
pression was undetectable. There has been
some disagreement about the timing of ex-
pression of Myf5 and MyoD in the branchial
arches, depending on the method of detec-
tion, but the earliest reported expression of
these genes in this region is E9.25 and
E9.5, respectively (22–24 ). By E9.5, Myf5
and capsulin were expressed in the same
cell population within the first branchial
arch, and by E10.5, Myf5, capsulin, and
MyoR were coexpressed in these cells of
wild-type embryos (Fig. 3A). In contrast,
Myf5 was not expressed in first branchial
arch precursors of MyoR�/�capsulin�/�

double mutants at E9.5 or E11.5 (Fig. 3B).
There was also no evidence for expression
of Myf5, MyoD, or myogenin at E15.5 in the
region of affected facial muscles (Fig. 3C),
whereas these genes were expressed in oth-
er developing head and trunk muscles.

To determine the fate of first arch mus-
cle precursors that failed to activate expres-
sion of Myf5 and MyoD, we performed
TUNEL (terminal deoxynucleotidyl trans-
ferase-mediated dUTP nick-end labeling)
on histological sections of double-mutant
embryos at E10.5, when cells marked by
expression of capsulin-lacZ were disap-
pearing. As shown in Fig. 4, TUNEL-
positive cells were observed among the
lacZ-positive muscle precursors of double
mutants, but not of MyoR�/�capsulin�/�

embryos. We conclude that these cells,
which fail to initiate the normal program
for muscle development in the double mu-
tant, undergo apoptosis with resulting ab-
lation of muscles of mastication. Similar
observations have been made in muscle
precursor cells in the limb buds of mice
lacking MyoD and myf5 (25).

The absence of specific head muscle cells,
as well as markers of the corresponding myo-
genic lineages, in MyoR�/�capsulin�/� mu-
tants resembles the effect of MyoD�/�Myf5�/�

double mutations on all skeletal muscles (2) and
is distinct from the phenotype of Myf5�/�

Pax3�/� mutants, which exhibit a specific de-
ficiency of trunk skeletal muscles (7 ). This
phenotype also differs from that of myoge-
nin mutant mice, in which myoblasts ex-
press myogenic bHLH genes, but are un-
able to differentiate (3, 4 ). These findings
demonstrate that MyoR and capsulin redun-
dantly regulate an initial step in the specifi-
cation of a specific subset of facial skeletal
muscle lineages and that, in the absence of
these factors, myogenic bHLH genes are not
switched on, and cells from these lineages
undergo programmed cell death. There may
also be a modest effect on migration of pre-
cursors, as is seen in Lbx1 mutant mice (21).
MyoR and capsulin act as transcriptional
repressors in transfection assays (12, 20).
Whether they act to repress an inhibitor of
myogenesis or have a transcriptional-

activating function during development of
facial muscle remains to be determined.
The phenotype of MyoR�/�capsulin�/�

mutant mice reveals a previously unantici-
pated complexity in the development of
head skeletal muscles, and these findings
identify MyoR and capsulin as unique tran-
scriptional regulators for the development
of specific head muscles.

References and Notes
1. M. Buckingham. Curr. Opin. Genet. Dev. 11, 440
(2001).

2. M. A. Rudnicki et al., Cell 75, 1351 (1993).
3. P. Hasty et al., Nature 364, 501 (1993).
4. Y. Nabeshima et al., Nature 364, 532 (1993).
5. A. Rawls, M. R. Valdez, W. Zhang, J. Richardson, W. H.
Klein, E. N. Olson. Development 125, 2349 (1998).

6. A. Rawls, E. N. Olson, Cell 89, 5 (1997).
7. S. Tajbakhsh, D. Rocancourt, G. Cossu, M. Bucking-
ham, Cell 89, 127 (1997).

8. B. Christ, C. P. Ordahl, Anat. Embryol. (Berlin) 191,
381 (1995).

9. D. M. Noden, Am. J. Anat. 168, 257 (1983).
10. P. A. Trainor, S. S. Tan, P. P. Tam, Development 120,

2397 (1994).
11. A. Hacker, S. Guthrie, Development 125, 3461

(1998).
12. J. Lu, R. Webb, J. A. Richardson, E. N. Olson, Proc.

Natl. Acad. Sci. U.S.A. 96, 552 (1999).
13. L. Robb, L. Hartley, C. C. Wang, R. P. Harvey, C. G.

Begley, Mech. Dev. 76, 197 (1998).

14. J. Lu, J. A. Richardson, E. N. Olson, Mech. Dev. 73, 23
(1998).

15. H. Hidai, R. Bardales, R. Goodwin, T. Quertermous,
E. E. Quertermous, Mech. Dev. 73, 33 (1998).

16. S. E. Quaggin et al., Development 126, 5771 (1999).
17. L. Robb et al., Dev. Dyn. 213, 105 (1998).
18. J. Lu et al., Proc. Natl. Acad. Sci. U.S.A. 97, 9525

(2000).
19. S. E. Quaggin et al., Development 126, 5771 (1999).
20. J. Lu, E. N. Olson, unpublished results.
21. H. Brohmann, K. Jagla, C. Birchmeier, Development

127, 437 (2000).
22. M. O. Ott, E. Bober, G. Lyons, H. Arnold, M. Bucking-

ham, Development 111, 1097 (1991).
23. S. Tajbakhsh, E. Bober, C. Babinet, S. Pournin, H.

Arnold, M. Buckingham, Dev. Dyn. 206, 291 (1996).
24. J. C. J. Chen, C. M. Love, D. J. Goldhammer. Dev. Dyn.

221, 274 (2001).
25. B. Kablar, K. Krastel, C. Ying, S. J. Tapscott, D. J.

Goldhammer, M. A. Rudnicki. Dev. Biol. 206, 21931
(1999).

26. We are grateful to C. Pomajzl and J. Stark for histo-
logic preparations. We also thank A. Tizenor for
graphics and J. Page for editorial assistance. Support-
ed by grants from the NIH, the Donald W. Reynolds
Foundation and the Muscular Dystrophy Association
to E.N.O.

Supporting Online Material
www.sciencemag.org/cgi/content/full/298/5602/2378/
DC1
Materials and Methods
Fig. S1
References

9 September 2002; accepted 28 October 2002

Genetic Structure
of Human Populations

Noah A. Rosenberg,1* Jonathan K. Pritchard,2 James L. Weber,3

Howard M. Cann,4 Kenneth K. Kidd,5 Lev A. Zhivotovsky,6

Marcus W. Feldman7

We studied human population structure using genotypes at 377 autosomal
microsatellite loci in 1056 individuals from 52 populations. Within-population
differences among individuals account for 93 to 95% of genetic variation;
differences among major groups constitute only 3 to 5%. Nevertheless, without
using prior information about the origins of individuals, we identified six main
genetic clusters, five of which correspond to major geographic regions, and
subclusters that often correspond to individual populations. General agreement
of genetic and predefined populations suggests that self-reported ancestry can
facilitate assessments of epidemiological risks but does not obviate the need
to use genetic information in genetic association studies.

Most studies of human variation begin by
sampling from predefined “populations.”
These populations are usually defined on the
basis of culture or geography and might not
reflect underlying genetic relationships (1).
Because knowledge about genetic structure
of modern human populations can aid in in-
ference of human evolutionary history, we
used the HGDP-CEPH Human Genome Di-
versity Cell Line Panel (2, 3) to test the
correspondence of predefined groups with
those inferred from individual multilocus ge-
notypes (supporting online text).

The average proportion of genetic differ-
ences between individuals from different hu-
man populations only slightly exceeds that

between unrelated individuals from a single
population (4–9). That is, the within-popula-
tion component of genetic variation, estimat-
ed here as 93 to 95% (Table 1), accounts for
most of human genetic diversity. Perhaps as a
result of differences in sampling schemes
(10), our estimate is higher than previous
estimates from studies of comparable geo-
graphic coverage (4–6, 9), one of which also
used microsatellite markers (6). This overall
similarity of human populations is also evi-
dent in the geographically widespread nature
of most alleles (fig. S1). Of 4199 alleles
present more than once in the sample, 46.7%
appeared in all major regions represented:
Africa, Europe, the Middle East, Central/
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South Asia, East Asia, Oceania, and America.
Only 7.4% of these 4199 alleles were exclu-
sive to one region; region-specific alleles
were usually rare, with a median relative
frequency of 1.0% in their region of occur-
rence (11).

Despite small among-population variance
components and the rarity of “private” al-
leles, analysis of multilocus genotypes allows
inference of genetic ancestry without relying
on information about sampling locations of
individuals (12–14). We applied a model-
based clustering algorithm that, loosely
speaking, identifies subgroups that have dis-
tinctive allele frequencies. This procedure,
implemented in the computer program struc-
ture (14), places individuals into K clusters,
where K is chosen in advance but can be
varied across independent runs of the algo-
rithm. Individuals can have membership in
multiple clusters, with membership coeffi-
cients summing to 1 across clusters.

In the worldwide sample, individuals
from the same predefined population nearly
always shared similar membership coeffi-

cients in inferred clusters (Fig. 1). At K � 2
the clusters were anchored by Africa and
America, regions separated by a relatively
large genetic distance (table S1). Each in-
crease in K split one of the clusters obtained
with the previous value. At K � 5, clusters
corresponded largely to major geographic re-
gions. However, the next cluster at K � 6 did
not match a major region but consisted large-
ly of individuals of the isolated Kalash group,
who speak an Indo-European language and
live in northwest Pakistan (Fig. 1 and table
S2). In several populations, individuals had
partial membership in multiple clusters, with
similar membership coefficients for most in-
dividuals. These populations might reflect
continuous gradations in allele frequencies
across regions or admixture of neighboring

groups. Unlike other populations from Paki-
stan, Kalash showed no membership in East
Asia at K � 5, consistent with their suggested
European or Middle Eastern origin (15).

In America and Oceania, regions with low
heterozygosity (table S3), inferred clusters
corresponded closely to predefined popula-
tions (Fig. 2). These regions had the largest
among-population variance components, and
they required the fewest loci to obtain the
clusters observed with the full data. Inferred
clusters for Africa and the Middle East were
also consistent across runs but did not all
correspond to predefined groups. For the oth-
er samples, among-population variance com-
ponents were below 2%, and independent
structure runs were less consistent. For K �
3, similarity coefficients for pairs of runs
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Table 1. Analysis of molecular variance (AMOVA). Eurasia, which encompasses Europe, the Middle East,
and Central/South Asia, is treated as one region in the five-region AMOVA but is subdivided in the
seven-region design. The World-B97 sample mimics a previous study (6).

Sample
Number
of

regions

Number
of

populations

Variance components and 95% confidence intervals (%)

Within populations
Among

populations
within regions

Among
regions

World 1 52 94.6 (94.3, 94.8) 5.4 (5.2, 5.7)
World 5 52 93.2 (92.9, 93.5) 2.5 (2.4, 2.6) 4.3 (4.0, 4.7)
World 7 52 94.1 (93.8, 94.3) 2.4 (2.3, 2.5) 3.6 (3.3, 3.9)
World-B97 5 14 89.8 (89.3, 90.2) 5.0 (4.8, 5.3) 5.2 (4.7, 5.7)
Africa 1 6 96.9 (96.7, 97.1) 3.1 (2.9, 3.3)
Eurasia 1 21 98.5 (98.4, 98.6) 1.5 (1.4, 1.6)
Eurasia 3 21 98.3 (98.2, 98.4) 1.2 (1.1, 1.3) 0.5 (0.4, 0.6)
Europe 1 8 99.3 (99.1, 99.4) 0.7 (0.6, 0.9)
Middle East 1 4 98.7 (98.6, 98.8) 1.3 (1.2, 1.4)
Central/South Asia 1 9 98.6 (98.5, 98.8) 1.4 (1.2, 1.5)

East Asia 1 18 98.7 (98.6, 98.9) 1.3 (1.1, 1.4)
Oceania 1 2 93.6 (92.8, 94.3) 6.4 (5.7, 7.2)
America 1 5 88.4 (87.7, 89.0) 11.6 (11.0, 12.3)

Fig. 1. Estimated population structure. Each individual is represented by a
thin vertical line, which is partitioned into K colored segments that represent
the individual’s estimated membership fractions in K clusters. Black lines
separate individuals of different populations. Populations are labeled below
the figure, with their regional affiliations above it. Ten structure runs at each

K produced nearly identical individual membership coefficients, having pair-
wise similarity coefficients above 0.97, with the exceptions of comparisons
involving four runs at K� 3 that separated East Asia instead of Eurasia, and
one run at K � 6 that separated Karitiana instead of Kalash. The figure
shown for a given K is based on the highest probability run at that K.
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were typically moderate (0.1 to 0.85), rather
than large (0.85 to 1.0). However, various
patterns were observed across runs.

In East Asia, Yakut, whose language is
Altaic, and Japanese, whose language is often
classified as Altaic, were usually identified as
distinctive. Other speakers of Altaic languag-
es, including Daur, Hezhen, Mongola, Oro-
qen, and Xibo, all from northern China,
shared a greater degree of membership with
Japanese and Yakut than with more southerly
groups from other language families, such as
Cambodian, Dai, Han, Miao, Naxi, She, Tu-
jia, and Yi. However, Tu, who speak an
Altaic language and live in north-central Chi-
na, largely grouped with the southern popu-
lations. Lahu, who speak a Sino-Tibetan lan-
guage and were the least heterozygous pop-

ulation in the region, frequently separated
despite their proximity with other groups
sampled from southern China (16).

Eurasia frequently separated into its com-
ponent regions, along with Kalash. Adygei,
from the Caucasus, shared membership in
Europe and Central/South Asia. Within Cen-
tral/South Asia, Burusho of northern Paki-
stan, a linguistic isolate, largely separated
from other groups, although less clearly than
the genetic isolate, Kalash. Perhaps as a result
of shared Mongol ancestry (15, 16), Hazara
of Pakistan and Uygur of northwestern Chi-
na, whose languages are Indo-European and
Altaic, respectively, clustered together. For
Balochi, Makrani, Pathan, and Sindhi, all of
whose languages are Indo-European, and less
so for Dravidian-speaking Brahui, multiple

clusters were found, with individuals from
many populations having membership in
each cluster.

Europe, with the smallest among-popula-
tion variance component (0.7%), was the
most difficult region in which to detect pop-
ulation structure. The highest-likelihood run
for K � 3 found no structure; in other runs,
Basque and Sardinian were identified as dis-
tinctive. Russians variously grouped with
Adygei and Orcadians; Russian-Orcadian
similarity might derive from shared Viking
contributions (17). French, Italians, and Tus-
cans showed mixed membership in clusters
that contained other populations.

Because genetic drift occurs rapidly in
small populations, particularly in those that
are also isolated, these groups quickly accu-

Fig. 2. Estimated population structure for regions. For America, Oceania,
Africa, and the Middle East, solutions were consistent across 10 runs (all
similarity coefficients above 0.97, 0.93, 0.97, and 0.86, respectively,
except those involving one run with Africa that assigned many Biaka
individuals partial membership with San). Values of K shown for these
samples are the highest values for which this was true, and the highest

probability runs are shown. For remaining regions, solutions were more
variable across runs, and the highest probability runs for various values of
K are displayed. Graphs for America, Oceania, Africa, and the Middle East
display median similarity coefficients between runs based on the full
data and runs based on subsets of the data. Correspondence of colors
across figures for different regions is not meaningful.
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mulate distinctive allele frequencies. Thus,
structure efficiently detects isolated and rel-
atively homogeneous groups, even if the
times since their divergences or exchanges
with other groups are short (18). This phe-
nomenon may explain the inferred distinc-
tiveness of groups with low heterozygosity,
such as Lahu and American groups, and those
that are small and isolated, such as Kalash.
Groups with larger sample sizes are also
more easily separated; thus, the difficulty of
clustering in East Asia was exacerbated by
small sample sizes. Because sampling was
population based, the sample likely produced
clusters that were more distinct than would
have been found in a sample with random
worldwide representation. However, world-
level boundaries between major clusters
mostly corresponded to major physical barri-
ers (oceans, Himalayas, Sahara).

The amount of among-group variation af-
fects the number of loci required to produce
clusters similar to those obtained with the full
data. For the Middle East, with an among-
population variance component of 1.3%,
nearly all the loci were required to achieve a
similarity of 0.8 to the clustering on the basis
of full data, and use of more loci would likely
produce more consistent clustering. For Oce-
ania and Africa, only �200 loci were needed;
for the world sample, �150 were needed (fig.
S2), and �100 were sufficient for America.
Fewer loci would probably suffice for larger
samples (18); conversely, accuracy decreased
considerably when only half the sample was
used (Fig. 2). The number of loci required
would also decrease if extremely informative
markers, such as those with particularly high
heterozygosity (table S4), were genotyped
(18). The loci here form a panel intended for
use primarily in individuals of European de-
scent (19). Although 10 of the loci had het-
erozygosity less than 0.5 in East Asia, none
had similarly low European heterozygosities;
thus, inference of subclusters using “random”
markers might be more difficult than ob-
served here, especially in Europe. However,
the effect of excluding markers with low
European heterozygosity is likely minimal,
because generally high microsatellite het-
erozygosities ensure that relatively few loci
are discarded on these grounds (20). The fact
that regional heterozygosities here (table S3)
follow the same relative order as and have
nearly equal values to those of loci that were
ascertained in a geographically diverse panel
(12) provides further evidence that the ascer-
tainment effect on heterozygosity estimates
and on statistics derived from these estimates,
such as genetic variance components (21), is
small.

Genetic clusters often corresponded close-
ly to predefined regional or population
groups or to collections of geographically and
linguistically similar populations. Among ex-

ceptions, linguistic similarity did not provide
a general explanation for genetic groupings
of populations that were relatively distant
geographically, such as Hazara and Uygur or
Tu and populations from southern China. Our
finer clustering results compared with other
multilocus studies derive from our use of
more data. General correspondence between
regional affiliation and genetic ancestry has
been reported (12–14), with clearer corre-
spondence in studies that used more loci (13)
than in those that used fewer loci (9, 22); we
have further identified correspondence be-
tween genetic structure and population affil-
iation in regions with among-population vari-
ance components larger than 2 to 3%.

The structure of human populations is rel-
evant in various epidemiological contexts. As
a result of variation in frequencies of both
genetic and nongenetic risk factors, rates of
disease and of such phenotypes as adverse
drug response vary across populations (22,
23). Further, information about a patient’s
population of origin might provide health-
care practitioners with information about risk
when direct causes of disease are unknown
(23). Recent articles have considered whether
it is preferable to use self-reported population
ancestry or genetically inferred ancestry in
such situations (22–25). We have found that
predefined labels were highly informative
about membership in genetic clusters, even
for intermediate populations, in which most
individuals had similar membership coeffi-
cients across clusters. Sizable variation in
ancestry within predefined populations was
detected only rarely, such as among geo-
graphically proximate Middle Eastern
groups.

Thus, for many applications in epidemiol-
ogy, as well as for assessing individual dis-
ease risks, self-reported population ancestry
likely provides a suitable proxy for genetic
ancestry. Self-reported ancestry can be ob-
tained less intrusively than genetic ancestry,
and if self-reported ancestry subdivides a ge-
netic cluster into multiple groups, it may
provide useful information about unknown
environmental risk factors (23, 25). One ex-
ception to these general comments may arise
in recently admixed populations, in which
genetic ancestry varies substantially among
individuals; this variation might correlate
with risk as a result of genetic or cultural
factors (24). In some contexts, however, use
of genetic clusters is more appropriate than
use of self-reported ancestry. In genetic case-
control association studies, false positives
can be obtained if disease risk is correlated
with genetic ancestry (24, 26). Basing anal-
yses on self-reported ancestry reduces the
proportion of false positives considerably
(25). However, association studies are usual-
ly analyzed by significance testing, in which
slight differences in genetic ancestry between

cases and controls can produce statistically
significant false-positive associations in large
samples. Thus, errors incurred by using self-
reported rather than genetic ancestry might
cause serious problems in large studies that
will be required for identifying susceptibility
loci with small effects (26). Genetic cluster-
ing is also more appropriate for some types of
population genetic studies, because unrecog-
nized genetic structure can produce false pos-
itives in statistical tests for population growth
or natural selection (27).

The challenge of genetic studies of human
history is to use the small amount of genetic
differentiation among populations to infer the
history of human migrations. Because most
alleles are widespread, genetic differences
among human populations derive mainly
from gradations in allele frequencies rather
than from distinctive “diagnostic” genotypes.
Indeed, it was only in the accumulation of
small allele-frequency differences across
many loci that population structure was iden-
tified. Patterns of modern human population
structure discussed here can be used to guide
construction of historical models of migration
and admixture that will be useful in inferen-
tial studies of human genetic history.
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NPAS2: A Gas-Responsive
Transcription Factor
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Neuronal PAS domain protein 2 (NPAS2) is a mammalian transcription factor that
binds DNA as an obligate dimeric partner of BMAL1 and is implicated in the
regulation of circadian rhythm. Here we show that both PAS domains of NPAS2
bind heme as a prosthetic group and that the heme status controls DNA binding
in vitro. NPAS2-BMAL1 heterodimers, existing in either the apo (heme-free) or
holo (heme-loaded) state, bound DNA avidly under favorably reducing ratios
of the reduced and oxidized forms of nicotinamide adenine dinucleotide phos-
phate. Low micromolar concentrations of carbon monoxide inhibited the DNA
binding activity of holo-NPAS2 but not that of apo-NPAS2. Upon exposure to
carbon monoxide, inactive BMAL1 homodimers were formed at the expense of
NPAS2-BMAL1 heterodimers. These results indicate that the heterodimeriza-
tion of NPAS2, and presumably the expression of its target genes, are regulated
by a gas through the heme-based sensor described here.

PAS domains are independently folding mod-
ules of �130 amino acids that detect diverse
environmental signals, including oxygen, light,
voltage, redox potential, and many small aro-
matic molecules (1–7). Although these domains
have modest sequence similarity, they share
strikingly similar three-dimensional folds (8–
12). Two groups of bacterial proteins—the
FixL proteins of Rhizobia and the PDEA1
phosphodiesterases of Acetobacter—use heme
bound within a PAS domain to sense oxygen
(13). In FixL, binding of oxygen to the heme
controls a kinase domain that phosphorylates a
cognate transcription factor. In PDEA1, the
heme-binding domain controls a phosphodies-
terase domain that regulates the abundance of a
cyclic nucleotide second messenger. A seren-
dipitous discovery of apparent heme binding
during the purification of NPAS2, a mammali-
an bHLH (basic helix-loop-helix)–PAS tran-
scription factor, stimulated us to investigate

whether NPAS2 might represent yet another
heme-based mode of signal transduction by
PAS domains.

Overexpression of a fragment of NPAS2
containing its bHLH DNA binding domain
and both PAS domains in bacteria yielded
amber-colored cells. The absorption spectra
of liquid cultures containing those cells re-
vealed a correlation between NPAS2 expres-
sion and heme protein absorption (Fig. 1A).
Obvious peaks of absorption for the intact
living cells were observed at 426 nm (Soret
or gamma) and 561 nm (alpha). Upon cen-
trifugation of a cell lysate, the bulk of over-
expressed NPAS2 was recovered as an insol-
uble red suspension. The apoprotein resulting
from solubilization of the material by dena-
turation and renaturation was easily reconsti-
tuted with free hemin (14, 15). The absorp-
tion peaks for the reconstituted proteins also
occurred at 426 nm and 561 nm, with a lower
extinction peak becoming detectable at 530
nm (beta) (Fig. 1B). To examine the stability
and stoichiometry of the heme, we exposed
this reconstituted material to a fivefold molar
excess of His64 3 Tyr, Val68 3 Phe apo-
myoglobin (apo-H64Y/V68F) (16). As indi-
cated by the similar rates of apo-H64Y/V68F
reconstitution with heme abstracted from ei-
ther NPAS2 or Bradyrhizobium japonicum

FixL, the heme stability of the two proteins
was comparable (Fig. 1C). The final absorp-
tion value for the apo-H64Y/V68F treated
with NPAS2 showed that NPAS2 had rough-
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Fig. 1. Heme content and stability of holo-
NPAS2. (A) Production of heme protein in
whole E. coli cells after the induction of TG1
cells not expressing recombinant genes (thin
gray line) or expressing the NPAS2 truncated
recombinant forms bHLH–PAS-A–PAS-B (thick
black line), bHLH–PAS-A (thin black line), or
PAS-B (thick gray line). NPAS2 fragments,
placed downstream from a tac promoter in a
pUC19-derived expression vector, were ex-
pressed after 5 hours of isopropyl-�-D-thioga-
lactopyranoside induction in E. coli strain TG1.
The absorption spectra of 10-fold concentrated
cultures of intact cells were collected with an
ATI Unicam UV-4 UV/Vis spectrophotometer
(Spectronic Instruments Inc., Rochester, NY)
containing a turbid-sample accessory. (B) Ab-
sorption spectra of the deoxy (FeII) forms of
purified bHLH–PAS-A–PAS-B (thick black line),
bHLH–PAS-A (thin black line), and PAS-B (gray
line). Deoxy species were prepared by reducing
the protein with dilute dithionite in an anaer-
obic glove box and rapidly transferring it, by gel
filtration, to 0.10 M sodium phosphate (pH 7.5)
and 5 mM dithiothreitol (DTT). (C) Extraction
of heme from reconstituted holo-bHLH–PAS-
A–PAS-B (squares) or from B. japonicum FixL
protein (circles) by a fivefold molar excess of
apo-H64Y/V68F sperm whale myoglobin at pH
6.5 and 25°C (16).
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