaining bias in the mean and median (results not shown).
Fig. 11 illustrates the performance of our bias-corrected estimator,
alongside the estimator which ignores linkage. The variance of the
linkage-model estimators are slightly lower than those ignoring
linkage for all values of F > 0, demonstrating that the linkage
model is successful in extracting the extra information from the
data. Encouragingly, the bias-corrected linkage-model estimator
has both a lower variance than the no-linkage estimator, and is
approximately unbiased. This bias correction also suggests an ad
hoc method of constructing confidence intervals for an estimated
value of öF . This involves recording the range of values of F (on
our grid of F ) whose log-likelihood fall within 2 of the maximum
log-likelihood, representing a confidence interval for our biased
estimator, and applying the linear bias correction (Eq. (17) ) to this
range to obtain a bias-corrected confidence interval. This interval
has upward of 80% coverage for the range of F values in the
simulations presented in Fig. 11. It is likely that the form of the
bias will depend on features of the data such as the sample size and
spacing of SNPs, as was found by LS when estimating ρ. Therefore
the bias correction would have to be tailored to the data set used
by performing simulations, matched to the data in various ways
(e.g. according to the number of segregating sites and plausible
recombination rate) for a range of F values to estimate a linear form
for the bias correction (and to confirm approximate linearity). The
complexity of this procedure is a drawback of our method in its
current form.
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5. Discussion

In principle, the data sets of choice for learning about the
evolutionary history of populations are those with physical
linkage. This preference stems from the value of information about
local genealogical structure (i.e. along the chromosome) when
trying to learn about such things as the timing of population
splitting, gene flow and admixture events. As a result, even in
non-intensively studied species many data sets of linked variation
from the nuclear genome have now been assembled with the aim
of learning about population history, and for the last few years
there has been a pressing need for statistical methods capable of
extracting much of the information that they contain.

Here, we have introduced an approximate likelihood method
to estimate the parameters of a population split model from
recombining data. The method is an extension of the PAC copying
model of Li and Stephens (2003) to two populations. The main
idea is to allow ÔcopyingÕ to occur at two temporal ÔlevelsÕ: within
the same daughter population, and in the ancestral population.
In the former case the copied haplotype is necessarily from the
same population, whereas in the latter case a haplotype from
either population may be copied. The prior on these possibilities, as
well as the mutation probabilities and the transition probabilities
between copying states at adjacent sites, are based on the standard
coalescent model of a population split.

5.1. The no-linkage model

It is encouraging that the PAC estimator under our no-linkage
model performs comparably to the coalescent estimator ( Figs. 6
and 7, and Table 1). The latter, as long as it is based on
sufficiently many simulations, is optimal in the sense that it is
a maximum likelihood estimator under the same model as that
which generated the data, and yet it does not differ appreciably
in bias or variance from the PAC estimator. These results are
encouraging for two reasons: firstly because, while allowing for
mutation, they provide a computationally efficient alternative to
the simulation-based method for unlinked data; and secondly
because they demonstrate that the joint prior distribution on
copying states at all sites used in the linkage model is built on solid
marginal (single-site) foundations.

5.2. The linkage model

The extension of the no-linkage model to model linkage
also follows the work of Li and Stephens (2003): we specify
transition probabilities between the copying states at adjacent
sites, parameterized appropriately by the recombination rate
parameter between the two sites and the other model parameters
(Section 4.1); this gives rise to a hidden Markov model under which
the likelihood (and other useful quantities) can be computed using
standard algorithms ( Appendices A and B).

However, whereas our approximations to the marginal coales-
cent model evidently worked well in the unlinked case, the tran-
sition probabilities in the linkage model involve approximating
the coalescent-with-recombination under the population splitting
model (Section 4.1), which is more challenging. As a result there are
some related problematic issues regarding estimation of the model
parameters. Firstly, the recombination rate parameter is under-
estimated across a range of true ρ values (Fig. 9). Since the linkage
model is making use of the lengths of shared haplotypes, estimates
of the drift parameter F are necessarily influenced by the value of
ρ (Fig. 10). However, the value of ρ which gives rise to an unbiased
estimator of F depends on the value of F that was used to generate
the data, and thus is neither necessarily the true value of ρ, nor the
ML estimate of ρ that results when F is fixed at its true value. As a

result, joint estimation of all the model parameters is challenging.
This problem could potentially be circumvented by obtaining an
unbiased estimate of ρ using another approach. With ρ held fixed,
bias in the estimation of F varies with the value of F used to gen-
erate the data ( Fig. 10). However, one effective way forward in this
situation is to make a correction to the estimates based on the sim-
ulation results ( Fig. 11). Thus a reasonably unbiased estimator of F
can be constructed that utilizes the extra information contained in
linked sites.

It is hard to pinpoint the source of the bias in our estimates
of F utilizing linkage. We explored a number of other forms for
the transition probabilities that were more accurate descriptions
of the coalescent with recombination but these did not result
in substantial reduction in the bias. One of the most noticeable
features of the estimator öFpac with linkage is the upward bias even
when the data are simulated from an unstructured model ( Fig. 10).
This bias is absent when no attempt is made to model linkage.
Naively, one would expect that the introduction of structure into a
model of data from an unstructured population would result in a
decrease in likelihood because of penalties associated with copying
haplotypes in the Ôother populationÕ. A possible explanation is that
this cost is overcome by an increase in likelihood resulting from the
better ability of the structured model to fit variation in coalescence
times around their expectations. For example, when modeling
an unstructured population, Stephens and Scheet (2005) found it
advantageous to increase the dimension of the hidden state space
in a way that can be viewed as allowing two different Ôcopying
timesÕ as opposed to the single Ôcopying timeÕ ofLi and Stephens
(2003). Since the unlinked model does not appear to benefit in this
way, perhaps it is the time for recombination, rather than the time
for mutation, which is being better fit. While additional work will
be needed to understand the sources of bias in our estimates under
the linkage model, our approach may also be of use in applications
where there is a need to model haplotype structure, but where
estimation of population history parameters is not the primary
goal.

5.3. Gene flow between daughter populations

While we have concentrated here on a model in which there
is no gene flow after the population split, learning about the
extent of migrant ancestry in a population is a very important
challenge ( Hey, 2006). Therefore, one of the prime uses of
the information contained in haplotype patterns may be to
robustly identify haplotypes contributed to the population by
dispersal events. Although a migrant contribution to ancestry in
the past couple of generations can be detected using unlinked
markers ( Rannala and Mountain, 1997), dating older migrant
contributions is aided by modeling how a migrantÕs genome is
broken down by recombination as it is passed down through
the generations (e.g. Falush et al., 2003). Migration events in the
past tens of generations can be detected using markers which are
unlinked in the parental populations (e.g. Falush et al., 2003; Pool
and Nielsen, 2008), however, older migrant haplotypes will be on
a similar length scale as background linkage disequilibrium, and
may be difficult to distinguish from shared ancestral haplotypes.

The method developed here provides both a null model for
the lengths of shared haplotypes when no migration occurs,
and a natural framework for learning about migration events
via the identification of haplotypes shared between populations.
To illustrate this we simulated a sample in which two of
the chromosomes have stretches of migrant ancestry ( Fig. 12).
Modeling each haplotype in turn conditional on all the others, we
estimated the posterior probability of copying ancestrally along
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Fig. 12. Visualizing migrant chunks of chromosome. Each row in the figure
represents a single haplotype, with lighter colors indicating higher posterior
probability that copying is ancestral ( Sl = a) when that haplotype is added as
the final haplotype in the sample. 20 haplotypes were simulated from each of two
populations that separated F = 0.15 units of drift-scaled time ago. We simulated
900 SNPs across a 900 kb region with a population-scaled recombination rate of
4Nr = 1 per kb. To create a stretch of migrant haplotype (marked by short
black vertical lines) the middle third of the first haplotype in each population was
replaced by a haplotype simulated from the other population.

each chromosome. This was calculated by summing probabilities
associated with copying a particular haplotype ancestrally:

P(Sl = a|h1, . . . , hn" 1) =
n" 1∑

i= 1

P(Sl = a, X = i|h1, . . . , hn" 1). (18)

P(Sl = A, X = i|h1, . . . hn" 1) can be calculated using
the forward and backward algorithms (see Appendix A ). For
haplotypes that do not have migrant ancestry, stretches of
ancestral copying are observed due to shared haplotypes from
the ancestral population. The migrant regions are evident as long
stretches of ancestral copying, due to the migrant haplotype being
more closely related to those in the other population than to those
from the population it was sampled from.

A natural way to extend our model to include migration would
be to add an extra copying state that allows the current haplotype
from a population to copy from the other population at the
daughter level. These migrant copying events would tend to persist
along the chromosome for longer than ancestral copying events,
potentially permitting inference for parameters describing the
history of gene flow. Such modeling would be useful for judging
the timing of migration events (e.g. Pool and Nielsen, 2008) and
for understanding the history of particular loci and alleles.

Analysing data sets of loosely linked variation data is probably
the way forward for fitting models of population history.
Furthermore, the ability to model haplotype structure in a multi-
population setting may be useful in contexts other than traditional
parameter inference. While some challenges remain in adapting
the LS copying model to a multi-population setting, we believe that
doing so is one of the most promising approaches to making use
of the information contained in haplotypes from large contiguous
regions of the genome.
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Appendix A. The ‘forward’ and ‘backward’ algorithms

When modeling loosely linked data, the approximate condi-
tional sampling distributions of haplotypes have the form of a Ôhid-
den Markov modelÕ and so evaluation of the probability of the ob-
servation sequence (the haplotype), and evaluation of the poste-
rior probability distribution on hidden states at each site, are stan-
dard procedures, making use of the ÔforwardÕ and ÔbackwardÕ algo-
rithms (see e.g. Rabiner, 1989). However, since it is important to
avoid certain computational inefficiencies, we describe the com-
putations here as they apply to the PAC model.

Define the Ôforward probabilityÕ for each hidden state at site l to
be the joint probability of the hidden state and the data up to and
including site l, conditional on the haplotypes sampled so far, as a
function of model parameters φ:

αl(s, i) = pφ(hk1+ k2+ 1,1, . . . , hk1+ k2+ 1,l, Sl = s,

Xl = i|h1, . . . , hk1+ k2 ), (19)

where hi,l refers to the allele copy present at site l on haplotype
i. We will leave the dependence on φ implicit hereafter. The
approximate conditional probability p(hk1+ k2+ 1|h1, . . . , hk1+ k2 ) is
obtained as usual by summing the forward probabilities at the last
site,

p(hk1+ k2+ 1|h1, . . . , hk1+ k2 ) =
∑

i,s

αL(s, i), (20)

and the PAC likelihood based on a single ordering of all the
haplotypes is computed using (2).

The forward algorithm is initialized by setting the forward
probabilities at the first (say leftmost) locus to

α1(s, i) = ÷p(S = s)p(X = i|S = s)u(hk1+ k2+ 1,1|hi,1, S = s) (21)

for each hidden state pair (s, i). For resequenced data the physical
spacing of consecutive pairs of marker loci is equal (1 bp) and
therefore, under the assumption of homogeneous recombination
rates along the chromosome, so is the rate of recombination
between them. In this case, the transition probabilities between
the hidden states are the same for all consecutive pairs of loci and
the ergodic Markov chain specified in Section 4.1.1 has a stationary
distribution π(s, i). We evaluate this using the normalized first
eigenvector of the transition matrix, and use ÷p(S = s) =

∑
i π(s, i)

in the initialization, thus ensuring that the prior distribution on
the hidden states does not depend on the chromosomal location.
For irregularly-spaced SNPs however, the rates of recombination
between consecutive marker loci vary, and therefore so do the
transition probabilities, and the Markov chain on hidden states has
no stationary distribution. In this case we use ÷p(S = s) = p(S = s)
and the prior therefore differs along the chromosome.

The forward probabilities at sites to the right are computed
recursively, using the values at the adjacent site to the left,
according to

αl+ 1(s&, i&) = u(hk1+ k2+ 1,l+ 1|hi&,l+ 1, s&)

%
∑

s,i

αl(s, i)p(Sl+ 1 = s&, Xl+ 1 = i&|Sl = s, Xl = i). (22)

For computational efficiency it is important to avoid an unneces-
sary extra loop over haplotypes by storing the quantities

f (d)
l =

∑

i

αl(d, i)
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and

f (a)
l =

∑

i

αl(a, i)

and performing the computation in (22) instead as

αl+ 1(s&, i&) = u(hk1+ k2+ 1,l+ 1|hi&,l+ 1, s&)

%
[
f (d)
l p(Sl+ 1 = s&|Sl = d)p(X = i&|s&)

+ f (a)
l pR(Sl+ 1 = s&|Sl = d)p(X = i&|s&)

+ αl(s&, i&)p(NR|Sl = s)
]
. (23)

We note that this form comes about because conditional on a
recombination and the level s&, the choice of haplotype is specified
by the prior p(X = i&|s&) which reduces the complexity of the
transition probabilities. This makes the computation time for the
AC probability of the new haplotype linear in the number of
haplotypes added, rather than quadratic.

In order to evaluate the posterior probability on hidden copying
states, as in Section 5.3, we need to introduce the backward
algorithm. Define the Ôbackward probabilityÕ for each hidden state
at site l to be the joint probability of all the data to the right of
l, conditional on the hidden state and the haplotypes observed so
far, as function of the model parameters:

βl(s, i) = pφ(hk1+ k2+ 1,l+ 1, . . . , hk1+ k2+ 1,L|Sl = s,

Xl = i, h1, h2, . . . , hk1+ k2 ). (24)

The posterior probability that site l is in hidden state (s, i)
is proportional to the product of the forward and backward
probabilities at that site

p(Sl = s, Xl = i|h1, . . . , hk+ 1) =
αl(s, i)βl(s, i)∑

s&,i&
αl(s&, i&)βl(s&, i&)

. (25)

The backward algorithm is initialized by setting these probabilities
to 1 for all hidden states at the last locus (since there is no data to
the right of the last locus). The backward probabilities at loci to the
left are computed recursively, using the values at the adjacent site
to the right, according to

βl(i, s) =
∑

i&,s&
p(Sl+ 1 = s&, Xl+ 1 = i&|Sl = s, Xl = i)

%u(hk1+ k2+ 1,l+ 1|hi&,l+ 1, s&)βl+ 1(s&, i&). (26)

The analogous efficiency measure in the backward algorithm
to that described above for the forward algorithm is to store

the quantities b(d)
l+ 1 =

∑
i u(hk1+ k2+ 1,l+ 1|hi,l+ 1, d)βl+ 1(d, i) and

b(a)
l+ 1 =

∑
i u(hk1+ k2+ 1,l+ 1|hi,l+ 1, a)βl+ 1(a, i) and to perform the

computation in (26) instead as

βl(s, i) = pR(Sl+ 1 = d|Sl = s)b(d)
l+ 1 + pR(Sl+ 1 = d|Sl = s)b(a)

l+ 1

+ p(NR|Sl = s)u(hk1+ k2+ 1,l+ 1|hi,l+ 1, s)βl+ 1(s, i). (27)

Appendix B. Computing the PAC likelihood efficiently for
resequenced data

Resequenced data may feature blocks of sites in which the k
haplotypes sampled so far all have the same allele as the (k1 +
k2 + 1)th haplotype. It is unnecessary to compute the forward
and backward probabilities explicitly at each such site because
the emission probabilities remain constant, and if the blocks of
monomorphic sites are large it may be computationally inefficient

to do so. Let the emission probability of observing the same allele i
as that on the copied haplotype, conditional on S = s, be

u0(s) = u(i|i, s).

Let P be an m %m matrix, where m = kz! + k1 + k2, containing
the probabilities of all the possible transitions multiplied by
the corresponding emission probability, with ÔdaughterÕ events
preceding ÔancestralÕ events along each margin. (z! is shorthand
notation for zk1+ k2+ 1, i.e. the label of the population from which
the new lineage is sampled.) That is,

Pi,i& =






p(Sl+ 1 = d, Xl+ 1 = i&|Sl = d, Xl = i)u0(d)
if i * kz! and i&* kz!

p(Sl+ 1 = a, Xl+ 1 = i&|Sl = d, Xl = i)u0(a)
if i * kz! and i&> kz!

p(Sl+ 1 = d, Xl+ 1 = i&|Sl = a, Xl = i)u0(d)
if x > kz! and x&* kz!

p(Sl+ 1 = a, Xl+ 1 = i&|Sl = a, Xl = i)u0(a)
if x > kz! and x&> kz! .

In the forward case, suppose that site l is the leftmost of a block
of B monomorphic sites. The forward probabilities at site l + B " 1
are required so that those at the polymorphic site l + B can be
computed. They are

αl+ B" 1 = αlPB, (28)

where αl is a row vector containing the forward probabilities in the
order corresponding to the margins of P . That is

αl = [ αl(d, 1), . . . , αl(d, kz! ), αl(a, 1), . . . , αl(a, k1 + k2)]. (29)

In the backward case, suppose that l is the site to the left of the
rightmost site in a block of B monomorphic sites. The backward
probabilities at polymorphic site l " B + 1 are required so that the
backward probabilities at the site to the left can be computed. They
are

βl" B+ 1 = PBβl, (30)

where βl is a column vector arrayed in the same way as αl.
The matrix PB can be computed as usual via an eigenvector
decomposition.

Appendix C. Results from coalescent theory used in the PAC
likelihood

C.1. The prior on the missing data (S, X)

This prior takes the form

p(S = s, X = i) = p(S = s)p(X = i|S = s),

for s $ {a, d} and i $ {1, . . . , k1 + k2}. p(S = a) =
p(S = a; k, F) is the marginal (single site) probability that a
newly sampled chromosome coalesces into the existing tree in the
ancestral population (i.e. more than F units of scaled time in the
past), when k chromosomes have already been sampled from the
same population.

Let Hk(t) be the probability that a newly sampled (k+ 1)th line
has not coalesced by scaled time t , so that the desired quantity is
p(S = a) = Hk(F), and let q(n, j) be the probability that a particular
one of n lines is not involved in any coalescence events as n lines
coalesce to j:

q(n, j) =






1 if n = 1 and j = 1
n∏

i= j+ 1

( i" 1
2

)
( i

2

) =
j(j " 1)

n(n " 1)
if n > 1 and 0 < j * n

0 otherwise.
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p(S = a) can be obtained by averaging q(k + 1, J) over the
unknown number J of distinct lines at scaled time F :

p(S = a; k, F) = Hk(F) =
k+ 1∑

j= 1

q(k + 1, j)gk+ 1,j(F), (31)

where gij(t) is the probability that i lines coalesce to j * i over
scaled time t . Exact expressions for these transition probabilities
of the coalescent process are given by TavarŽ (1984).

The second term p(X = i|S = s) is given in Eqs. (3) and (4). The
expectation in Eq. (4) is computed as

E

(
Jzi

J1 + J2

)
=

k1∑

j1= 1

k2∑

j2= 1

(
jzi

j1 + j2

)
gk1,j1 (F)gk2,j2 (F). (32)

C.2. Expected coalescence times

td is the expected coalescence time of the new line conditional
on coalescence in the daughter population (i.e. before F , looking
backwards in time). Since 1 " Hk(t) is the cumulative density
function of the coalescence time, td can be obtained as

td =
∫ F

0

Hk(t)dt. (33)

We evaluate the integral numerically in R.
ta is the expected coalescence time of the new line conditional

on coalescence in the ancestral population (i.e. after F , looking
backwards in time). Conditional on the numbers J1 and J2 of distinct
ancestral lines entering the ancestral population from the two
daughter populations, this is simply F plus the expected time to
coalescence of the (J1 + J2)th line under panmixia, which is 2 /(J1 +
J2) (Fu and Li, 1993). ta can therefore be calculated by averaging
this quantity over the joint distribution on (J1, J2). Since J1 and J2
are independent, for the case in which the new line was sampled
in population 1,

ta = F +
1

p(S = a)

k1+ 1∑

j1= 1

gk1+ 1,j1 (F)q(k1 + 1, j1)

%
k2∑

j2= 1

gk2,j2 (F)
2

j1 + j2
.

When F = 0, this gives ta = 2
k1+ k2+ 1

, and, from Eq. (13) , we have

that the copying switch rate is 4ρl
k1+ k2+ 1

. This differs from Li and

Stephens (2003) in which the equivalent quantity is (in our nota-
tion) 2ρl

k1+ k2
; as a result our estimates of ρ are systematically lower

than those of LS.

C.3. Approximating the expected total length of branches in the
genealogy

We approximate the total length of the branches of the
genealogy of the entire sample ( n1 + n2) by

E(Ttotal ) +
n1∑

j1= 1

n2∑

j2= 1

gn1,j1 (F)gn2,j2 (F)

%

(
F

1
j1

" 1
n1

j1∑

i= 2

1

i " 1
+

F
1
j2

" 1
n2

j2∑

i= 2

1

i " 1
+ 2

j1+ j2∑

i= 2

1

i " 1

)

. (34)

This averages the approximate expected total branch length
given the number of lineages J1 and J2 entering the ancestral
population over the exact distribution of the number of remaining

lineages (J1, J2). Conditional on J1, J2 we use the exact expression
for the total length of the genealogy in the ancestral population,

i.e. WattersonÕs constant 2
∑j1+ j2

i= 2
1

i" 1
, while we approximate the

total length of the portion of the genealogy in daughter population
p by assuming that the final coalescence event ( jp + 1 '
jp) occurred exactly at F and that each interval contributes its
expected total time under the standard neutral model ( i 2

i(i" 1)
while

there are i lineages), scaling the total height of the tree to fit into
time F (the scaling factors F

1
jp " 1

np
). However, it was pointed out to

us by reviewers that an exact expression for this quantity is given
in Wakeley and Hey (1997) and that the conditional distribution
of coalescence times given the number of ancestral lineages at a
specific time was studied by Blum and Rosenberg (2007).
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