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1 Introduction

The program structure implements a model-based clustering method for inferring population struc-
ture using genotype data consisting of unlinked markers. The methods used are introduced in a
paper by Pritchard, Stephens and Donnelly (2000), which is the appropriate citation for this pro-
gram!. Applications of our method include demonstrating the presence of population structure,
assigning individuals to populations, and identifying migrants and admixed individuals.

Briefly, we assume a model in which there are K populations (where K may be unknown),
each of which is characterized by a set of allele frequencies at each locus. Individuals in the
sample are assigned (probabilistically) to populations, or jointly to two or more populations if their
genotypes indicate that they are admixed. It is assumed that within populations, the loci are at
Hardy-Weinberg equilibrium, and linkage equilibrium. Loosely speaking, individuals are assigned
to populations in such a way as to achieve this.

Our model does not assume a particular mutation process, and it can be applied to most of the
commonly used genetic markers including microsatellites, SNPs and RFLPs, provided that they are
unlinked (or at least, not so tightly linked that they are in linkage-disequilibrium; see section 1.2).

While the computational approaches implemented here are fairly powerful, some care is needed
in running the program in order to ensure sensible answers. For example, it is not possible to
determine suitable run-lengths theoretically, and this requires some experimentation on the part of
the user. The user should consult the accompanying paper (Pritchard et al., 2000a) for a description
of the uses and limitations of this method.

This document describes the use of this software, and supplements the Pritchard et al. (2000a)

paper.

1.1 Registering.

We strongly encourage users to complete the brief registration form at the website (http://-
pritch.bsd.uchicago.edu; click on “software”). This will help us to assess the level of interest in
structure, and where to spend future effort in maintaining or developing the software. Estimates
of the number of users will also be helpful when we apply for renewed funding for this and related
projects.

!The software and the manuscript are available from http://pritch.bsd.uchicago.edu. (Click on “software”.)



1.2 What’s new in Version 2?7

Perhaps the most obvious addition to structure in Version 2 is a fancy Java front end. The front
end includes several new features, producing various plots of data summaries, as well as enabling
batch runs, and organizing the data from multiple runs on the same project. C executables will
still be available for those who prefer using the command line. See section 7.

We have added command line options to simplify simulation studies and batch runs (section
6.6).

On the analysis side, the major advance is that we have now implemented a model that allows
for “admixture linkage disequilibrium”. That is, we model the correlations that arise between linked
markers as the result of admixture or hybridization. In order to use this, the user must enter map
distances (or at least some kind of relative distance) between the markers, and the program then
accounts for the possibility of correlations due to linkage. We still do not attempt to model the LD
that occurs within populations between very nearby markers (< 1 ¢cM in humans). See section 3.2.

We have also modified and improved the model of correlated allele frequencies, and we find
that this model is often more effective than the independent frequencies model at detecting subtle
population structure. However, this may come at some cost: we believe that it may be less robust
to minor model departures like some inbreeding, or undetected null alleles. This could create a
bias towards overestimating the number of clusters, K. We have made the new model the default
model, but encourage users to experiment with different models.

Other new extensions include the possibility of using different as for each population, and
estimating As. The computational techniques underlying the new analytical methods are described
in a forthcoming paper (Falush et al., 2003).

We have also modified the program so that it can be applied to non-diploid organisms. As
Daniel Falush points out, this should keep the dandelion population geneticists happy.

1.3 Overview

The software package structure consists of several parts. The computational part of the program
was written in C, and executables are distributed for various platforms (currently Windows, Linux,
Sun). The C executable reads a data file supplied by the user. There is also a Java front end that
provides various nifty plots and other helpful features for the user; however, you can also invoke
structure from the command line instead of using the front end.

This document includes information about how to format the data file, how to choose appro-
priate models, and how to interpret the results. It also has appendices on using the two interfaces
(command line and front end).

2 Format for the data file

The format for the genotype data is shown in Table 2 (and Table 1 shows an example). Essentially,
the entire data set is arranged as a matrix in a single file, in which the data for individuals are in
rows, and the loci are in columns. The user can make several choices about format, and most of
these data (apart from the genotypes!) are optional.

For a diploid organism, data for each individual can be stored either as 2 consecutive rows,
where each locus is in one column, or in one row, where each locus is in two consecutive columns.
Except for linked loci (see below) the order of the alleles for a single individual does not matter.
The pre-genotype data columns (see below) are recorded twice for each individual. (Similarly, for



George 1 -9 145 66 0 92
George 1 9 9 64 0 94
Paula 1 106 142 68 1 92
Paula 1 106 148 64 0 94
Matthew 2 110 145 -9 0 92
Matthew 2 110 148 66 1 -9
Bob 2 108 142 64 1 94
Bob 2 9 142 9 0 94
Anja 1 112 142 -9 1 -9
Anja 1 114 142 66 1 94
Peter 1 -9 145 66 0 -9
Peter 1 110 145 -9 1 -9
Carsten 2 108 145 62 0 -9
Carsten 2 110 145 64 1 92

Table 1: Sample data file. Here LABEL=1, POPDATA=1, NUMINDS=7, NUMLOCI=5, and
MISSING=-9. Also, POPFLAG=0, PHENOTYPE=0, EXTRACOLS=0. The second column
shows the geographic sampling location of individuals. We can also store the data with one row per
individual, in which case the first row would read “George 1 -9 -9 145 -9 66 64 0 0 92 94”.

n-ploid organisms, data for each individual is stored in n consecutive rows, or in one row where
each locus is in n consecutive columns.)

The first few columns are for storing several kinds of non-genotype information. After that, each
column stores the genotype data for a single locus. The columns are separated by spaces or other
whitespace.

The user can also include up to two rows at the beginning of the file, consisting of marker names,
and map distances. For diploid data, the user can include phase information as an additional row
following the genotypes for each individual.

Table 1 shows an example data file. Full details of file format are given below.

2.1 Components of the data file:

The elements of the input file are as listed below. If present, they must be in the following order,
however most are optional (as indicated) and may be deleted completely. The user specifies which
data are present, either in the front end, or (when running structure from the command line), in a
separate file, mainparams. At the same time, the user also specifies the number of individuals and
the number of loci.

2.2 Rows

1. Marker Names (Optional; string) The first row in the file can contain a list of identifiers
for each of the markers in the data set. This row contains L strings of integers or characters,
where L is the number of loci.

2. Inter-Marker Distances (Optional; real) the next row in the file is a set of inter-marker
distances, for use with linked loci. These should be genetic distances (e.g., centiMorgans), or
some proxy for this based, for example, on physical distances. The actual units of distance



2.3

do not matter too much, provided that the marker distances are (roughly) proportional to
recombination rate (the algorithm estimates an appropriate scaling from the data).

The markers must be in map order within linkage groups. When consecutive markers are
from different linkage groups (e.g., different chromosomes), this should be indicated by the
value -1. The first marker is also assigned the value -1. All other distances are non-negative.
This row contains L real numbers.

Individual Data (Required) Data for each sampled individual is arranged into one or more
rows as described above (further details below).

Phase Information (Optional; diploid data only; real number in the range [0,1]). This is for
use with linked loci only. This is a single row of L probabilities that appears after the genotype
data for each individual. If phase is known completely, or no phase information is available,
these rows are unnecessary. They may be useful when there is partial phase information from
family data. There are two alternative representations for the phase information: (1) the
two rows of data for an individual are assumed to correspond to the paternal and maternal
contributions, respectively. The phase line indicates the probability that the ordering is correct
at the current marker; (2) the phase line indicates the probability that the phase of one allele
relative to the previous allele is correct. The first entry should be filled in with 0.5 to fill out
the line to L entries.

Columns:

Each row of individual data contains the following elements; these are columns in the data file.

1.

Label (Optional; string) A string of integers or characters used to designate each individual
in the sample.

PopData (Optional; integer) An integer designating a user-defined population from which the
individual was obtained (for instance these might designate the geographic sampling locations
of individuals).

PopFlag (Optional; 0 or 1) A Boolean flag which indicates whether to use the PopData
when using learning learning samples (see USEPOPINFO, below). (Note: A Boolean variable
(flag) is a variable which takes the values TRUE or FALSE, which are designated here by the
integers 1 (use PopData) and 0 (don’t use PopData), respectively.)

Phenotype (Optional; integer) An integer designating the value of a phenotype of interest,
for each individual. (¢ in table.) (The phenotype information is not actually used in this
program. It is here to permit a smooth interface with the program STRAT which is used for
association mapping.)

Extra Columns (Optional; string) It may be convenient for the user to include additional
data in the input file which are ignored by the program. These go here, and may be strings
of integers or characters.

. Genotype Data (Required; integer) Each allele at a given locus should be coded by a unique

integer (eg microsatellite repeat score).



2.4 Missing genotype data

Missing data should be indicated by a number which doesn’t occur elsewhere in the data (I use
-9). This number can also be used where there is a mixture of haploid and diploid data (eg X and
autosomal loci in males). The missing-data value is set along with the other parameters describing
the characteristics of the data set.

2.5 Formatting errors.

We have implemented reasonably careful error checking to make sure that the data set is in the
correct format, and the program will attempt to provide some indication about the nature of any
problems that exist. The front end requires returns at the ends of each row, and does not allow
returns within rows; the command-line version of structure treats returns in the same way as spaces
or tabs.

One problem that can arise is that editing programs used to assemble the data prior to importing
them into structure can introduce hidden formatting characters, often at the ends of lines, or at the
end of the file. The front end can remove many of these automatically, but this type of problem may
be responsible for errors when the data file seems to be in the right format. If you are importing
data to a UNIX system, the dos2unix function can be helpful for cleaning these up.

3 Modelling decisions for the user

3.1 How long to run the program

The program is started from a random configuration, and from there takes a series of steps through
the parameter space, each of which depends (only) on the parameter values at the previous step.
This procedure induces correlations between the state of the Markov chain at different points
during the run. The hope is that by running the simulation for long enough, the correlations will
be negligible.

There are two issues to worry about: (1) burnin length: how long to run the simulation before
collecting data to minimize the effect of the starting configuration, and (2) how long to run the
simulation after the burnin to get accurate parameter estimates.

To choose an appropriate burnin length, it is really helpful to look at the values of summary
statistics that are printed out by the program (eg a, F', the divergence distances among populations
D; ;, and the likelihood) to see whether they appear to have converged. I have found that in examples
I have looked at, a burnin of 10,000—100,000 is usually more than adequate.

To choose an appropriate run length, you will need to do several runs at each K, possibly
of different lengths, and see whether you get consistent answers. Typically, you can get good
estimates of the parameter values (P and Q) with fairly short runs (eg 10,000-100,000), but accurate
estimation of Pr(X|K) requires quite long runs (perhaps 10° or more). In practice your run length
may be determined by your computer speed and patience as much as anything else.

The front end provides time series plots of several key parameters. You should look to see
whether these appear to reach equilibrium before the end of the burnin phase. If the values are still
increasing or decreasing at the end of the burnin phase, you need to increase the burnin length.

If the estimate of v varies greatly throughout the run (i.e., not just during the burnin), you may
get more accurate estimates of Pr(X|K) by increasing ALPHAPROPSD, which improves mixing
in that situation. (See a related issue in section 4).
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Table 2: Format of the data file, in two-row format. Most of these components are optional (see
text for details). M; is an identifier for marker [. D;;;; is the distance between markers ¢ and
i+ 1. IDY is the label for individual 4, g is the geographic origin of individual i (PopData); f®
is a flag used to incorporate learning samples (PopFlag); ¢ can store a phenotype for individual

1; yy), s y,(f) are for storing extra data (ignored by the program); (xf’l, xEQ) stores the genotype of

)

individual ¢ at locus [. pgl is the phase information for marker [ in individual 4.

3.2 Ancestry Models

There are four main models for the ancestry of individuals: (1) no admixture model (individuals
are discretely from one population or another); (2) the admixture model (each individual draws
some fraction of his/her genome from each of the K populations; (3) the linkage model (like the
admixture model, but linked loci are more likely to come from the same population); (4) the prior
information model (allows the user to assign some or all individuals to pre-defined populations).
See Pritchard et al. (2000a) for more on models 1,2, and 4.

1. No admixture model Each individual comes purely from one of the K populations. The
output records the posterior probability that individual 7 is from population k. The prior probability
for each population is 1/K.

This model is appropriate for studying very discrete populations. Occasionally it may be more
successful than the admixture model at detecting subtle structure.



2. Admixture model Individuals may have mixed ancestry. This is modelled by saying that
individual ¢ has inherited some fraction of his/her genome from ancestors in population k. The
output records the posterior mean estimates of these proportions. Conditional on the ancestry
vector, ¢, the origin of each allele is independent.

We recommend this model as a starting point for most analyses. It is a reasonably flexible model
for dealing with many of the complexities of real populations. Admixture is a common feature of
real data, and you probably won’t find it if you use the no-admixture model. The admixture model
can also deal with hybrid zones in a natural way.

3. Linkage model This is essentially a generalization of the admixture model to deal with “ad-
mixture linkage disequilibrium”—i.e., the correlations that arise between linked markers in recently
admixed populations. There is a manuscript in preparation (Falush, Stephens and Pritchard) that
describes the model, and computations in more detail.

The basic model is that, ¢t generations in the past, there was an admixture event that mixed the
K populations. If you consider an individual chromosome, it is composed of a series of “chunks” that
are inherited as discrete units from ancestors at the time of the admixture. Admixture LD arises
because linked alleles are often on the same chunk, and therefore come from the same ancestral
population.

The sizes of the chunks are assumed to be independent exponential random variables with
mean length 1/¢ (in Morgans). In practice we estimate a “recombination rate” r from the data
that corresponds to the rate of switching from the present chunk to a new chunk.2 Each chunk
in individual ¢ is derived independently from population k& with probability q,(f), where q,(;) is the
proportion of that individual’s ancestry from population k.

Overall, the new model retains the main elements of the admixture model, but all the alleles
that are on a single chunk have to come from the same population. The new MCMC algorithm
integrates over the possible chunk sizes and break points. It reports the overall ancestry for each
individual, taking account of the linkage, and can also report the probability of origin of each bit
of chromosome, if desired by the user.

This new model performs better than the original admixture model when using linked loci to
study admixed populations. It achieves more accurate estimates of the ancestry vector, and can
extract more information from the data. It should be useful for admixture mapping.

Clearly, this model is a big simplification of the complex realities of most real admixed popu-
lations. However, the major effect of admixture is to create long-range correlation among linked
markers, and so our aim here is to encapsulate that feature within a fairly simple model.

The computations are a bit slower than for the admixture model, especially with large K and
unphased data. Nonetheless, they are practical for hundreds of sites and individuals and multiple
populations. The model can only be used if there is information about the relative positions of the
markers (usually a genetic map).

4. Using prior population information The default mode for structure uses only genetic
information to learn about population structure. However, there is often other information that

2Because of the way that this is parameterized, the map distances in the input file can be in arbitrary units—
e.g., genetic distances, or physical distances (under the assumption that these are roughly proportional to genetic
distances). Then the estimated value of r represents the rate of switching from one chunks to the next, per unit of
whatever distance was assumed in the input file. E.g., if an admixture event took place ten generations ago, then r
should be estimated as 0.1 when the map distances are measured in ¢M (this is 10%0.01, where 0.01 is the probability
of recombination per centiMorgan), or as 10~* = 10 * 10~° when the map distances are measured in KB (assuming
a constant crossing-over rate of 1¢cM/MB). The prior for 7 is log-uniform. The front end tries to make some guesses
about sensible upper and lower bounds for r, but the user should adjust these to match the biology of the situation.



can be used (e.g., physical characteristics of sampled individuals or geographic sampling location)
to assist the clustering. In the section “Model with prior population information” in Pritchard et al.
(2000a), we described our framework for incorporating this type of information into the inference
procedure.

There are at least two kinds of reasons for making use of this sort of extrinsic population
information. One is that one may want to test whether any individuals in the sample are immigrants
to their supposed populations, or have recent immigrant ancestors (see the example in Pritchard
et al., 2000a).

A second is that we may want to make use of learning samples: ie., we have some individuals
of known origin, and we want to use them to help us classify individuals of unknown origin. For
example in Beaumont et al. (2001), we wanted to learn about the ancestry of Scottish wildcats
(many of which are hybridized with feral domestic cats). We had genetic data from a bunch of pet
house cats which we defined as being in one population, while we inferred @ for the wildcats (with
K = 2). Use of this sort of prior information will normally improve the accuracy of the inference.

To use these options you need to set USEPOPINFO to 1, and choose a value of MIGRPRIOR
(which is v in Pritchard et al). You might choose something in the range 0.001 to 0.1 for v.
Even when using learning samples, it may be sensible to allow for some misclassification by setting
MIGRPRIOR larger than 0.

The pre-defined population for each individual is set in the input data file (see PopData) and
should be an integer between 1 and MAXPOPS, inclusive. If PopData for any individual is outside
this range, their ¢ will be updated in the normal way (ie without prior population information,
according to the model that would be used if USEPOPINFO was turned off.?). Learning samples
are implemented through the use of the PopFlag column in the data file. The pre-defined population
is used for those individuals for whom PopFlag=1, and it is ignored for individuals for whom
PopFlag=0. If there is no PopFlag column in the data file, then when USEPOPINFO is turned on,
PopFlag is set to 1 for all individuals.

In general, we advocate that the user should first run the program without population informa-
tion to ensure that the pre-defined populations are in rough agreement with the genetic information.

3.3 Allele frequency models

There are two basic models for the allele frequencies. One model assumes that the allele frequencies
in each population are independent draws from a distribution that is specified by a parameter called
A. That is the original model that we used in Pritchard et al. (2000a). Usually we set A = 1; this
is the default setting.

More recently, we have implemented a model with correlated allele frequencies. This says that
frequencies in the different populations are likely to be similar (probably due to migration or shared
ancestry). Further details are given below.?

The independent model works well for many data sets. Roughly speaking, this prior says that
we expect allele frequencies in different populations to be reasonably different from each other.
The correlated frequencies model says that they may actually be quite similar. This often improves
clustering for closely related populations, but may increase the risk of over-estimating K (see below).
If one population is quite divergent from the others, the correlated model can sometimes achieve
better inference if that population is removed.

31f the admixture model is used to estimate ¢ for those individuals without prior population information, o is
updated on the basis of those individuals only. If there are very few such individuals, you may need to fix a at a
sensible value.

4The model of correlated allele frequencies implemented now differs slightly from that in structure Version 1.



Estimating A: Fixing A = 1 is a good idea for most data, but in some situations—e.g., for
sequence data (not that we necessarily recommend structure for sequence datal!)—other values may
work better. For this reason, you can get the program to estimate A for your data. You may
want to do this once, perhaps for K = 1, and then fix A at the estimated value thereafter, because
there seem to be some problems with non-identifiability when trying to estimate too many of the
hyperparameters (A, a, F') at the same time.

Correlations model: We have modified our version of the correlated frequencies model from
Pritchard et al. (2000a). The implementation and interpretation of the new “Fsr” model will be
described in detail in a forthcoming paper by Falush et al. (2003). Brief details are provided below.

We introduce a new (multidimensional) vector, P4, which records the allele frequencies in a
hypothetical “ancestral” population. It is assumed that the K populations represented in our sam-
ple have each undergone independent drift away from these ancestral frequencies, at a rate that
is parameterized by Fy, Fs, F3, ..., Fk, respectively. The estimated F}, values should be numerically
similar to Fgr values, apart from differences that stem from the slightly different model, and differ-
ences in estimation. Also, it is difficult to estimate F} accurately for data with lots of admixture.

P, is assumed to have a Dirichlet prior of the same form as that used above for the population
frequencies:

DAl ND()\la)\Qa"'a)‘Jl)? (1)
independently for each [. Then the prior for the frequencies in population k is
1-F 1—- K 1—-F
pri- ~ D(Pan £, Pa L Pay, 5), (2)

Fy, Fy, Fy,

independently for each k and [. In this model, the F's have a close relationship to the standard
measure of genetic distance, Fsr. In the standard parametrization of Fsr, the expected frequency
in each population is given by overall mean frequency, and the variance in frequency across subpop-
ulations of an allele at overall frequency p is p(1 — p) Fsp. The model here is much the same, except
that we generalize the model slightly by allowing each population to drift away from the ancestral
population at a different rate (Fj), as might be expected if populations have different sizes. We
also try to estimate “ancestral frequencies”, rather than using the mean frequencies.

We have placed independent priors on the Fj, proportional to a gamma distribution with means
of 0.01 and standard deviation 0.05 (but with Pr[F}, > 1] = 0). The parameters of the gamma prior
can be modified by the user. Some experimentation suggests that the prior mean of 0.01, which
corresponds to very low levels of subdivision, often leads to good performance for data that are
difficult for the independent frequencies model. In other problems, where the differences among
populations are more marked, it seems that the data usually overwhelm this prior on Fj.

Estimating admixture proportions when most individuals are admixed. Estimating ad-
mixture proportions can be particularly challenging if there are very few representatives of the
parental populations. There is an example of this for simulated data in Pritchard et al. (2000b).
The data were supposed to approximate a sample from an African American population in which
most individuals had some degree of European ancestry. For those data, the estimated ancestry
proportions were highly correlated with the true (simulated) values, but the actual proportions of
ancestry were biased. That example is also representative of our more recent experience with real
data.

This occurs because in the absence of any non-admixed individuals, there may be some non-
identifiability where it is possible to push the allele frequencies further apart, and squeeze the
admixture proportions together (or vice-versa), and obtain much the same degree of model fit.

10



For this reason, the choice of prior model for the allele frequencies can have a big impact on the
magnitude of estimated admixture proportions in this type of situation, and care is needed not to
over-interpret the results.

4 Estimation of K (the number of populations)

In our paper describing this program, we pointed out that this issue should be treated with care for
two reasons: (1) it is computationally difficult to obtain accurate estimates of Pr(X|K), and our
method merely provides an ad hoc approximation, and (2) the biological interpretation of K may
not be straightforward.

While these caveats should be taken seriously, I should point out that in our experience the
method usually gives sensible results, provided that appropriate care is taken.

4.1 Steps in estimating K

1. (Command-line version) Set COMPUTEPROBS and INFERALPHA to 1 in the file extra-
params. (Front End version) Make sure that « is allowed to vary.

2. Run the MCMC scheme for different values of MAXPOPS (K). At the end it will output
a line "Estimated Ln Prob of Data”. This is the estimate of In Pr(X|K). You should run
several independent runs for each K, in order to verify that the estimates are consistent across
runs. If the variability across runs for a given K is substantial compared to the variability
of estimates obtained for different K, you may need to use longer runs or a longer burnin
period. If InPr(X|K) appears to be bimodal or multimodal, the MCMC scheme may be
finding different solutions. You can check for this by comparing the () for different runs at a
single K. (cf Data Set 2A in Pritchard et al. (2000a), and see the section on Multimodality,
below).

3. Compute posterior probabilities of K. For example, for Data Set 2A in the paper (where K
was 2), we got
K In Pr(X|K)
1 -4356
2 -3983
3 -3982
4 -3983
5 -4006

We can start by assuming a uniform prior on K = {1, ...,5}. Then from Bayes’ Rule, Pr(K =

2) is given by
03983

3
e—4356 +€_3983—|—6_3982 +e—3983+€—4006 ( )

It’s easier to compute this if we simplify the expression to

671

6_374 + 6_1 + 6O + 6_1 + 6_24

=0.21 (4)
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4.2 Mild departures from the model can lead to overestimating K

When there is real population structure, this leads to LD among unlinked loci and departures from
Hardy-Weinberg proportions. Roughly speaking, this is the signal that is used by the structure
algorithm. But some departures from the model can also lead to Hardy-Weinberg or linkage dis-
equilibrium. These include inbreeding, and genotyping errors such as occasional, undetected, null
alleles. Even in the absence of population structure, these types of factors can lead to a weak
statistical signal for K > 1.

Beginning in Version 2, we have suggested that the correlated allele frequency model should be
used as a default because it often achieves better performance on difficult problems, but the user
should be aware that this may make it easier to overestimate K in such settings than under the
independent frequencies model.

The next subsection discusses how to decide whether inferred structure is real.

4.3 Informal pointers for choosing K; is the structure real?

There are a couple of informal pointers which might be helpful in selecting K. The first is that it’s
often the situation that Pr(K) is very small for K less than the appropiate value (effectively zero),
and then more-or-less plateaus for larger K, as in the example of Data Set 2A shown above. In this
sort of situation where several values of K give similar estimates of log Pr(X|K), it seems that the
smallest of these is often “correct”.

It is a bit difficult to provide a firm rule for what we mean by a “more-or-less plateaus”. For
small data sets, this might mean that the values of log Pr(X|K) are within 5-10, but our colleague
Daniel Falush writes that “in very big datasets, the difference between K = 3 and K = 4 may be
50, but if the difference between K = 3 and K = 2 is 5,000, then I would definitely choose K = 3.”

I think that a sensible way to think about this is in terms of model choice. That is, we may not
always be able to know the TRUE value of K, but we should aim for the smallest value of K that
captures the major structure in the data.

The second pointer is that if there really are separate populations, there is typically a lot of
information about the value of «, and once the Markov chain converges, o will normally settle down
to be relatively constant (usually with a range of perhaps 0.2 or less in examples I have looked at).
However, if there isn’t any real structure, o will usually vary greatly during the course of the run.

A corrollary of this is that when there is no population structure, you will typically see that
the proportion of the sample assigned to each population is roughly symmetric (~ 1/K in each
population), and most individuals will be fairly admixed. If some individuals are strongly assigned
to one population or another, and if the proportions assigned to each group are asymmetric, then
this is a strong indication that you have real population structure.

Suppose that you have a situation with two clear populations, but you are trying to decide
whether one of these is further subdivided (ie, the value of Pr(X|K = 3) is similar to, or perhaps
a little larger than P(X|K = 2)). Then one thing you could try is to run structure using only
the individuals in the population that you suspect might be subdivided, and see whether there is a
strong signal as described above.

In summary, you should be skeptical about population structure inferred on the basis of small
differences in Pr(K) if (1) there is no clear biological interpretation for the assignments, and (2)
the assignments are roughly symmetric to all populations and no individuals are strongly assigned.
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4.4 Isolation by distance data

Isolation by distance refers to the idea that individuals may be spatially distributed across some
region, with slow dispersal. In this situation, allele frequencies vary gradually across the region.
The underlying structure model is not well suited to data from this kind of scenario.

In practice, the inferred value of K, and the corresponding allele frequencies in each group can
be rather arbitrary. Most individuals will have mixed membership in multiple groups. That is, the
algorithm will attempt to model the allele frequencies across the region using weighted averages of
K distinct components. In such situations, interpreting the results may be challenging.

However, the admixture model will work well for 1-dimensional isolation by distance, and also
for hybrid zones.

5 Missing data, null alleles... and other such problems

The program ignores missing genotype data when updating () and P. This approach is correct
when the probability of having missing data at a particular locus is independent of what allele the
individual has there. While estimates of () for individuals with missing data are less accurate, there
is no particular reason to exclude such individuals from the analysis, unless they have very little
data at all.

A serious problem arises when data are missing in a systematic manner, as with null alleles.
These do not fit the assumed model, and can lead to apparent departures from Hardy-Weinberg
even without population structure. One would not expect the assumed model to be robust to this
sort of violation.

Having multiple family members in the sample also violates the model assumptions. Based on
quite limited experience, my impression is that this can sometimes lead to overestimation of K, but
it may have little effect on the assignment of individuals to populations for fixed K.

5.1 Dominant loci

For some types of genetic markers, it is not possible to distinguish all the genotypes (eg, genotypes
AA and Aalook the same on the gel, while aa is different). I have not implemented anything specific
for this type of data, however the program can be applied to such data under the “no admixture”
model (set NOADMIX=1).

This can done by treating each class of genotypes as being, effectively, a haploid allele. Then
we might designate an AA/Aa individual in the input file as (1,-9), and an aa individual as (2,-9),
where -9 is the value used for missing data. This approach can also be used for more than two
genotypic classes.

This fix is valid under the no-admixture model, because the updates for P and () are still
correct even though we are treating genotypic classes rather than alleles. Of course, there is less
information than if all the genotypes could be distinguished. This fix is not formally correct under
the admixture model, however it seems plausible that admixture estimates may be reasonably
unbiased in this situation too, especially if there are lots of loci. We have not looked at this.

5.2 Sequence data and Y chromosome or mtDNA haplotypes

The structure model assumes that loci are independent within populations (i.e., not in LD within
populations). This assumption is likely to be violated for sequence data, or data from non-
recombining regions. The impact of using such data is likely to be that (1) the algorithm un-
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derestimates the degree of uncertainty in ancestry estimates, and in the worst case, may be biased
or inaccurate; (2) estimation of K is unlikely to perform well.

One valid solution is to recode the haplotypes from a linked region so that it is represented as a
single locus with n alleles. If there are very many haplotypes, one could group related haplotypes
together.

We are also aware of analyses that have taken the polymorphic sites from sequence data from
multiple regions, and treated these within structure as independent loci. This type of analysis may
yield sensible and informative results, however considerable caution must be applied to interpreting
the results. The linkage model is likely to perform better here than the independent sites model.
We would not recommend this type of approach for sequences from just one or a few regions, except
perhaps in purely exploratory analysis.

5.3 Multimodality

The structure algorithm starts at a random place in parameter space, and then converges towards
a mode of the parameter space. (In this context, a mode can be thought of, loosely speaking, as a
clustering solution that has high posterior probability.) For some data sets there may be multiple
modes®, and the current implementation of structure does not normally cross between them in runs
of realistic length. This means that different runs can produce substantially different answers, and
longer runs will probably not fix this.

This is mainly an issue for very complex data sets, with large values of K, K > 5 or K > 10, say
(but see the example of Data Set 2A in Pritchard et al. (2000a)). You can examine the results for
@ to get an idea of whether this seems to be happening. A careful analysis of this type of situation
was presented by Rosenberg et al. (2001), for a data set where the estimated K was around 19.

6 Running structure from the command line

There are a number of program parameters which are set by the user. These are in two files
(mainparams and eztraparams), which are read every time the program executes. You will need to
set all the values in mainparams, while the default values in extraparams are probably ok to begin
with. Note that the default model assumes admixture, and does not make use of the user-defined
PopData.

Each parameter is printed in all-caps in one of these two files, preceded by the word “#define”.
(They are also printed in all-caps throughout this document.) The value is set immediately following
the name of the parameter (eg “#define NUMREPS 1000” sets the number of MCMC repetitions
to 1000).

Following each parameter definition, there is a brief comment (marked “//”), describing the
parameter. This includes an indication of what sort of value is expected. These include: “(str)”,
for string (used for the names of the input and output files); “(int)”, for integer; “(d)”, for double
(i.e., a real number such as 3.14); and “(B)”, for Boolean (i.e., the parameter takes values TRUE
or FALSE by setting this to 1 or 0, respectively).

The program is insensitive to the order of the parameters, so you can re-arrange them or add
comments, etc. The values of all parameters used for a given run are printed at the end of the
output file.

Several of the parameters in mainparams can be changed from the command line (see below).

SFor K > 1 here are always multiple symmetric modes that correspond to permuting the labels; these do not
cause serious problems Pritchard et al. (2000a)
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6.1 Parameters in file mainparams.

The user will need to set all of these parameters before running the program. Several of these
parameters (LABEL, POPDATA, POPFLAG, PHENOTYPE, EXTRACOLS) indicate whether
particular types of data are present in the input file; these are described in Section 2.

INFILE (string) Name of input data file. Max length 30 characters (or possibly less depending
on operating system).

OUTFILE (string) Name for program output files (the suffixes “_17, “27  ....“m” (for inter-
mediate results) and “f” (final results) are added to this name). Existing files with these
names will be overwritten. Max length of name 30 characters (or possibly less depending on
operating system).

NUMINDS (int) Number of diploid individuals in data file.
NUMLOCIT (int) Number of loci in data file.
LABEL (Boolean) Input file contains labels (names) for each individual. 1 = Yes; 0 = No.

POPDATA (Boolean) Input file contains a user-defined population-of-origin for each individual.
1 = Yes; 0 = No.

POPFLAG (Boolean) Input file contains an indicator variable which says whether to use popinfo
when USEPOPINFO==1 (see below). 1 = Yes; 0 = No.

PHENOTYPE (Boolean) Input file contains a column of phenotype information. 1 = Yes; 0 =
No.

EXTRACOLS (int) Number of additional columns of data after the Phenotype before the geno-
type data start. These are ignored by the program. 0 = no extra columns.

PHASEINFO (Boolean) The row(s) of genotype data for each individual are followed by a row of
information about haplotype phase. This is for use with the linkage model only. See sections
2 and 3.2 for further details.

MISSING (int) Value given to missing genotype data. Must be an integer, and must not appear
elsewhere in the data set. I use -9.

PLOIDY (int) Ploidy of the organism. Default is 2 (diploid).

ONEROWPERIND (Boolean) The data for each individual are arranged in a single row. E.g.,
for diploid data, this would mean that the two alleles for each locus are in consecutive order
in the same row, rather than being arranged in the same column, in two consecutive rows.
See section 2 for details about input formats.

GENENAMES (Boolean) The top row of the data file contains a list of L names corresponding
to the markers used.

MAPDISTANCES (Boolean) The next row of the data file (or the first row if GENENAMES==0)
contains a list of mapdistances between neighboring loci.
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MAXPOPS (int) Number of populations assumed for a particular run of the program. Pritchard
et al. (2000a) call this K. Sometimes (depending on the nature of the data) there is a natural
value of K that can be used, otherwise K can be estimated by checking the fit of the model
at different values of K (see Section 4).

BURNIN (int) Length of burnin period before the start of data collection. (See Section 3.1.)

NUMREPS (int) Number of MCMC reps after burnin. (See Section 3.1.)

6.2 Parameters in file extraparams.

These options allow the user to refine the model in various ways, and do more involved analyses.
The default values are probably fine to begin with. For Boolean options, type 1 for “Yes”, or “Use
this option”; 0 for “No” or “Don’t use this option”.

FREQSCORR (double) Use a model where the allele frequencies are correlated. More specifically,
rather than assuming a prior in which the allele frequencies in each population are independent
draws from a uniform Dirichlet distribution, we start with a distribution which is centered
around the mean allele frequencies in the sample. This model is more realistic for very closely
related populations (where we expect the allele frequencies to be similar across populations),
and can produce better clustering (section 3.3). The prior of Fsr is set using FPRIORMEAN,
and FPRIORSD. There may be a tendency to overestimate K when FREQSCORR is turned
on.

ONEFST (Boolean) Assume the same value of Fgp for all populations. This is not recommended
for most data, because in practice you probably expect different levels of divergence in each
population. The important exception is if you are running the program for K = 2, and you
care about the actual value of Fgr, because in that case it is not really possible to estimate

two values of Fgr separately. When you're trying to estimate K, you should use the same
model for all K (I'd suggest ONEFST=0).

INFERALPHA (Boolean) Infer the value of the model parameter « from the data; otherwise
« is fixed at the value ALPHA which is chosen by the user. This option is ignored under
the NOADMIX model. (The prior for the ancestry vector @) is Dirichlet with parameters
(o, ...,). Small a implies that most individuals are essentially from one population or
another, while alpha > 1 implies that most individuals are admixed.)

POPALPHAS (Boolean) Infer a separate « for each population. Not recommended in most cases
but may be useful for situations with asymmetric admixture.

RECOMBINE (Boolean) Use the linkage model. See section 3.2. RLOG10START sets the
initial value of recombination rate r per unit distance. RLOG10MIN and RLOG10MAX
set the minimum and maximum allowed values for loglOr. RLOG10PROPSD sets the size
of the proposed changes to logl0r in each update. The front end makes some guesses about
these, but some care on the part of the user in required to be sure that the values are sensible
for the particular application.

COMPUTEPROB (Boolean) Print the log-likelihood of the data at each update, and estimate
the probability of the data given K and the model (see section 4). This is used in estimating
K, and is also a useful diagnostic for whether the burnin is long enough. The main reason for
turning this off would be to speed up the program (~ 10-15%).
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INFERLAMBDA (Boolean) Infer a suitable value for A\. Not recommended for most analyses.

A parameterizes the allele frequency prior, and for most data the default value of 1 seems
to work pretty well. If the frequencies at most markers are very skewed towards low/high
frequencies, a smaller value of A may potentially lead to better performance. It doesn’t seem
to work very well to estimate A at the same time as the other hyperparameters, o and F'.

POPSPECIFICLAMBDAS estimates a different A for each population.

NOADMIX (Boolean) Assume the model without admixture (Pritchard et al., 2000a). (Each
individual is assumed to be completely from one of the K populations.) In the output, instead
of printing the average value of () as in the admixture case, the program prints the posterior
probability that each individual is from each population. 1 = no admixture; 0 = model with
admixture.

ADMBURNIN (int) (For use when RECOMBINE=1.) When using the linkage model, a short
burnin with the admixture model (say 500 iterations) is strongly recommended in most cir-
cumstances. Without such a burnin, the linkage model often produces peculiar results.

Set ADMBURNIN < BURNIN. We have dropped a related parameter (NOADMBURNIN)

that was in Version 1.

USEPOPINFO (Boolean) Use prior population information to assist clustering. See also MI-
GRPRIOR and GENSBACK. Must have POPDATA=1.

GENSBACK (int) This corresponds to G (Pritchard et al., 2000a). When using prior population
information for individuals (USEPOPINFO=1), the program tests whether each individual has
an immigrant ancestor in the last G generations, where G = 0 corresponds to the individual
being an immigrant itself. In order to have decent power, G should be set fairly small (2, say)
unless the data are highly informative.

MIGRPRIOR (double) Must be in [0,1]. This is v in Pritchard et al. (2000a). Sensible values
might be in the range 0.001—0.1.

6.3 Output options

PRINTQHAT (Boolean) When this is turned on, the point estimate for @ is not only printed
into the main results file, but also into a separate file with suffix “q”. This file is required in
order to run the companion program STRAT.

UPDATEFREQ (int) Number of MCMC iterations between printing each update on the screen.
Value of 0 will cause this to be set automatically.

PRINTLIKES (Boolean) Print the current value of the likelihood to the screen in every iteration.

INTERMEDSAVE (int) If you're impatient to see preliminary results before the end of the
run, you can have results printed to file at intervals during the MCMC run. A total of
INTERMEDSAVE such files are printed, at equal intervals following the completion of the
BURNIN. Turn this off by setting to 0. Names of these files created using OUTFILE name.

PRINTKLD (Boolean) Print the “Kullback-Leibler” divergence “D” between populations. The
output to the screen gets a bit wide for moderate K, so the user may want to switch this off
to clarify the output.
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The distance between populations A and B is computed as

L J (1)
(1 Pa
Das =) prél?j In(—3%), (5)

=1 j=1 Pp.;

where ﬁg?j is the estimated allele frequency of allele j at locus [ in population A, and where

L is the number of loci, and J; the number of alleles at locus I. Notice that D4 g and Dp 4
are not, in general the same; however to save space in printing the running update, we print
the average of these. This measure of divergence can be motivated as follows. Suppose that
we want to infer whether an individual that is actually from population A is from A or B.
Then it is natural to compute the ratio of the likelihood of their genotype in each population.
D4 p gives the average contribution of a single genotyped allele to the log-likelihood ratio.
Suppose for example that D4 5 = 0.1. Then by genotyping 10 (diploid) loci, the expected
log-likelihood ratio is 2.0. D4 p provides a natural measure for the strength of evidence for
assignments of individuals.

ECHODATA (Boolean) Print a brief summary of the data set to the screen and output file.
(Prints the beginnings and ends of the top and bottom lines of the input file to allow the user
to check that it has been read correctly.)

ANCESTDIST (Boolean) Collect information about the distribution of @ for each individual,
as well as just estimating the mean. When this is turned on, the output file includes the
left- and right-hand ends of the probability intervals for each ¢(i). (A probability interval
is the Bayesian analog of a confidence interval.) The values printed show the middle 100p%
of the probability interval, where p is a number in the range 0.0 to 1.0 and is set using
ANCESTPINT. The distribution of () is estimated by recording the number of hits in each
of a number of boxes between 0 and 1, to form a sort of histogram. The width of these boxes,
which are of equal size, is set using NUMBOXES.

6.4 Priors

These values are used to parametrize the assumed probability models. In most cases they have
little effect on the results, and the user may not want to worry about them. The values of CORRA
and CORRB matter somewhat when FREQSCORR=1. The value of ALPHA has quite an effect
if INFERALPHA=0.

ALPHA (double) Dirichlet parameter («) for degree of admixture (this is the initial value if
INFERALPHA==1).

CORRA, CORRB (double) See FREQSCORR. The prior for f® is taken to be Gamma with
mean CORRAxCORRB, and variance CORRA*CORRB?.

EPSILON (double) Dirichlet parameter for allele frequencies when FREQSCORR=0. A value of
1.0 (which produces a uniform distribution) seems to work fine.

UNIFPRIORALPHA (Boolean), ALPHAMAX (double) Assume a uniform prior for & which
runs between 0 and ALPHAMAX. This model seems to work fine; the alternative model (when
UNIFPRIORALPHA=0) is to take a as having a Gamma prior, with mean ALPHAPRIORA
x ALPHAPRIORB, and variance ALPHAPRIORA x ALPHAPRIORBZ.

ALPHAPRIORA, ALPHAPRIORB (double) See UNIFPRIORALPHA.
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6.5 Further miscellaneous options

ALPHAPROPSD (double) The Metropolis-Hastings update step for « involves picking a value
o/ from a Normal with mean « and standard deviation ALPHAPROPSD> 0. The value of
ALPHAPROPSD does not affect the asymptotic behaviour of the Markov chain, but may
have a substantial impact on the rate of convergence. If there is a lot of information about
a, small values of ALPHAPROPSD are preferable to obtain a reasonable acceptance rate. If
there’s not much information about «, larger values produce better mixing.

FPROPSD (double) The standard deviation of the proposal for the allele frequency correlation
f®. Analogous to ALPHAPROPSD. Only relevant when FREQSCORR = 1.

STARTATPOPINFO (Boolean) Use given populations as the initial condition for population
origins. (Need POPDATA==1). This option is here to provide another check that the Markov
chain is converging adequately. This option only affects the starting point of the Markov
chain and, in theory, it should not affect the final answers, provided that the BURNIN is long
enough.

It is assumed that the PopData in the input file are between 1 and k£ where kK <MAXPOPS.
Individuals for whom the PopData are not in this range are initialized at random.

RANDOMIZE (Boolean) Use a different random number seed for each run (this is taken from
the system clock).

METROFREQ (int) Frequency of using a Metropolis-Hastings step to update ) under the
admixture model. When this is used, a new proposal ¢’ is chosen for each ¢. This proposal
is sampled from the prior (ie ¢/ ~ D(a, a, ...,)). The rationale for having this update is
that it may improve mixing when alpha is quite small, by making it easier for individuals to
jump between populations. The Metropolis-Hastings move is used once every METROFREQ
iterations. If METROFREQ is set to 0, it is never used.

REPORTHITRATE (Boolean) Report acceptance rate of Metropolis update for ¢ (see METRO-
FREQ).

6.6 Command-line changes to parameter values

In order to simplify batch runs and make it easier to run simulations involving structure, we have
added command-line flags that update the values of certain parameters, over-riding the values set
in mainparams. These are as follows:

-m (mainparams) Read a different parameter input file instead of mainparams.
-e (extraparams) Read a different parameter input file instead of extraparams.

-s (stratparams) Read a different parameter input file instead of stratparams. (For use with the
accompanying program, STRAT, for association mapping.)

-K (MAXPOPS) Change the number of populations.
-L (NUMLOCIT) Change the number of loci.
-N (NUMINDS) Change the number of individuals.

-i (input file) Read data from a different input file.
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-0 (output file) Print results to a different output file.

Thus, to over-ride one of the preset parameter values, we invoke structure and then use the
relevant flag, followed by the new parameter value. The flag and new value are separated by a
space. The flags can be used in any order.

For example, to change the number of assumed populations to 5, and direct the output to a file
called outputs, we could call structure as follows:

./structure -K 5 -o outputb

7 Front End

This section provides some general instructions, and a bit of advice about using the front end.
General topics are discussed above, and you can get some more detailed information about some of
the various parameter options by looking in section 6.

7.1 Download and installation.

First, download the appropriate program file from the web page. There are separate versions for
different platforms (at present, Windows, Sun and Linux).

The Windows file is an executable installation file. Double click on the icon to start the instal-
lation. You will be guided through the installation. Run the program by double clicking on the
structure icon.

On a Unix system, put the file into an appropriate working directory. Then, unzip the file
(“gzip -dc <filename> | tar xvf - 7), where <filename> is the name of the downloaded file. Run
the program by typing “./structure” in the appropriate directory.

People on a Unix system can also install the program into a standard directory for programs, e.g.,
/usr/local /structure. You then need to set an environment variable e.g., STRUCTURE_PATH
to the structure package installation directory. For bash users, the syntax is:

STRUCTURE PATH="/usr/local/structure’’

export $STRUCTURE_PATH
in the .profile file; for csh/tesh users put

setenv STRUCTURE PATH "/usr/local/structure’’
in .teshre or .cshre. You can then run the program by typing

$STRUCTURE PATH/structure

7.2 Overview.

The front end organizes data analysis into “projects”. Each project is connected to a single data
file. When creating a project, the user also provides information that specify how to read the data
file (number of loci, number of individuals, etc). These are characteristics of the data file, and are
always the same within this project.

Each project also contains one or more “parameter sets”. These allow the user to specify the
details of the MCMC runs, including the number of repetitions, burnin length, etc, as well as
specifying the model of analysis (e.g., whether to allow admixture, models of allele frequencies,
etc). The user can then run the Markov chain at chosen values of K, for a given parameter set.
Figure 1 shows an example of the components of a project called “popdata’”.

The program can then be run, using these parameter values. The front end stores various
summaries of the results, including a number of graphical plots, described below.
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I3 Project- popdata
D Froject Data
[y Project Inforration
D Simulation Summary
% [ Parameter Sets
@ Cpst
D Settings
@ I Results
[y pst _run_1 (k=3
[ pst_run_2 (K=3)
[y st _run_3 k=5
[ pst_run_d (k=4
@ [ps2
D Settings
9 [ Results
[y ps2_run_1 (k=3
@ [Apsa
[ settings
@ 3 Results
[ ps3_run_1 (K=4)
[y psa_run_2 (k=3

Figure 1: Example showing the components of a project. Project Data is the data file; Project
Information specifies data file format. Simulation Summary provides a summary of all MCMC
simulations run as part of this project. Parameter Sets consists of three groups of MCMC runs that
used different parameter settings: psl, ps2, and ps3; each of these shows the Settings, as well as a
list of results for completed MCMC runs with these parameter values. The user can click on any of
these to see details.

£& Step 1 of 4 - Project Wizard x|

Step 1 of 4: Project information

Hame the project [sample_project
Select directory  |Gdata Browse ...

Choose datafile |Glsample_data Browse ...

| Mexts:» || Cancel |

Figure 2: Importing the data (step 1). The user specifies the directory for the project (data, here),
the name of the project directory (sample_project; this is a directory within data), and the data file
to be read by the program sample_data.

7.3 Building a project.

First you need to construct an input file. This is described in Section 2.

Now, click on File—New Project. This opens up a wizard to import the data (Figure 2). The
data are copied from the specified input file into the work directory chosen for the project.

The wizard consists of four frames:

1. Specify the project directory, project name, and input data file. (Figure 2.)

2. Specify the basic characteristics of the data file (number of individuals, ploidy of the data
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& Step 2 of 4 - Project Wizard x|
Step 2 of 4: Information of input data set

Number of indviduals: [155 |
Ploidy of data: 2 ]
Number of loci: F ]
Missing datavalue:  [g |

| Show data file format |

| ==Back || Next=> || Cancel |

Figure 3: Importing the data (step 2)—Specifying the characteristics of the data file. In this, and
the next two frames of the wizard (not shown), the user specifies the characteristics of the data file
(number of loci, number of individuals, type of data, etc).

(enter "2’ for diploid organisms), number of loci, and the value that is used to indicate missing
data. Click on “Show data file format” to get a summary of the lengths and number of lines
in the data file. (Figure 3.)

3. (Rows) Specify which, if any, of the optional extra row data are present: row of marker
names; row of inter-marker distances; and a row of phase data after each individual. Also tick
the “single line” box if data for each individual are stored in a single row, instead of in the
standard format of two rows per individual.

4. (Columns) Specify which of the optional column data are there: Individual ID (LABEL);
Population of origin (POPDATA); USEPOPINFO flag— flag that says to use the POPDATA
information for certain individuals when using the prior population information model; phe-
notype data (for use in association mapping (Pritchard et al., 2000b)); other extra columns
of data prior to the genotype data that should be ignored by structure.

When you’ve finished these steps, you’ll get a summary of the data format; if this looks correct,
click on 'proceed’. The program will now attempt to load the data file and create the new project
(Figure 4).

7.4 Configuring a parameter set.

Once you've successfully loaded a data file, you are ready to start running structure. You will create
one or more “parameter sets”; these represent a whole list of choices that you make about how to
analyze the data. We have entered a series of default settings, and these are good place to start.
You will probably want to run structure multiple times for each parameter set, at different values
of K, and the front end is set up to facilitate this.

Go to the pull-down menu under Parameter Set. You can create a new parameter set, modify
an existing one, or delete one. Click on “New”. You now see a dialogue box with four tabs (Figure
5). Click on each of these:

Run Length. See section 3.1 for discussion of this. Note that the front end provides time series
plots of some key parameters to help you assess whether the run length seems to be sufficient.
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Figure 4: Upon successfully importing the data, the front end loads the data file and creates the
new project.

Ancestry Model. See section AncestryModels. The admixture model is a good place to start
for most data sets. The linkage model will be disabled unless you entered linkage information
about the markers. Section 6 provides some extra details about some of the detailed options,
including GENSBACK and MIGRPRIOR under the “Use Population Information” option.
Note that the linkage model is relatively computationally intensive.

Allele Frequency Model. See section 3.3. We recommend applying both the correlated fre-
quencies model and the independent frequencies model. The correlated frequencies model has
better power to detect subtle population structure, but the posterior probabilities for K may
be biased upwards somewhat. The correlated frequencies model is parameterized in terms of
Fsr, with a separate parameter for each population (details in section 3.3). Inferring A is
probably not necessary during initial investigation.

Advanced. Turning off the function that computes the posterior probabilities (for estimating
K) speeds the program up significantly. You can also get the program to output posterior
credible regions for the ancestry of each individual (see ANCESTDIST, section 6.3). “Initialize
at POPINFQO” is described in more detail under STARTATPOPINFO, section 6.5.

7.5 Running simulations.

Now that you have a parameter set, you can start the program running by going to [Parameter
Set]—[Run]. You’ll be asked to set the number of populations (/). You can also stop simulations
in the same place ([Parameter Set]—[Stop]).

Text data will be printed to the console at the bottom of the screen (Figure 6). You can also
view real-time time-series plots of various key summary statistics: Fgr, «, likelihoods, etc, (Figure
7).

Once you have more than one parameter set, you need to specify which one you want to use
for new MCMC runs. At any time, one parameter set is designated as “active” (see the left-hand
window). You can switch the active parameter set by going to [Parameter Set]—[Parameter Set
List], and highlighting the appropriate choice.
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Figure 5: Specifying a new parameter set: setting the run length.

Figure 6: The run-time output is shown in the bottom console

7.6 Batch runs.

You can schedule a series of structure runs by going to [Project]—[Start a Job]. This opens up a
scheduler that allows you to pick (1) parameter sets (use control4+mouse to select multiple parameter
sets) (2) values of K, (2) number of runs for each. See Figure 8.

7.7 Analyzing the results
Summaries. You can view a table of summary details of all runs completed so far by going to

[View]—[Simulation Summary].

Text results. You can look at full text results for each run by going to the left-hand window,
and clicking on the appropriate run. The full text output will appear in the right-hand window.
Details for interpreting the text output are given in Section 8.
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Figure 8: Creating a batch run job.

Plots of Ancestry estimates We provide two types of plots of Q (the estimated membership
coefficients for each individual, in each cluster. The first representation comes up automatically
when you click on the corresponding run in the left-hand window. Each individual in the data set
is represented by a single vertical line, which is partitioned into K colored segments that represent
that individual’s estimated membership fraction in each of the K inferred clusters.

The second representation of the ancestry of individuals plots everybody into a triangle (Figure
10). This type of plot is useful for visualizing the data for K = 3 (Pritchard et al., 2000a). It
is kind of a fun tool for exploring higher-dimensional data, but the bar plots are usually easier to
interpret.

Plots of summary statistics We also provide plots of several interesting summary statistics.
[Plotting]—[Data Plotting] contains time-series plots of the values of certain summaries during the
course of a run. One example is shown in Figure 7; notice that there is a brief period at the start
of the run where the values increase dramatically before reaching their stationary distribution. You
should inspect these plots to be sure that the summary statistics seem to stabilize before the end
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Figure 9: Summary plot of estimates of (). Fach individual is represented by a single vertical line
broken into K colored segments, with lengths proportional to each of the K inferred clusters. The
numbers (1..4) correspond to the predefined populations.
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Figure 10: The triangle plot of (). Each individual is represented by a colored point. The colors
correspond to the prior population labels. The estimated ancestry vector for an individual consists
of K components which add up to 1. When K = 3, the ancestry vectors can be plotted onto a
triangle, as shown. For a given point, each of the three components is given by the distance to one
edge of the triangle. Individuals who are in one of the corners are therefore assigned completely to
one population or another. For K > 3, we represent the data by allowing the user to pick out two
of the inferred clusters at a time, and then grouping all the other clusters together.

of the burnin.
There are also histogram plots of Fsr and « (Figure 7.7). These are estimates of the posterior
distribution of these parameters.
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Figure 11: The histogram of Fst

8 Interpreting the text output

This section describes the data that are printed to the console during the run, and to the output
file. The front end also provides additional data plots, described below.

8.1 Output to screen during run

Rep#: Alpha Corr D1,2 Ln Like Est Ln P(D)

4500: 0.009 6.1 0.831 -2730 -2776
4525: 0.010 9.1 0.806 -2716 -2776
4550: 0.008 7.3 0.792 -2734 -2775

The example above shows part of the output to the screen during a run. Here, “rep” gives the
number of MCMC iterations so far, including the burnin; “Alpha” is the current value of a; “Corr”
is the current mean (across loci) value of the correlation coefficient f (see FREQSCORR); “D1,2”
is a measure of divergence between populations 1 and 2 (see PRINTKLD); “Ln Like” is the log
likelihood of the data given the current values of P and @; “Est Ln P(D)” is the current estimate
of In(P(X|K)) (averaging over all iterations since the end of the burnin period). Some of these
columns may not be printed, depending on the program options chosen. If K gets large, it may be
worth setting PRINTKLD=0 in order to make the output easier to read.

8.2 Printout of ()

Label (%Miss) Pop: Inferred clusters (and 90% probability intervals)

1 17 (0) 2 0.977 0.023 (0.829,1.000) (0.000,0.171)
2 1219 (7) 2 : 0.997 0.003 (0.988,1.000) (0.000,0.012)
3 1223 (0) 2 : 0.833 0.167 (0.003,1.000) (0.000,0.997)
4 1329 (7) 1 : 0.005 0.995 (0.000,0.020) (0.980,1.000)
5 15 (0) 3 : 0.006 0.994 (0.000,0.016) (0.984,1.000)

When the program is run without using prior population information, the results for @) are
presented in the format shown above (here K was set to 2). This is read as follows. Reading from
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row 1: Individual label (taken from data file) = 17; percentage of missing data for this individual
= 0%; user-assigned population = 2; estimated membership in clusters 1 and 2 = 0.977 and 0.023
respectively (these are the mean values of ¢('")); 90% probability intervals on qﬁ”) and qém are
(0.829,1.000) and (0.000,0.171), respectively. (Note that the probability intervals are shown only if

ANCESTDIST is turned on.)

8.3 Printout of () when using prior population information

When the program is run with prior population information, the printout is a bit different. Here 1
have run the same data with K = 3, USEPOPINFO=1, and GENSBACK = 1:

Label (%Miss) Pop :

1 17 (0) 2 : 0.998 | Pop 1: 0.000 0.001 | Pop 3: 0.000 0.000
2 1219 (7) 2 ¢ 1.000 | Pop 1: 0.000 0.000 | Pop 3: 0.000 0.000
3 1223 (0) 2 : 0.612 | Pop 1: 0.000 0.000 | Pop 3: 0.004 0.383
4 1329 (7) 1 : 1.000 | Pop 2: 0.000 0.000 | Pop 3: 0.000 0.000
5 15 (0) 3 0.999 | Pop 1: 0.000 0.001 | Pop 2: 0.000 0.000

In general, the first column of results (following “Pop : ”) shows the posterior probability
that the individual in question is correctly assigned to the given population. The subsequent
columns show the probabilities that it is from, or has ancestry in, the other populations. There are
GENSBACK++1 entries for each of the other populations, showing the probability that an individual
is from that population, has a parent, grandparent, great-granparent,... etc, from that population
(in this order).

For example, reading from row 3: Individual 1223 (who has 0% missing data) is actually from
the presumed population (2) with probability 0.612. There is (approximately) zero posterior prob-
ability that this individual has recent ancestry in population 1, but it may have recent ancestry in
population 3 (the probabilities are 0.004, and 0.383, that the individual is from population 3, or
has a single parent from population 3, respectively).

8.4 Printout of estimated allele frequencies (P)

Locus 5

3 alleles

19.0% missing data

2 0.511 0.821 0.656

3 0.444 0.171 0.317

1 0.045 0.008 0.027

This example shows a printout for the estimated allele frequencies (P) at locus 5. Columns
2,3, and 4 show the estimated frequency (in clusters 1,2 and 3, respectively) of the allele listed in
column 1.

8.5 Site by site output for linkage model.

When the SITEBYSITE option is chosen, the output file contains posterior population of origin
assignments for each allele copy at each locus for each individual. For large datasets, this information
can require several megabases to store.

Each line shows the assignment probabilities for one locus for one individual. The first two
columns of the line indicate the number of the individual (ranging from 1 to NUMINDS) and the
number of the locus (ranging from 1 to NUMLOCI) in the order that they occur in the data file. If
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the data file contains labels for each individual or marker names for each locus, these are given in
subsequent columns.

The format of the posterior assignment probabilities depends on the parameter combinations.
If LINKAGE=0 or PHASED=1 then the first K rows of output give the probability that the first
allele copy at the locus comes from populations 1..K. For diploid or polyploid data, analogous
probabilities for subsequent allele copies are shown in further columns.

If the linkage model is used (LINKAGE=1) and the data is not fully phased (PHASED=0) the
posterior assignment probabilites for the allele copies at each locus can be strongly co-dependent.
Structure therefore outputs joint assignment probabilities for the two allele copies implying K?
entries for each locus (note that this option is not available for PLOIDY# 2).

If MARKOVPHASE=1 then the first K columns give the probabilities that the first allele copy
in the datafile is in population 1 and the second allele copy is in population 1..K, with subsequent
columns relating to probabilities with the first allele copy in populations 2..K.

If MARKOVPHASE=0, then instead of referring to the first and second listed allele copies in
the data file, the probabilities refer to the population of origin of maternal and paternal strands.
If there is no phase information (PHASEINFO=0), then the posterior probability matrix should
theoretically be symmetric, such that the probability the maternal allele is in population k; and
the paternal allele is in ko will be equal to the probability that the maternal allele is in population
ko and the paternal allele is in population k;. In practice, because MCMC is used to estimate the
matrix, there will be noticeable deviations from symmetry if NUMREPS is small.

9 How to cite this program

The appropriate citation for the basic method is to Pritchard et al. (2000a). We also have a paper
in preparation (Falush et al., 2003) that will describe the linkage model in more detail. When that
is available, it will be the appropriate reference for that model.

10 Bibliography

References

Beaumont, M., Gottelli, D., Barratt, E. M., Kitchener, A. C., Daniels, M. J., Pritchard, J. K., and
Bruford, M. W. (2001). Genetic diversity and introgression in the scottish wildcat. Molecular
Ecology, 10:319-336.

Falush, D., Stephens, M., and Pritchard, J. K. (2003). Inference of population structure II. Linked
loci and correlated allele frequencies. To be submitted to Genetics, summer 2002.

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000a). Inference of population structure using
multilocus genotype data. Genetics, 155:945-959.

Pritchard, J. K., Stephens, M., Rosenberg, N. A., and Donnelly, P. (2000b). Association mapping
in structured populations. Am. J. Hum. Genet., 67:170-181.

Rosenberg, N. A., Burke, T., Elo, K., Feldman, M. W., Freidlin, P. J., Groenen, M. A., Hillel,
J., Maki-Tanila, A., Tixier-Boichard, M., Vignal, A., Wimmers, K., and Weigend, S. (2001).
Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken
breeds. Genetics, 159:699-713.

29



