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Abstract

The Cassini spacecraft is a robotic probe sent from Earth to orbit and explore the

planet Saturn, its moons, and its expansive ring system. Between May 3 and Au-

gust 2 of 2005, we undertook a series of radio occultation experiments, during which

the Cassini spacecraft operated in conjunction with the NASA Deep Space Network

(DSN) to probe the rings at three distinct radio wavelengths.

During our occultation experiments, Cassini flies behind the rings of Saturn as

viewed from Earth and transmits coherent radio signals at wavelengths of 13 cm, 3.6

cm, and 0.94 cm, in the radio bands known as S, X, and Ka, respectively. These

signals pass through the rings and are received and recorded on Earth at the large

antenna complexes of the DSN. At each of the three transmitted frequency channels,

the received signal comprises two components, i) a direct (coherent) component, which

is the transmitted sinusoid, attenuated and phase shifted by the average effect of its

interaction with the interceding ring material, and ii) a scattered (incoherent) signal

component, comprising energy that is forward-scattered towards the receiver from all

of the ring particles illuminated by the transmitting antenna’s beam. The time- and

spatially-averaged diffraction signature of ring microstructure—which forms when

individual ring particles organize into large clusters or groups under the influence of

collisional and self-gravitational forces—is superimposed on the scattered signal.

Coherent radio waves transmitted by the Cassini spacecraft are diffracted at vari-

ous locations in Ring A and B and indicate the presence of fine-scale structure showing

periodic variation in optical depth, which we refer to as periodic microstructure (PM).

We interpret the observed spectral signature using simple diffraction grating models,

yielding estimates of the structural period λgr ≈ 100–250 meters. In particular, two
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regions in Ring A at radial locations 123.05–123.4 × 103 km and 123.6–124.6 × 103

km yield average estimates of λgr=163+−6 meters and λgr=217+−8 meters, respectively.

Three regions in Ring B at radial locations 92.1–92.6 × 103 km, 99.0–104.5 × 103

km, and 110.0–115.0 × 103 km yield average estimates of λgr=115+20
−15, 146

+
−14, and

250+150
−75 meters, respectively. In all regions, the structure appears to be azimuthally

symmetric with mean orientation angles ranging between -2.8o ≤ φgr ≤ 1.5o.

Prior to Cassini, axisymmetric periodic microstructure was predicted by fluid

dynamical theory and by the results of dynamical simulations of the rings, but was

not observed experimentally. Our observations are the first to directly observe PM

in the rings, and to report estimates of its structural period and orientation in five

distinct regions across Rings A and B.
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Chapter 1

Introduction and Historical Review

July of 2010 marks the 400th anniversary of Galileo’s discovery of Saturn’s rings, an

event made possible by the invention of the modern telescope. During and since

Galileo’s time, technological advances have led to improved telescopes, as well as

other new instruments and observational techniques. These advances have in turn

played key roles in the chain of scientific discoveries that connect the current state of

our knowledge to that night in July of 1610.

The Cassini-Huygens mission is the first robotic probe to orbit Saturn, and repre-

sents the latest major advance in Saturn exploration tools and techniques. Inserted

into Saturn orbit in July of 2004, the Cassini spacecraft carries onboard a complement

of 12 scientific instruments designed to study Saturn, its moons, and its impressive

ring system. These instruments measure many aspects of the rings with an unprece-

dented level of fidelity, and are accumulating a cache of observational data that will

be studied by scientists for many years after the Cassini mission is completed.

In this dissertation, we seek to explain evidence of fine-scale ring structure that

we have detected using the Cassini radio occultation experiment. To place our work

in the proper context, we begin our report with a brief history of the major Saturn

ring discoveries, starting with Galileo’s first observations of the rings 400 years ago.

11
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1.1 The Discovery of Saturn’s Rings

Figure 1.1: Sketch of Saturn as seen by
Galileo in 1610.

In 1608, the first practical telescope

was invented by Hans Lippershey (1570–

1619) in the Netherlands, who used a

convex main lens and a concave eyepiece

lens to construct an instrument capable

of 3x magnification. In the following

year, Galileo Galilei (1564–1642) of Pisa

built his first telescope, based on impre-

cise descriptions of the Dutch design. His first model was also capable of 3x magni-

fication, but soon he had improved the instrument to achieve a magnification of 32x

[Alexander , 1962]. Using this instrument, Galileo became the first person to observe

planetary rings when he viewed the planet Saturn from Padua, Italy in July of 1610.

On the 30th of July, Galileo informed his patrons of his discovery in a letter written

to Belesario Vinta, the secretary of the Grand Duke of Tuscany,

“...This is that the star Saturn is not a single star, but is a composite of

three, which almost touch each other, never change or move relative to

each other, and are arranged in a row along the zodiac, the middle one

being three times larger than the lateral ones, and they are situated in

this form: oOo.” [van Helden, 1974].

Not wanting to alert other researchers to the discovery, but at the same time

wishing to establish a precedent for the observation, he sent his fellow scientists the

following message,

“s m a i s m r m i l m e p o e t a l e u m i b u n e n u g t t a u i r a s”

an anagram for Altissimum planetam tergeminum observavi, or “I have observed the

highest planet [Saturn] tri-form.” The power of the telescope used by Galileo in the

summer of 1610 was not sufficient to resolve Saturn’s rings, as evident from his de-

scription above, and from his sketch of the 1610 observations presented in Figure

1.1.
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Galileo continued to observe Saturn from July 1610 through May 1612. After

taking a break of several months, he observed Saturn again in December of 1612,

only to find that the companions described in his 1610 letter had disappeared, “I do

not know what to say in a case so surprising, so unlooked for, and so novel”, he said

of the 1612 vanishing [Burns , 1999]. He was actually observing the rings edge-on.

Galileo predicted that the appendages would return, but during the summer of 1616,

he was confronted by yet another configuration in the ever-changing ‘star’, Figure

1.2. The odd protrusions he observed in 1616, extending out from either side of the

planet, became known as ansae or ‘handles’.

Figure 1.2: Sketch of Saturn as seen by
Galileo in 1616, after the rings had ‘re-
turned’.

Between 1610 and 1656, many as-

tronomers made observations of Saturn,

producing sketches and advancing the-

ories to explain what they saw. Jo-

hannes Hevelius (1611-1689) published

his lavishly-illustrated Selenographia in

1647, and in his 1656 publication, Dis-

sertatio de natura Saturna facie, claimed

that Saturn was an ellipsoid with two ap-

pendages physically attached to the planet. Francesco Fontana (1580–1656) also

saw Saturn with handles as early as 1638, though he did not publish his work until

the release of Novae coelestium terrestriumque rerum observationes in 1646. Pierre

Gassendi (1592–1655) made detailed observations of Saturn, beginning in 1633 and

continuing until his death in 1655, cataloging all of the changes in Saturn’s appearance

in an effort to discover how they occurred [van Helden, 1974]. Gassendi described his

observations in his 1649 publication Animadversiones, but the sketches he made of

his observations were not published until his posthumous 1658 work, Opera omnia.

Giovanni Riccioli (1598–1671) published a complete, illustrated almanac of Saturn’s

various observed configurations since 1610 in his 1651 book Almagestum novum.

The correct interpretation of Saturn’s ansae was finally discerned by Christaan

Huygens (1629–1695) in February of 1656—interestingly, at a time when the rings

as seen from Earth were edge-on and not visible to telescopes of the day. Huygens
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Figure 1.3: Early drawings of Saturn published by Christiaan Huygens in Systema
Saturnium (1659), showing the observations of Saturn by other astronomers, and their
conceptions of the rings. I is a copy of Galileo’s sketch of his 1610 observation. Re-
maining sketches are attributed to the observations or theories of II Scheiner (1614);
III Riccioli (1641-43); IV–VII Hevelius (1642–47); VIII–IX Riccioli (1648–50); X
Divini (1646–48); XI Fontana (1636); XII Gassendi (1646); XIII Fontana and others
(1644–45).
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Figure 1.4: Huygens’ thick disc conceptualization of Saturn’s rings. From Systema
Saturnium (1659).

may have been predisposed to think in terms of a planar solution to the problem

that was the appearance of Saturn’s rings, in part due to his association with Rene

Descartes (1596–1650), and due to his belief in Decartes’ vortex theory [Greenberg and

Brahic, 1984]. Descartes, a frequent house guest of Huygens’ father, had proposed

in 1644 that the universe was filled with contiguous discs of rotating matter—his

vortex theory—in part, as a mechanical explanation of the observed orbital motion

of satellites. The concept of gravity was unknown at this time, since Isaac Newton

(1643–1727) did not publish his theory of universal gravitation until the release of

Principia in 1687.

In 1656, Huygens published a brief paper, De Saturni luna observatio nova, an-

nouncing his discovery of the moon that would become known as Titan, and stating

that he had found an explanation for the ansae of Saturn. Like Galileo, Huygens

chose to disguise his discovery in the form of an anagram,

“a a a a a a a c c c c c d e e e e e h i i i i i i i l l l l m m n n n n n n n n n

o o o o p p q r r s t t t t t u u u u u”

The anagram translates as Annulo cingitur, tenui, plano, nusquam cohaerente, ad

eclipticam inclinato, or “It is surrounded by a thin flat ring, nowhere touching, and

inclined to the ecliptic”. Huygens finally published his ring theory in Systema Sat-

urnium (1659).
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Figure 1.5: Sketch drawn by Cassini in 1676, showing the eponymous Cassini Division.

Although the ring concept was generally accepted by 1670, there was still much

debate over the composition. Huygens believed the rings to be a solid annulus. Others

believed the rings were composed of liquid, or of moonlets or small satellites. The

solid disc theory was dealt a blow by the discovery in 1676 of a gap in the rings

by Giovanni Cassini (1625–1712), who also believed that the rings were composed

of many small satellites. Despite this, William Herschel (1738–1822) suggested in

1791 that the rings were actually composed of two solid annuli [van Helden, 1984].

Given his stature within the astronomical community, Herschel’s support revitalized

the solid-disc(s) theory. A few years earlier, in 1787, Pierre Simon de Laplace (1749–

1827) concluded that the rings were composed of a large number of narrow, solid

rings, whose center of mass did not coincide with their geometric centers. In 1785 he

had proved that a solid disc would be unstable, but conjectured (though could not

prove) that a solid disc could be stable if its mass was distributed unevenly [Mahon,

2003].

In 1848, Edouard Roche (1820–1883) speculated that rings could be comprised of

the debris of ’fluid’ satellites that have been torn apart by tidal forces. But the final

blow for the solid disc theorists was dealt by James Clerk Maxwell (1831–1879), who

addressed the problem of “The Motion of Saturn’s Rings”, which had been set as the

Adams Prize in 1857. Maxwell proved that a solid ring was not stable, except in a

configuration where 80% of the ring’s mass was concentrated on the outer edge; a

result which did not match either intuition or observation. Next, he proved that the
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only plausible, stable configuration of the rings is as a multitude of independently

orbiting satellites. Maxwell won the 1857 Adams prize (he was the only entry), and

his results were published in 1859.

By the time of Maxwell, observations had revealed features within Saturn’s rings,

the cause of which had remained unexplained. Daniel Kirkwood (1814–1895) put

forward a theory to explain the source of observed ring features in 1866, when he

pointed out that a particle in the Cassini Division is in 3:1 orbital resonance with

Saturn’s moon Enceladus. He went on to show (in 1872) that the positions of the

Cassini Division and the Encke Gap are associated with orbital resonances of the four

interior moons; Mimas, Enceladus, Tethys and Dione [Alexander , 1962], although the

exact nature of the Enke Gap was still in question at the time. The first person to

clearly view the Enke Gap was James Keeler (1857–1900) in 1888. In 1895, Keeler

became the first person to obtain spectrographic images of Saturn’s rings, which

showed definitively that the orbital speed of the rings decreases with distance from

Saturn’s center. This was the first measurement to provide observational evidence in

support of Maxwell’s 1857 proof [Keeler , 1895].

More than 350 years after Galileo’s 1610 observations, Saturn was thought to be

the only planet in our solar system to have a ring system. Then in 1977, rings were

detected at Uranus during a stellar occultation of the star SAO 158687 [Elliot et al.,

1977]. Two years later in 1979, Voyager 1 detected faint rings around Jupiter [Smith

et al., 1979]. And in 1981, Neptune’s “ring arcs” were observed during another stellar

occultation, though originally misinterpreted as being due to a chance occultation

by a new satellite [Reitsema et al., 1982; Nicholson et al., 1990]. In a matter of a

few short years, ring systems went from being unique to Saturn, to being a common

feature of the gas giants in our solar system. Each planet has fundamentally different

ring systems (see Figure 1.6), the reason for which is still a matter of scientific debate

[Burns , 1999].
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Table 1.1: Key milestones in the study of Saturn’s rings

Date Event

1543 Copernicus proposes that the Earth and other planets orbit the Sun
1608 The modern telescope is invented
1609 Kepler publishes the first two of his three laws of motion in Astronomia

Nova
1610 Galileo observes the rings of Saturn
1612 Galileo observes the rings’ disappearance
1616 The rings appear as handles, or ‘ansae’
1656 Huygens correctly describes the rings as an annulus
1657 Pendulum clock is invented
1659 Huygens publishes Systema Saturnium
1660 The Royal Society is founded in London
1676 Cassini observes his eponymous division
1687 Newton publishes Principia
1787 Laplace proposes many thin solid ring theory
1791 Herschel supports two solid ring theory
1821 Faraday invents the electric motor
1826 The internal combustion engine is invented
1857 Maxwell proves the rings must be composed of particles
1859 Darwin’s On the Origin of Species is published
1872 Kirkwood proves that observed ring features are caused by resonances with

moons
1873 Maxwell’s A Treatise on Electricity and Magnetism is published
1895 Keeler verifies Maxwell’s many-particle theory experimentally
1902 First trans-atlantic radio transmission (Marconi)
1903 First powered flight of an airplane (Wright brothers)
1967 Ring E is discovered
1970 Spectroscopic observations reveal that the rings are composed primarily of

water ice
1978 The existence of density waves in the rings is proposed by Goldreich and

Tremaine
1979 Ring F is discovered by the Pioneer spacecraft imaging team
1980 Voyager 1 performs the first radio occultation of Saturn’s rings
1980 Ring D is discovered
1981 Lissauer proposes that moonlets are embedded within Saturn’s ring system
1990 The Hubble Space Telescope is deployed to Earth orbit by the Space Shuttle

(STS-31)
1997 The Cassini/Huygens spacecraft is launched from Cape Canaveral
2004 Cassini/Huygens is inserted into Saturn orbit
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Figure 1.6: Diagram of the rings and moons of the four gas giants in our solar
system. Adapted from de Pater and Lissauer [2001], who in turn credit J.A. Burns,
D.P. Hamilton, and M.R. Showalter.
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1.2 Occultation Studies of Saturn’s Rings: A Brief

History

Much of what is known about the radial structure in Saturn’s rings has been derived

from occultation experiments. Occultation experiments are made when the line-

of-sight path between a transmitter and a receiver intercept or ‘occult’ an object

under study, be that an atmosphere or a planetary ring system. In the case of

stellar occultation, the transmitter is a star, and the receiver is an instrument that

collects radiant stellar energy over a particular range of wavelengths in the star’s

electromagnetic spectrum. In the case of radio occultation, the transmitter and the

receiver are radio instruments designed and built to the specifications required to

conduct the experiment.

The primary measurement of occultation experiments is the apparent opacity, or

optical depth τ , of the rings to electromagnetic waves of a particular wavelength. If

the rings are illuminated with an incident electromagnetic wave of intensity Io, and

the intensity just behind the rings is I, the oblique optical depth τq is defined as,

τq = − ln (I/Io) (1.1)

Normal optical depth τ is related to the oblique optical depth by,

τ = µoτq (1.2)

where µo = sinB is the sine of the ring opening angle B, which is the angle that the

wave vector 	k of the incident light makes with the ring plane (i.e., if B = 90o then

	k is normal to the plane of the rings). Methods for estimating optical depth from

radio occultation measurements are discussed in detail in Appendix A.1. A detailed

description of the geometry of the Cassini radio occultation experiments is provided

in Chapter 4.

Stellar occultations conducted using the Voyager spacecraft’s ultraviolet spectrom-

eter (UVS) [Sandel et al., 1982; Holberg et al., 1982] and photopolarimeter subsystem

(PPS) [Esposito et al., 1983, 1987] observed the occultation of the star δ Sco (located
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in the constellation Scorpius) at 0.11- and 0.27-µm wavelengths, respectively, provid-

ing optical depth profiles of the rings with sampling resolutions of 0.1 and 3.2 km,

respectively. Ground-based observations of the ring occultation of the star 28 Sgr

were used by Nicholson et al. [2000] to derive optical depth profiles at 0.9, 2.1, 3.3,

and 3.9 µm wavelengths, and were used in conjunction with the PPS δ Sco occultation

result to estimate the number distribution of particles of radii ranging from 0.3–20

meters [French and Nicholson, 2000]. More recently, the visual and infared mapping

spectrometer (VIMS) and the ultraviolet imaging spectrograph (UVIS) instruments

onboard NASA’s Cassini spacecraft are currently being used to conduct multiple stel-

lar occultations of the Saturnian rings, yielding a dataset that is now being gathered

and analyzed (e.g., Nicholson et al. [2007]; Colwell and Esposito [2007]).

Radio occultation in particular has proven to be a valuable experimental method

for probing planetary rings. The technique was first applied to rings during the

Voyager 1 flyby of Jupiter on March 5, 1979. Although that particular experiment

was unable to detect Jupiter’s tenuous rings, the non-detection allowed scientists to

establish bounds on the optical depth and particle sizes [Tyler et al., 1981]. The

Jovian encounter was followed by the great successes of Voyager 1’s flyby encounter

with Saturn in 1980, and Voyager 2’s flyby of Uranus in 1986.

At Saturn, Voyager 1’s radio science subsystem (RSS) simultaneously probed the

rings at 3.6- and 13-cm wavelengths, yielding diffraction-corrected optical depth pro-

files with resolutions approaching 200 meters in regions of Ring C, and with 400-meter

resolution over the full extent of the rings [Tyler et al., 1983; Marouf et al., 1986].

Estimates of ring particle size distributions, local ring thickness, and the degree of

particle crowding derive from the radio occultation data, for assumed many particles

thick (MPT) ring models [Marouf et al., 1982, 1983] and for thin finite number of

layers (FNL) ring models [Zebker and Tyler , 1984; Zebker et al., 1985]. We describe

these models in greater detail in Appendix A.

At Uranus, the large ring opening angle of B = 81.5o facilitated a high signal-

to-noise ratio (SNR) radio occultation of the rings. All nine of the rings that were

known prior to Voyager were detected in the radio data. The high SNR of these

measurements made it possible to reconstruct the optical depth profiles of the rings
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at resolutions as fine as 50 meters [Tyler et al., 1986; Gresh et al., 1989].

An attempt was made to observe Neptune’s rings with Voyager 2 in 1989, but

this was not successful. Neptune’s rings form incomplete arcs of material, and the

spacecraft trajectory did not allow for an occultation measurement of any of these

arcs.

The first extensive radio occultation study of a ring system using an orbiting

spacecraft is currently underway at Saturn using the RSS onboard NASA’s Cassini

spacecraft. In contrast to the hyperbolic flyby trajectories of Voyager, Cassini is an

orbiter dedicated to the observation of Saturn, its moons, and its rings. Cassini was

inserted into orbit around Saturn on July 1, 2004, and its nominal mission (July

2004 - August 2008) consisted of 75 orbits, during which 20 radio occultations of

the rings were performed over a range of observational geometries. Four of these

20 occultations comprise both ingress and egress observations, while the remaining

16 occultations are single-sided (either ingress or egress), for a total of 24 distinct

observations. An extended Cassini mission plan was approved by NASA, consisting

of a further 60 orbits which took place between July 2008 and July 2010. In February

of 2010, NASA announced its plans to extend funding and support for the Cassini

mission until 2017.

1.3 Contents and Contributions of this Disserta-

tion

This dissertation focusses on the work done between early 2004 and June of 2008 to

estimate the fine-scale structure of Saturn’s rings. Contributions made outside of this

area have been included as appendices, as described at the end of this chapter.

We present here a forward-theoretic modeling approach which we use to produce

estimates of the key physical dimensions of small-scale microstructure in Saturn’s

rings, at length scales of one to several hundreds of meters. We define microstructure

as an anisotropic distribution of ring particles to form clusters or groupings that con-

stitute discernible patterns. In particular, we focus on highly periodic, axisymmetric
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oscillations in the number density of ring particles that we refer to as periodic mi-

crostructure (PM). We have discovered five distinct regions of the rings that contain

periodic microstructure by analyzing radio signals forward-scattered by the rings at

0.94- and 3.6-cm wavelengths. These data were collected during four Saturn ring oc-

cultations of the Cassini spacecraft, occurring between May and August, 2005. Our

findings were first reported informally at a rings working group meeting in Whitefish,

Montana in August of 2006. We subsequently reported our results formally [Thomson

et al., 2006a, 2007].

Chapter 2 contains an overview of Saturn’s ring structure. Features exist in

the rings on many length scales, which we break down into two basic groupings—

macrostructure and microstructure. Macrostructure comprises features that exist on

length scales of tens to thousands of kilometers in the rings; some examples include

spiral waves and gaps. We discuss the physical mechanisms that lead to the for-

mation of both macrostructure and microstructure in the chapter. Key examples of

microstructure include the PM described above, as well as gravitational wakes. We

discuss models of ring microstructure, which are revisited in later chapters as we

explain our analysis technique.

In Chapter 3, we prove that diffraction theory (DT) can be used in place of elec-

tromagnetic (EM) theory to estimate the far-field radiation pattern produced when

radio waves forward-scatterer from aggregates of ring particles. Synthesis of these

radiation patterns is a key step in the technique we have developed to estimate the

physical dimensions of ring microstructure. The ability to use diffraction theory to

this end is a crucial and enabling result, since the the computational requirements of

a full EM solution are prohibitive for our application. We conclude the chapter with

a final test of our DT method, comparing its results against a known analytic solu-

tion for diffraction from homogeneously-distributed thick rings, and showing excellent

agreement between the two.

In Chapter 4 we describe the Cassini radio occultation experiment, including the

properties of the transmitted and received signal, and the geometry of the specific set

of observations used in our data analysis.

Building on ideas and information presented in Chapters 3 and 4, in Chapter 5
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we define the set of tools and procedures we used to extract estimates of the physical

dimensions of PM from Cassini signals.

In Chapter 6, we present experimental evidence for the presence of PM in the

rings. We apply the techniques described in Chapter 5 to our data, reporting esti-

mates of the location, structural period, and orientation of these PM features. We

compute estimates using two different model types to represent PM, and show con-

sistent results. We briefly review a phenomenon known as viscous overstability, and

examine its potential to explain the presence of PM in some regions of the rings.

Chapter 7 contains a summary of the key findings presented in this dissertation,

along with a discussion of some important open questions and some suggestions for

future work.

A summary of the major contributions of this work are:

1. We uncovered five distinct locations in Saturn’s rings A and B exhibiting highly

periodic, fine-scale variation in the ring optical depth. The physical period of

these variations range between 100–250 meters [Thomson et al., 2007].

2. An exhaustive study, comparing the results of a multiple scattering formulation

of Mie theory against the results of scalar diffraction theory. The study, which

examined 2-, 3-, and 10-sphere clusters of particles, shows that diffraction theory

accurately predicts the far-field scattering pattern of particle aggregates, as long

as the region of interest is limited to electrically large particles scattering in the

near-forward direction [Thomson and Marouf , 2009].

3. Derivation of the exact solution for the five-term power-law expression of Al-

lan variance, showing that the exact solution and the well-known approximate

solution converge very quickly; i.e., the approximate form is sufficient and sat-

isfied by most imaginable measurement conditions [Thomson et al., 2005]. An

adaptation of this paper is included as Appendix D.

4. Demonstration of the equivalence of the Radon and Abel Transforms, as they

are applied in atmospheric radio occultation [Thomson and Tyler , 2007]. An

adaptation of this paper is included as Appendix E.
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In this dissertation, we attempt to conform to the variable naming conventions

established a priori in the literature to the greatest extent possible. This inevitably

leads to some overlap in the use of variables, since the work contained herein spans

several fields—electromagnetics, optics, remote sensing, and planetary science. We

explicitly describe variable assignments throughout the dissertation to minimize po-

tential confusion. The reader is referred to the List of Symbols provided in the preface

material for a complete list of all symbol assignments used in this dissertation.

�
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Chapter 2

Saturn Ring Structure and

Dynamics

The basic structure of Saturn’s rings is depicted in Figure 2.1. Rings A, B, and C

(and the Cassini Division, which separates Ring A from B) are collectively known

as Saturn’s main rings or the classical ring system. Interior to the main rings is

the D ring, which was discovered by a combination of Voyager observations and a

single ground-based stellar occultation [Hedman et al., 2007]. From the inner edge

of Ring D to the outer edge of Ring A the rings extend radially for 69,875 km, from

approximately 66,900 km to 136,775 km from Saturn’s center, or 1.110Rs through

2.269Rs, where Rs = 60, 268 km is the equatorial radius (at the 1 bar atmospheric

pressure level) of Saturn. The main rings are thought to be on the order of 10–20

meters thick [Deau et al., 2008; Charnoz et al., 2009]. Exterior to the main rings, the

narrow and braided Ring F is centered at 140,180 km (2.326Rs); and the tenuous G

and E rings lie between 170,000–175,000 km (2.82Rs–2.90Rs) and between 181,000–

483,000 km (3.00Rs–8.01Rs), respectively. Ring G is composed primarily of dust

[Cuzzi et al., 2009], while Ring E is composed primarily of water ice [Hillier et al.,

2007].

In 2009 the Phoebe ring was discovered [Verbiscer et al., 2009], an 80Rs-thick band

of dust spanning 3.5 × 106–1.8 × 107 km (59Rs–300Rs), and is thought to comprise

ejecta resulting from meteoroid impacts on the Saturnian moon Phoebe. The Phoebe

27
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ring is in the solar system ecliptic, inclined by about 27o with the other rings, and

its particles likely orbit Saturn in retrograde, similar to Phoebe. A comprehensive

description of the rings is included in Dougherty [2009]. Properties of the various ring

regions are summarized in Table 2.1.

Saturn’s main rings comprise particles of predominantly crystalline water ice,

mixed with impurities that give the rings a slight reddish color [Cuzzi et al., 2009].

Particle sizes range from motes of dust to small moons [Cuzzi et al., 2009; Charnoz

et al., 2009]. Figure 2.3 is a false-color image of the rings produced from radio occul-

tation data using techniques described in Section A.2. Colors in the figure indicate

which range of ring particle sizes is predominant locally in the population, as described

in the figure caption.
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Figure 2.2: Scale and structure of Saturn’s main rings and Ring F. This image is
adapted from PIA08389 from the NASA Photojournal website. PIA08389 combines
45 images—15 separate sets of red, green and blue images—taken over the course of
about 2.5 hours, as Cassini scanned across the rings. The images were obtained on
May 9, 2007, at a distance of approximately 1.1 million km from Saturn. The radial
scale is approximately 6 km/pixel.
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Figure 2.3: Particle size distributions in Saturn’s Cassini Division and Ring A. This
image was constructed from optical depth profiles produced at three radio wavelengths
(0.94, 3.6, and 13 centimeters, or Ka-, X-, and S-bands, respectively). The structural
resolution is about 10 kilometers. Shades of red indicate an absence of particles less
than 5 centimeters in diameter. Green and blue shades indicate regions where there
are particles of sizes smaller than 5 centimeters and 1 centimeter present, respectively.
A color shift from red to blue indicates an increase in the relative abundance of smaller
(< 5 cm) sized particles. The image indicates a general increase in the population of
these small particles with radial distance, from inner to outer Ring A. The deep blue
shades in the vicinity of the Keeler gap (the narrow dark band near the edge of ring
A) indicate an increased abundance of even smaller particles, of diameter less than a
centimeter. It is thought that frequent collisions between large ring particles in this
dynamically active region likely fragment the larger particles into more numerous
smaller ones. Image is PIA07960, NASA Photojournal website.
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2.1 Ring Macrostructure

If the only forces acting on planetary ring particles were the gravitational pull of

the host planet and inter-particle collisional forces, then all planetary ring systems

would evolve over time into thin, featureless discs. Perturbations due to the gravita-

tional influence of moons external and internal to the rings act in conjunction with

self-gravitational effects to produce large-scale features—or macrostructure—in the

rings. Some examples of ring macrostructure include ring divisions, gaps, waves, and

edges. These features exist throughout Saturn’s main rings, on length scales of tens

to thousands of kilometers.

Ring particles having orbital frequency n(r) that are perturbed from circular or-

bits will oscillate freely about their reference circular orbit with epicyclic (radial)

frequency κ(r) and vertical frequency µ(r). The gravitational consequences of Sat-

urn’s oblateness cause a separation of these frequencies, µ(r) > n(r) > κ(r), and

thus the radial location of the vertical and horizontal resonances associated with a

particular moon are different. Ring particles orbiting at or near these resonance loca-

tions experience coherent ‘kicks’, which over time can contribute to significant forced

oscillations (e.g., de Pater and Lissauer [2001]).

Resonant forcing of particles in the rings by moons external to a particular ring

location can create two main types of ring macrostructure: gaps or ring boundaries,

and spiral density or bending waves [Cuzzi et al., 1984; Rosen, 1989; de Pater and

Lissauer , 2001]. These features are generated by torques that transport angular mo-

mentum between the resonant moon(s) and ring material. The disturbance (forcing)

frequency due to the influence of a particular moon is given by,

ωf = mθns ±mzµs ±mrκs (2.1)

where the subscript s indicates that ωf is tied to a specific satellite s, and mθ, mz, and

mr are non-negative integers with mz odd for vertical forcing and even for horizontal

forcing [de Pater and Lissauer , 2001]. A horizontal resonance condition, also known
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as a Lindblad resonance, occurs at the radial location r = rL when,

ωf −mθn(rL) = ±κ(rL) (2.2)

Vertical resonances are excited at r = rv if,

ωf −mθn(rv) = ±µ(rv) (2.3)

Eq. (2.2) yields two possible solutions for rL; we refer to the lesser (greater) of these

as the inner (outer) Lindblad resonance. Similarly, eq. (2.3) yields an inner and outer

vertical resonance. The oblateness of Saturn ensures that rL > rv for resonances

excited by a given moon.

Specific resonances are identified by the ratio,

n(rv,L)

ns

≈ mθ +mz +mr

mθ − 1
=

l

mθ − 1
(2.4)

The strongest horizontal resonances have mz = mr = 0, while the strongest vertical

resonances have mz = 1, mr = 0. By convention, it is common to reference a

resonance by its ratio, written as l : (mθ − 1).

2.1.1 Gaps and Ring Boundaries

Lindblad resonances are responsible for the creation of sharply defined, non-circular

ring boundaries. The outer edge of Ring B is coincident with the 2:1 inner Lindblad

resonance (ILR) of the moon Mimas, generating an oval boundary that co-rotates with

Mimas. Ring A’s outer boundary corresponds to the 7:6 resonance of the coorbital

moons Janus and Epimetheus, and has a seven-lobed boundary. To create a sharp

edge/boundary in the rings or to maintain a ring gap, a resonance must exert sufficient

torque on the rings to offset the localized viscous spreading of ring material.

Gaps in the rings are created by the same process that creates edges. In the

optically thin Ring C, resonances are responsible for the creation of many gaps, often

accompanied by optically thicker ringlets. Gap formation requires more force in the
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(a) Image PIA06237, NASA Photojournal website.

(b) Image PIA11653, NASA Photojournal website.

Figure 2.4: The Keeler Gap and its shepherding moon Daphnis. (a) Daphnis occupies
an inclined orbit within the 42-km wide Keeler Gap. Torques exerted by the moon
on ring particles as they move past the moon (moving left-right in this figure) create
horizontal and vertical ripples on the inner and outer gap edges. Resolution is 3
km/pixel. (b) The small sun-ring plane angle in this mid-August 2009 Saturn equinox
image causes out-of-plane structures to cast long shadows across the rings. The
vertical structure of the Keeler Gap edges and the out-of-plane position of Daphnis
are captured. Gap edges are 0.5–1.5-km tall; approximately 50–150 times taller than
the average ring thickness. Resolution is 5 km/pixel.
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(a) Image PIA07587, NASA Photojournal web-
site.

(b) Image PIA06093, NASA Photojournal web-
site.

Figure 2.5: Gaps, Density and Bending Waves in Ring A. (a) The Keeler and Enke
Gaps of outer Ring A. The moonlet Pan (28-km diameter) is shown embedded within
the Encke gap at the center of this image. The two most prominent bright banded fea-
tures (lower left) are spiral density waves, which propagate outward through Saturn’s
rings. Brighter features indicate regions with higher particle densities (and greater
optical depth). The image scale is 5 km/pixel. (b) Density and bending waves in
Ring A. This backlit image shows the Prometheus 12:11 density wave (lower left) and
the Mimas 5:3 bending wave (middle-right). The scale of this image is about 290
meters/pixel.

optically thick A and B rings—resonances of similar strength to those that produce

gaps in Ring C produce only spiral waves in Rings A and B.

Gaps are also created by embedded moons, which act to clear material from a

region of the rings. The moonlet called Pan is responsible for the creation of the Enke

Gap (Figures 2.1(a), 2.2, and 2.5(a)). In 2005 the Cassini imaging team discovered a

7-km diameter moon, named Daphnis (formerly S/2005 S1), which is responsible for

creating the Keeler Gap, shown in Figures 2.2, 2.4, and 2.5(a).

Moonlets too small to create gaps are thought to be responsible for creating so-

called ‘propeller’ features in the rings [Colwell et al., 2009]. Propellers consist of

elongated enhancements in the local ring particle density which are oriented in the
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direction of orbital motion and extend for several kilometers from tip-to-tip. Pro-

pellers can also open local ring gaps. The moonlets responsible for the propeller

features shown in Figure 2.6 are thought to be on the order of 40–500 meters in

diameter (compare with the 7-km diameter of Daphnis) [Tiscareno et al., 2008].

2.1.2 Spiral Density and Bending Waves

Spiral bending and density waves propagate from all of the strong satellite resonance

locations in the rings, when the torques exerted on ring material by the resonance are

insufficient to transport material away and maintain edges or gaps. Spiral waves are

seen broadly throughout Ring A, and are the cause of the prominent optical depth

variations visible in Figures 2.4, 2.5, and 2.6.

Density waves manifest as an in-plane compression and rarefaction of the local

number density of ring particles, originating at Lindblad resonance locations in the

ring plane. Similarly, bending waves are excited at vertical resonance locations, where

the satellite resonance induces small inclinations in the local orbits of ring particles.

The resulting vertical excursions (of up to ∼400 meters [de Pater and Lissauer ,

2001]) or undulations of particles about the ring plane gives the rings a corrugated

appearance. For both density and bending waves, the self-gravity of particles within

the ring disk provides the restoring force that allows waves to propagate away from

the origin of the resonant disturbance. Rosen [1989] produced an excellent visual

depiction of density and bending waves, reproduced here in Figure 2.7. The self-

gravity of the ring particles effectively distributes the torque applied by the resonant

satellite, from particles at rL or rv to adjacent particles. Waves are the mechanism by

which resonant forcing energy diffuses away from the disturbance. Density waves are

excited at the ILR of the resonant satellite, and propagate towards Saturn. Bending

waves are excited at the inner vertical resonance (IVR), and propagate outward in

the rings away from Saturn, except for so-called nodal bending waves, mθ = 1, which

propagate towards Saturn. For all spiral waves, the number of spiral arms created is

equal to mθ.
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Figure 2.7: Schematic of density and bending waves, showing a probing radio ray.
From Rosen [1989].
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2.2 Ring Microstructure

Small scale structures in the rings, which we denote ring microstructure, form as a re-

sult of the influence of inter-particle gravitational and collisional forces, in the presence

of the ‘background’ gravitational forces at play locally. We define microstructure as a

discernible organization of ring particles into groups or clusters, with length scales on

the order of tens to several hundreds of meters. Although the relevant length scales of

microstructure itself are as described, a region containing microstructure may extend

over tens or thousands of kilometers within the rings. Notable examples of distinctive

microstructure include gravitational wakes, and periodic microstructure (PM).

2.2.1 Gravitational Wakes

Dynamical simulations of planetary rings predict that the interplay of collisional and

gravitational forces produces gravitational wakes broadly within Saturn’s main rings

[Salo, 1992, 1995; Tiscareno et al., 2009; Dougherty , 2009]. Observed optical depth

variations with ring longitude in Saturn’s Rings A and B—a phenomenon known as

azimuthal asymmetry—provide indirect evidence for the existence of gravitational

wakes [Salo et al., 2004; Colwell et al., 2006; French et al., 2007; Dougherty , 2009].

Wakes form in the rings at cant angles of 20o–25o to the local azimuthal unit

vector. For particles in circular orbits, this is also the local particle velocity unit

vector. The cant angle is determined by particle self-gravity in combination with the

local Keplerian shear, which is the sliding of local, radially adjacent ring particles past

each other due to their differing orbital velocities (the orbital velocity of particles in

circular orbits is proportional to
√

1/r, where r is the radial distance of an orbiting

particle from Saturn’s center of mass). Wakes are ephemeral structures, constantly

being pulled apart by Keplerian shear and re-formed by self-gravity. Although their

specific composition is in a state of flux, the wake structure remains constant in a

statistical sense, as long as the local physical conditions (particle composition, size

distribution, density, etc.) remain relatively constant. Figure 2.8 is a snapshot from a

dynamical simulation [Salo, 2006] revealing the characteristic pseudo-periodicity and

canting typical of gravitational wakes.
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It is interesting to note that the spiral arms of the Milky Way galaxy are large-

scale examples of gravitational wakes—in fact, this is the application for which the

physics was first worked out in detail.
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Figure 2.8: Gravitational wakes produced during dynamic simulation of Saturn’s Ring
A. The simulation begins with a homogeneous spatial distribution of identically-sized
particles. Wakes appear within a few simulated orbital evolutions of the spatial
particle distribution. The x-axis is aligned with a radial vector from Saturn’s center;
the y-axis is aligned with the azimuthal unit vector at (0,0), and thus points in
the direction of Keplerian particle motion. This vignette is a projection of 5330
particles contained in the 300 × 300 × 55-meter volume defined in the simulation;
other defined parameters are optical depth τ = 0.5, surface mass density σρ = 500 kg
m−2, volumetric density ρ = 450 kg m−3, particle radii a = 1.66 m. The parameters
σρ and ρ are discussed in greater detail in Appendix A.
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2.2.2 Periodic Microstructure

In addition to the formation of wakes, the dynamical theory of the rings predicts the

formation of stable regions of regular, azimuthally-symmetric density fluctuations on

the scale of tens to hundreds of meters. The incipient condition believed to be respon-

sible for these structures is known as viscous overstability (VO), a linear instability

that occurs when the viscous stresses vary with number density in such a way that Ke-

plerian shear energy reinforces and promotes growing density oscillations [Latter and

Ogilvie, 2008]. Linear dynamical theory predicts the onset of these density oscilla-

tions, and non-linear dynamical theory predicts that the density oscillations saturate

most strongly at length scales of 100–200 meters. Simulations by Schmit [Schmit and

Tscharnuter , 1999; Schmidt et al., 2001] and others have produced instantiations of

fine-scale PM due to viscous overstability; see Figure 2.9. Although Schmidt et al.

[2001] focus on Ring B, the environmental conditions necessary to support stable VO

regions exist in parts of Ring A as well (see Chapter 6 for a more detailed discussion).

Using the Cassini radio occultation experiment, we have directly observed fine-scale

PM in Ring A consistent with the density fluctuations predicted by the saturated

state of viscous overstability. Reporting those discoveries constitutes the primary

objective of this dissertation.
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Figure 2.9: Dynamical simulations of the rings reported in Schmidt et al. [2001]
produce fine-scale periodic microstructure due to viscous overstability (VO), with
length scales on the order of 100 meters. The x- and y-axis alignment is as described
in Figure 2.8, with simulated optical depth τ = 1, particle radii a = 1 meter. Point
(0,0) is centered at a distance 100,000 km from Saturn’s center, corresponding to
inner Ring B (see Figure 2.2).

Figure 2.10: Artist Marty Peterson’s rendition of the fine-scale composition and struc-
ture of Saturn’s rings, based on a 1983 illustration by William K. Hartmann. The
largest individual particles shown are a few meters across. Image PIA10081, NASA
Photojournal website.
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2.3 Models of Ring Microstructure

The interplay of forces discussed in Section 2.2 give rise to a broad range of possible

microstructure in the rings. To illustrate this, we present a survey of dynamical sim-

ulation results for Saturn’s rings in Figure 2.11. Here, simulations are parameterized

along two axes: the optical depth τ of the rings, and a ratio rh which characterizes the

importance of self-gravity relative to Saturn’s tidal force (e.g., Schmidt et al. [2009]),

rh =
RHill

a1 + a2
=

[
(m1 +m2)

3Ms

]1/3
ro

a1 + a2

=

(
ρo
3ρs

)1/3(
ro
Rs

)
(1 +m1/m2)

1/3

1 + (m1/m2)1/3
(2.5)

RHill is the mutual Hill radius for a pair of particles of radius a1 and a2, having masses

m1 and m2 and density ρo, ro is the radial location of the particles relative to Saturn’s

center of mass, and ρs and Rs are the mean density and radius of Saturn. Simula-

tions shown in Figure 2.11 assume that ring particles have a normal coefficient of

restitution—defined as the ratio of post-collisional to pre-collisional normal velocities

of two colliding particles—of εn = 0.5. εn is velocity and mass dependent, is sensitive

to the mechanical and surface properties of the colliding particles, and can strongly

affect the microstructure regimes predicted by dynamical simulations; see Schmidt

et al. [2009] for more details.

Where self-gravity dominates tidal forces, simulations show that ring particles ag-

gregate into clumps. Where self-gravity effects are relatively small and the optical

depth is not too great, populations tend towards homogeneous ring particle distribu-

tions. Gravitational wakes can form throughout much of the remaining simulation

space, including regions where viscous overstability produces axisymmetric density

oscillations as well. In these simulations, the conditions for the onset of overstable

oscillations are approximately τ > 1, rh < 0.6.

In this dissertation, we develop a method for estimating the physical dimensions of

microstructure in Saturn’s rings by fitting the diffraction signature of various physical

ring models to diffraction features contained in signals received from the Cassini
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ro

Figure 2.11: A survey of ring microstructure, showing dependence on normal optical
depth τ and on the strength of self-gravity relative to tidal forces, quantified by the
parameter rh (see text). The distance ro from Saturn’s center is indicated, paired
with the corresponding value of rh when ρo = 900 kg m−3 (i.e., consistent with the
density of water ice). The simulation space comprises identical particles with coeffi-
cient of restitution εn = 0.5. The figure insert shows a schematic of the regions in rh-τ
space where different physical processes control the nature of the ring microstructure
that is shown in the main plot. Indicated physical processes are collisional (impacts),
pairwise-gravitational (encounters), self-gravitational (aggregates), and a combina-
tion of self-gravitational and tidal (wakes). Note that in the upper left region of the
plot, τ > 1, rh < 0.6, axisymmetric overstable oscillations coexist with gravitational
wakes in the simulation. Adapted from Schmidt et al. [2009].
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Figure 2.12: Models of ring microstructure. The three panels each contain 5330 3.32-
meter diameter particles filling a 300m×300m×55m volume. Populations represent
models of (a) homogeneously distributed thick rings, (b) gravitational wakes, and (c)
periodic microstructure.

spacecraft during multiple radio occultation observations. To this end, we introduce

four microstructure models for use in the fitting process:

1. Homogeneously distributed thick rings

2. Packed (i.e., crowded) monolayers

3. Gravitational wakes

4. Periodic microstructure (PM)

Examples of homogeneous, wake, and PM ring models are shown in Figure 2.12.

Packed monolayers are predicted by some ring theorists, who contend that collisional

processes drive an evolution towards dynamically ‘cold’ rings comprising a single layer

of relatively large particles, surrounded by a cloud of smaller particles [Deau et al.,

2008]. Monolayer distributions have been proposed by some researchers to explain

evidence of non-homogeneous ring particle distributions seen in radio occultation data

(e.g., see Figures 4.5E and 5.1). Clumped microstructure is not modeled, since Cassini

signals show no evidence of microstructure in regions where clumping is predicted by

dynamical simulations.

The use and parameterization of these models is described in detail in Chapter 5.
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2.4 Summary

The dynamical interplay of collisional and gravitational forces produces fine-scale

structure in Saturn’s rings, manifesting as anisotropic particle distributions. Ob-

servations provide evidence for the existence of gravitational or density wakes [Salo

et al., 2004], axisymmetric periodic microstructure [Colwell et al., 2007; Thomson

et al., 2007], and rarified homogeneous particle distributions. Clumped distributions

have been shown to be possible theoretically in computer models of planetary rings,

e.g., Salo [1992, 1995], but so far have not been observed experimentally in any con-

clusive way.

In Chapter 3, we examine the electromagnetic (EM) scattering properties of ag-

gregates of icy ring particles. That analysis plays a key role in our treatment of the

Cassini radio occultation experiment (which we describe in detail in Chapter 4), since

a major component of the received Cassini signal is forward-scattered from ring par-

ticles to receivers on Earth. We show that for the purposes of our experiment, a full

EM solution is not required to accurately predict the forward scattering behavior of

ring microstructure. Rather, we show that a diffraction theoretic approach produces

accurate, predictive results that closely mimic the results of EM theory, while greatly

reducing the complexity of the forward scattering model.

�



48 CHAPTER 2. SATURN RING STRUCTURE AND DYNAMICS



Chapter 3

EM Scattering and Diffraction

from Ring Particle Clusters

Small-scale structure in Saturn’s rings is evident in signals received during Cassini

radio occultation observations. During those observations—which are described in

detail in Chapter 4—individual particles forward-scatter radio signals from within a

region of the rings illuminated by Cassini’s high-gain antenna. A small but detectible

fraction of that scattered energy propagates along the near-forward or paraxial direc-

tion, and is received by antennas belonging to NASA’s Deep Space Network (DSN).

Superimposed on the scattered signal is the diffraction signature of the arrangement

of those particles in the ring plane.

We seek a method that relates the fine-scale structure of Saturn’s rings to the

signals we receive during Cassini radio occultation observations. Perhaps the most

straight-forward approach is to model the rings as an aggregate of spheres of varying

size, and to compute the far-field forward-scattering behavior of the aggregate using

a multi-particle formulation of Mie theory. Using this approach, we solve Maxwell’s

equations—subject to the appropriate boundary conditions—by computing field ex-

pansions in vector spherical harmonics centered on each sphere in the aggregate. We

account for both near- and far-field interactions between the particles, yielding a

rigorous electromagnetic solution to the multiple-scattering problem. This suite of

expansions is re-expressed relative to a common origin, thereby expressing the total

49
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radiated field in a single coordinate system [Xu, 1995, 1997]. This solution is exact

in the limit of the expansions, unrestricted by limiting assumptions (e.g., that the

particles are in each other’s far field, etc.). However, the exactness of the multiple Mie

scattering solution comes at a high price—computational complexity. As we report

in this chapter, the time required to compute the Mie solution grows rapidly with

the size of the scatterers—even for a small number of spheres. Since useful models of

ring microstructure contain thousands of electrically large (see eq. (3.40)) particles,

a multi-particle Mie theory solution to such a model is well beyond the capabilities

of our computer simulation resources.

Another method of estimating the EM scattering behavior of the rings is to com-

pute the far-field pattern using scalar diffraction theory. In this chapter we present

the results of a comparative study where we model aggregates that contain as many

as ten particles, and compute their far-field radiation patterns using both EM and

diffraction theory. We show that for the observation conditions of the Cassini radio

occultation experiment, the predictions of diffraction theory are nearly identical to

those produced using a full EM-theoretic approach, the latter of which is vastly more

computationally intensive [Thomson et al., 2006b; Thomson and Marouf , 2009]. We

apply this result in Chapter 5, using the diffraction patterns computed from mod-

els of ring microstructure (introduced in Chapter 2) in a comparative analysis with

forward-scattered Cassini radio signals. We use this procedure to characterize fine-

scale periodic structure in Saturn’s rings [Thomson et al., 2007], and present those

results in Chapter 6.

3.1 Introduction

Gustaf Mie is commonly acknowledged as the first to publish a complete solution

for EM scattering from a single sphere [Mie, 1908]. His solution was formulated by

expanding the incident and scattered fields in vector spherical harmonics. Coeffi-

cients in the expansion of the incident field are known since the incident field itself is

known. The scattered field expansion coefficients are then readily determined from



3.1. INTRODUCTION 51

the appropriate boundary conditions (e.g., van de Hulst [1981]; Bohren and Huff-

man [1998]). Trinks [1935] was the first to apply the modal expansion method of

Mie in conjunction with the translation-addition theorem of vector spherical harmon-

ics, in an effort to extend the Mie approach to scattering from two spheres. How-

ever, computational complexities arising from the particular implementation of the

translation-addition theorem used limited his results to sphere radii much less than a

wavelength (Rayleigh regime). Liang and Lo [1967] used an improved formulation of

the translation-addition theorem to extend the work of Trinks to treat spheres with

radii on the order of a wavelength (resonance region). The two-sphere theory was

subsequently extended to spheres of radii on the order of tens of wavelengths when

Bruning and Lo [1971a, b] developed a recursion relation for the translation-addition

theorem, thus improving its computational efficiency.

With the advent of digital computers, researchers began to adapt Mie theory

to obtain theoretical solutions for scattering by layered spheres, oblate spheres, and

multiple scatterers. Fuller [1987] developed an algorithm to compute the multiple

scattering problem for up to five electrically large spheres using an order of scattering

approach. More recently, Xu [Xu, 1995, 1997; Xu and Gustafson, 1997] extended the

theory to model multi-particle scattering from a system of spherical scatterers, each

of fixed radius and refractive index. It is Xu’s algorithm that we use in our study,

and his formulation that we present in Section 3.2.2 as background.

For instances in which the wavelength of incident light is small as compared with

the size of the spherical particles, provided that the scattering pattern of the aggre-

gate is observed at a sufficient distance from the aggregate itself, scalar diffraction

theory yields accurate results for the fields scattered from objects. This was shown

analytically for scattering from a single sphere in early work by Nicholson [1910, 1912]

and Bromwich [1920]. For the interested reader we recommend, e.g., Theimer et al.

[1952] for a more general treatment of the applicability of scalar diffraction theory.

The notion that diffraction theory could be applied effectively to aggregates of electri-

cally large particles was bolstered further by the work of Gresh [1990], who modeled

monochromatic light scattering and extinction cross-sections for systems of spheri-

cal particles using Fuller’s multiple scattering code [Fuller , 1987]. Her work showed
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that for electrically large particles (size parameter x > 8, where x is the ratio of 2π

times the particle radius to the wavelength λ of the illuminating radiation; see eq.

(3.40) below), the projected area of the particle aggregate is the dominant factor in

determining the extinction of the incident signal, as is the case for an isolated sphere.

Further, Gresh showed that the extinction cross section of aggregates of electrically

large particles approaches twice the area blocked by the particles (Cext = 2Aphysical)—

a well-known paradoxical result predicted by scalar diffraction theory (e.g., van de

Hulst [1981]), further suggesting that diffraction theory may offer an accurate and

computationally efficient alternative to Mie theory.

The study described in this chapter is rooted in work done by Marouf [1997]

to investigate extinction and forward-scattering of electromagnetic waves by general

planetary ring models based on a diffraction screen approach. The models may in-

clude particle crowding, clustering, and anisotropic spatial distribution. For this we

replace the three-dimensional distribution of particles in the rings by a randomly

blocked diffraction screen, placed behind the rings and normal to the incident wave

direction. On the screen, the fields are assumed to be zero over the shadow area cast

by ring particles, and are the unperturbed incident fields otherwise. The demanding

electromagnetic interaction problem is thus replaced by the relatively simpler prob-

lem of characterizing the random diffracted field in terms of statistical averages of

the stochastic geometry of the shadow area [Marouf , 1994].

Here we extend the earlier work of Marouf [1993] by considering broad geometri-

cal configurations of particle clusters, and show that for EM scattering from a cluster

of electrically large spheres—either singly-sized or belonging to a size distribution—

there is excellent agreement between the exact Mie solution and the diffraction theory

approximation when the angular range of interest is limited to near-forward scatter-

ing. This agreement holds over a broad range of particle separation and orientation

configurations relative to the incidence direction, including cases when the projected

area of particles overlap. It also holds true for both lossless and lossy dielectric par-

ticles. This result indicates that edge diffraction by the shadow area is the dominant

contributor to the overall near-forward scattering behavior.
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3.2 Theoretical Background

Very different approaches are adopted in the modeling of the scattering problem by

a cluster of spherical particles by Mie theory as compared with diffraction theory.

With the Mie approach, exact solution of the boundary-value problem begins with

a description of the physical system: discrete spheres of specified radius, index of

refraction, and center-to-center separation, oriented relative to an incident plane wave

and in a pre-defined coordinate system.

By contrast, the diffraction theory model collapses the three-dimensional space

occupied by the spheres into a plane which we call the amplitude screen, as shown in

Figure 3.1. The amplitude screen is the projection of the 3D volume of spheres into

a plane perpendicular to the wave vector 	k; put another way, the amplitude screen is

the geometric projection of the shadows cast by the spheres onto a plane immediately

behind the spheres, and perpendicular to the direction of the light illuminating the

spheres. The shadow area of the spheres in the amplitude screen is assumed to

be completely opaque—regardless of the index of refraction assigned to the original

spheres, provided that the index is is not very close to 1.

Early intuition may lead one to doubt the utility of diffraction theory to make

accurate predictions since the physical model of the system is so distorted. The

diffraction theory approach models the spheres as a completely planar and opaque

obstruction to the incident wave; or alternatively, by Babinet’s Principle, as an illumi-

nated aperture in an otherwise opaque screen, with the shape of the aperture defined

by the projected sphere shadow area. This is clearly quite different from the true

physical picture, which is modeled in three dimensions by the Mie formulation. We

shall see that, nonetheless, diffraction theory captures the essential physics and pro-

duces accurate results in the near-forward scattering direction as long as the spheres

are electrically large. We demonstrate this by comparing the intensity of the far-field

scattering patterns, along u-axis cuts (see Figure 3.1), predicted by Mie-theoretic

and diffraction-theoretic simulation techniques. The theoretical support of each is

now discussed.
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Next page.

Figure 3.1: Construction of the diffraction screen. Shadows of the particles contained
in the ξηz-volume are projected onto the xy-plane, generating an amplitude screen
U(x, y) which is normal to the incident wave vector. The far field diffraction pattern
U(u, v) of the amplitude screen is found by taking the Fourier transform of U(x, y).
The diffraction pattern is sensed in an observation plane (i.e., the uv-plane), located
at a distance z (see eq. (3.52)) from the amplitude screen.
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3.2.1 Coherent Scattering from a Sphere: Mie Theory

We begin with the differential form of Maxwell’s equations,

∇× 	E = −∂ 	B

∂t
(3.1)

∇× 	H =
∂ 	D

∂t
+ 	J (3.2)

∇ · 	D = ρ (3.3)

∇ · 	B = 0 (3.4)

where 	E is the electric field, 	B is the magnetic flux density, 	H is the magnetic field,

	D is the electric flux density or electric displacement, 	J is the electric current density,

and ρ is the volume charge density. For time-harmonic electromagnetic fields in a

linear, isotropic, and source-free region of space, Maxwell’s equations reduce to,

∇× 	E = iωµ 	H (3.5)

∇× 	H = −iωε 	E (3.6)

∇ · 	E = 0 (3.7)

∇ · 	H = 0 (3.8)

where ω is the angular frequency in radians per second, and µ and ε are the perme-

ability and permittivity of the propagating medium, respectively. Here, we adopt the

physics convention for time-harmonic fields, exp(−iωt). Note that if no sources are

present, 	E and 	H fields are divergence-free (purely solenoidal).

Any physically realizable time-harmonic electromagnetic field must also be a so-

lution of the vector Helmholtz equation,

∇2 	E + k2 	E = 0 (3.9)

∇2 	H + k2 	H = 0 (3.10)
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Solutions to the scalar Helmholtz equation are easier to find than solutions to the

vector Helmholtz equation. Knowing this, Mie [1908] constructed a vector function,

	M , from a scalar function ψ and a constant vector 	c,

	M = ∇× (	cψ) (3.11)

We see from eq. (3.11) that 	M is purely solenoidal, satisfying eqs. (3.7) and (3.8).

Substituting 	M for 	E or 	H in eqs. (3.9) or (3.10), respectively, yields,

∇2 	M + k2 	M = ∇× [	c(∇2ψ + k2ψ)
]
= 0 (3.12)

Thus 	M satisfies the vector Helmholtz equation if the scalar function ψ satisfies the

scalar Helmholz equation,

∇2ψ + k2ψ = 0 (3.13)

Let a second vector function be defined,

	N =
∇× 	M

k
(3.14)

It is easily shown that the curl of 	N is also proportional to 	M ,

∇× 	N = k 	M (3.15)

Since 	N is proportional to the curl of 	M , it also has zero divergence and satisfies the

vector Helmholz equation. 	M and 	N satisfy the Helmholz equation, are divergence-

free, and the curl of 	M is proportional to 	N and vice-versa. These are the salient

properties of electric and magnetic fields propagating as a wave in free space. Ju-

dicious choice of 	M and 	N ensures that the vector Helmholtz equation is satisfied

when ψ satisfies the scalar wave equation, eq. (3.13). The scalar function ψ is often

referred to as a ‘generating function’.

The choice of the guiding or pilot vector 	c in eq. (3.11) has a critical influence on

	M . Choosing 	c = 	r, where 	r is the radial vector from the origin of the coordinate

system to a point in space where the electromagnetic field is evaluated, ensures that
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	M is a solution of the vector Helmholz equation in spherical coordinates (e.g., Bohren

and Huffman [1998]).

In spherical coordinates, eq. (3.13) can be written as,

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin θ

∂2ψ

∂φ2
+ k2ψ = 0 (3.16)

If solutions ψ of the scalar wave equation (3.13) are of the form,

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (3.17)

then eq. (3.16) is separable into three ordinary differential equations,

d2Φ

dφ2
+m2Φ = 0 (3.18)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

[
n(n+ 1)− m2

sin2 θ

]
Θ = 0 (3.19)

d

dr

(
r2
dR

dr

)
+
[
(kr)2 − n(n− 1)

]
R = 0 (3.20)

where m and n are separation constants. Independent solution of eqs. (3.18)–(3.20),

and substitution into eq. (3.17) yields two possible solutions of the generating func-

tion,

ψemn(r, θ, φ) = cosmφPm
n (cos θ)zn(kr) (3.21)

ψomn(r, θ, φ) = sinmφPm
n (cos θ)zn(kr) (3.22)

where Pm
n are the associated Legendre functions of degree n and order m, and zn are

any one of four spherical Bessel functions jn, yn, h
(1)
n , or h

(2)
n which are selected on

the basis of the field structure being modeled. The subscripts e and o of ψ denote

even or odd solutions, respectively, controlled by the cosmφ or sinmφ term. Due

to the completeness of the functions comprising eqs. (3.21) and (3.22), any function

that satisfies the scalar wave equation (3.16) can be expanded generally as an infinite

series in the terms expressed in eqs. (3.21) and (3.22).
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Suppose we illuminate a solitary sphere with a coherent plane wave of wavelength

λ, and with wave vector 	k = kẑ, where k = 2π
λ
. The electric field incident upon the

sphere has the following form,

	Einc = 	Eoe
ikz = Eo (cos βpx̂+ sin βpŷ) exp(ikz) (3.23)

where βp is the linear polarization angle. The time-harmonic term exp(−iωt) has been

omitted from eq. (3.23), and from subsequent expressions, for brevity. The incident

electric field can be expanded is spherical harmonics, yielding the following,

	Einc = Eo

∞∑
n=1

in
2n+ 1

n(n+ 1)

[
	M

(1)
o1n − i 	N

(1)
e1n

]
(3.24)

where 	N
(1)
e1n and 	M

(1)
o1n are constructed from eqs. (3.11), (3.14), (3.21), and (3.22),

above, and are thus functions of k	r, θ, and φ (i.e., 	N
(1)
mn = 	N

(1)
mn(k	r, θ, φ)). The

superscript (1) indicates that the spherical Bessel function of the first kind jn is used

in the composition of 	N and 	M ; superscripts (2), (3), and (4) correspond to spherical

Bessel functions of the second kind yn, and of the third kind h
(1)
n and h

(2)
n , respectively

[Bohren and Huffman, 1998; Stratton, 1941]. Substituting eq. (3.24) into eq. (3.5)

and re-arranging yields the incident magnetic field,

	Hinc =
−k

ωµ
Eo

∞∑
n=1

in
2n+ 1

n(n+ 1)

[
	M

(1)
e1n + i 	N

(1)
o1n

]
(3.25)

where µ is the permeability of the medium in which the sphere aggregate is embedded.

Fields scattered from a solitary sphere due to the illuminating field of eqs. (3.24)–

(3.25) are given by,

	Es = Eo

∞∑
n=1

in
2n+ 1

n(n+ 1)

[
ian 	N

(3)
e1n − bn 	M

(3)
o1n

]
(3.26)

	Hs =
−k

ωµ
Eo

∞∑
n=1

in
2n+ 1

n(n+ 1)

[
ibn 	N

(3)
o1n + an 	M

(3)
e1n

]
(3.27)

where an and bn are scattering coefficients, defined in eqs. (3.38) and (3.39) below, in
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the context of the multi-particle formulation of Mie theory. A detailed development

of eqs. (3.24)–(3.27) is found in Chapter 4 of Bohren and Huffman [1998].

3.2.2 Multi-Particle Scattering Using Mie Theory

Following Xu [Xu, 1995, 1997; Xu and Gustafson, 1997], suppose we define an ag-

gregate of L spherical scatterers, occupying some volume in ξηz-space as shown in

Figure 3.1. We illuminate this region with the coherent plane wave defined in eq.

(3.23). The electric and magnetic fields of the incident plane wave, 	Einc and 	Hinc, can

be expressed in a coordinate system that is centered on the jth sphere in the aggregate

by expanding the fields in vector spherical harmonics [Xu, 1995, 1997]. The develop-

ment is similar to the solitary sphere modeled in eqs. (3.24) and (3.25) above, except

that Xu uses a complex form to reduce eqs. (3.21) and (3.22) to a single equation,

ψmn(r, θ, φ) = Pm
n (cos θ)zn(kr)e

imφ (3.28)

with 1 ≤ n ≤ ∞ and −n ≤ m ≤ n. This yields vectors 	Nmn and 	Mmn, which are

related to the even and odd forms described above by taking the real and imaginary

parts of the vector, respectively (e.g., 	Nemn = Re
{
	Nmn

}
; 	Nemn = Im

{
	Nmn

}
). Thus

in the multi-particle formulation, the incident fields are given by,

	Einc(j) = −
∞∑
n=1

n∑
m=−n

iEmn

[
pjmn

	N (1)
mn + qjmn

	M (1)
mn

]
(3.29)

	Hinc(j) = − k

ωµ

∞∑
n=1

n∑
m=−n

Emn

[
qjmn

	N (1)
mn + pjmn

	M (1)
mn

]
(3.30)

where pjmn and qjmn are expansion coefficients of the original incident field in the jth

coordinate system. The term Emn is a field normalization factor, defined as,

Emn = Eoi
n(2n+ 1)

(n−m)!

(n+m)!
(3.31)

Note that substitutingm = 1 and eq. (3.31) into eqs. (3.29) and (3.30) and simplifying

yields the incident field expansions for the solitary sphere formulation, eqs. (3.24) and
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(3.25).

Eqs. (3.29) and (3.30) are slightly modified forms of eq. (17) in Xu [1995]. The

single superscript in pjmn and qjmn is borrowed from Xu [1997] (Begin by comparing

eq. (30) from Xu [1995] with eq. (5) from Xu [1997], a later paper with notational

improvements).

The field incident upon the jth sphere in the aggregate is a superposition of the

original incident field and the fields that are scattered from all of the other spheres

in the aggregate,

	Ei(j) = 	Einc(j) +
∑
l �=j

	Elj
s (3.32)

	Hi(j) = 	Hinc(j) +
∑
l �=j

	H lj
s (3.33)

where 	Elj
s and 	H lj

s denote the electric and magnetic scattered fields transformed from

the lth to the jth local coordinate system. For an individual sphere in the aggregate,

these scattered fields have the following form,

	Es(j) =
∞∑
n=0

n∑
m=−n

iEmn

[
ajmn

	N (3)
mn + bjmn

	M (3)
mn

]
(3.34)

	Hs(j) =
k

ωµ

∞∑
n=0

n∑
m=−n

Emn

[
bjmn

	N (3)
mn + ajmn

	M (3)
mn

]
(3.35)

Terms ajmn and bjmn are the scattering coefficients for the jth sphere in the aggregate,

and the superscript (3) of the vector spherical wave functions denotes the use of

spherical Bessel functions of the third kind (Hankel functions) in the field expansions

[Bohren and Huffman, 1998]. Xu [1997] shows that the scattering coefficients ajmn

and bjmn, which contain the effects of all multiple scattering behavior exhibited by the

aggregate, are determined by solution of the following linear system,

ajmn = ajn

⎡⎣pjmn −
(1,L)∑
l �=j

∞∑
ν=1

ν∑
µ=−ν

(
Alj

mnµνa
l
µν +Blj

mnµνb
l
µν

)⎤⎦ (3.36)
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bjmn = bjn

⎡⎣qjmn −
(1,L)∑
l �=j

∞∑
ν=1

ν∑
µ=−ν

(
Blj

mnµνa
l
µν + Alj

mnµνb
l
µν

)⎤⎦ (3.37)

where ajn and bjn are the scattering coefficients of a single, isolated sphere, 1 ≤ (j, l) ≤
L, and Alj

mnµν and Blj
mnµν are vector translation coefficients which facilitate the trans-

lation of elementary spherical waves from the lth to the jth local coordinate system

(see Xu [1996] for a detailed discussion of these coefficients). The coefficients ajn and

bjn are computed directly from Mie theory (the well-known Mie coefficients),

ajn =
mjψn(m

jxj)ψ′
n(x

j)− ψn(x
j)ψ′

n(m
jxj)

mjψn(mjxj)ξ′n(xj)− ξn(xj)ψ′
n(m

jxj)
(3.38)

bjn =
ψn(m

jxj)ψ′
n(x

j)−mjψn(x
j)ψ′

n(m
jxj)

ψn(mjxj)ξ′n(xj)−mjξn(xj)ψ′
n(m

jxj)
(3.39)

where ψn and ξn are Ricatti-Bessel functions, and their primed counterparts denote

differentiation with respect to the argument of the function. We assume here that

the permeability of the spheres is identical to that of the surrounding medium. This

is not a necessary limitation [Bohren and Huffman, 1998], but it leads to the simpler

form of ajn and bjn presented in eqs. (3.38) and (3.39). At the risk of causing confusion,

the symbol commonly used to represent relative refractive index, m, has been used

in eqs. (3.38) and (3.39). It is defined as mj =
√

εj
εo
, where εj and εo are the electric

permittivity of the jth sphere and of the surrounding medium, respectively. The

variable xj is the electrical size parameter of the jth sphere, defined as,

xj = (ka)j =
2πaj

λ
(3.40)

where aj is the radius of the jth sphere.

Eqs. (3.36) and (3.37) represent a system of 2LN(N +2) equations with an equal

number of unknown multiple scattering coefficients, where N is the highest order n

required for convergence of the expansion. Although this system could, in theory,

be solved by matrix inversion, this is often infeasible when the number of or size of

the spheres is large [Xu, 1995]. Fuller et al. [1986] employed an order-of-scattering

technique to solve for ajmn and bjmn. Xu employs an iterative method to find these
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coefficients.

In the far field, the total scattered fields from the aggregate of spheres can be

expressed as follows [Xu, 1997],

	Es =
L∑

j=1

exp(−ikδj) 	Es(j) (3.41)

	Hs =
L∑

j=1

exp(−ikδj) 	Hs(j) (3.42)

where δj = r̂ · 	dj is the projection of the vector 	dj, pointing from the center of the

aggregate’s coordinate system to the center of the jth sphere, along unit vector r̂,

which points from the center of the aggregate’s coordinate system to an observation

point in the far field. Thus the term exp(−ikδj) is the phase shift, relative to the

coordinate system center, introduced by the positional offset of the jth sphere as

projected along the line-of-sight to the far field observer. Implicit in this formulation

is the limiting approximation that vectors between spheres comprising the aggregate

and an observer in the far field are parallel. Combining eqs. (3.41) and (3.42) with

eqs. (3.34) and (3.35) yields an expression for the far field scattering pattern of a

cluster of spheres,

	Es =
L∑

j=1

exp(−ikδj)
N∑

n=1

n∑
m=−n

iEmn

[
ajmn

	N (3)
mn + bjmn

	M (3)
mn

]
(3.43)

	Hs =
k

ωµ

L∑
j=1

exp(−ikδj)
N∑

n=1

n∑
m=−n

Emn

[
bjmn

	N (3)
mn + ajmn

	M (3)
mn

]
(3.44)

Note the substitution of N for ∞ in the summation of n.

Far from the scatterers, one may describe the scattered field, and thus the scat-

tering properties of the aggregate by the scattering matrix formulation [van de Hulst ,

1981; Bohren and Huffman, 1998]:

[
E‖s
E⊥s

]
=

exp(ik(r − z))

−ikr

[
S2 S3

S4 S1

][
E‖i
E⊥i

]
(3.45)
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where S1 through S4 are the scattering matrix elements for the aggregate, and the

subscripts ‖ and ⊥ indicate the components of the incident and scattered fields which

are parallel and perpendicular to the scattering plane, respectively. The scattering

plane is defined as the plane containing both the incident wave vector 	k and the

scattering direction r̂, which depends on θ and φ.

We limited our study to the scattering of like-polarized fields. That is, we com-

puted the parallel-polarized scattered field E‖s due to a parallel-polarized incident

field E‖i =
∣∣∣ 	Ei

∣∣∣ (E⊥i = 0), and computed E⊥s due to a perpendicularly-polarized

incident field E⊥i =
∣∣∣ 	Ei

∣∣∣ (E‖i = 0). Further limiting our far field observations to be

in cuts along the u-axis in Figure 3.1 (i.e. φ = 0), we see that E⊥i = 0 when 	Ei is

ξ-polarized, and E‖i = 0 when 	Ei is η-polarized. Referring to eq. (3.45), these two

polarizations are completely characterized by S2 and S1, respectively. The polarized

scattered intensity of the aggregate may now be summarily defined,

I11(θ) = |Sη
1 (θ, φ = 0)|2 (3.46)

I22(θ) =
∣∣∣Sξ

2(θ, φ = 0)
∣∣∣2 (3.47)

where the superscripts ξ and η denote the incident E-field polarization. I11 and I22

are the polarized scattered intensity patterns of v-polarized scattered light given η-

polarized incident light, and u-polarized scattered light given ξ-polarized incident

light, respectively. Thus, I11 and I22 represent orthogonal polarization measurements

of the scattered signal along a u-axis cut in the uv-plane (see Figure 3.1).

3.2.3 Diffraction from an Amplitude Screen

We used the shadow projection technique outlined in Section 3.2 and shown in Figure

3.1 to generate an amplitude screen representative of the aggregate of spheres under

study. Diffraction is a coherence effect that is produced by a combination of the prop-

agation and interference of waves. Scalar diffraction theory applies—and produces

very accurate results—when the diffracting objects are large compared with the wave-

length (i.e. when the size parameter x is large), and when the diffraction pattern is
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observed at sufficient distance from the source of diffraction. In this study we are

concerned with the near-forward (or paraxial) far field diffraction pattern of electri-

cally large spheres, where polarization effects are negligible, and thus the requisite

criteria of scalar diffraction theory hold.

A partially blocked amplitude screen is illuminated by monochromatic light, which

then propagates to a observation plane located at a perpendicular distance z from the

amplitude screen. In the paraxial approximation, the diffraction pattern in the uv-

plane is given by the Huygens-Fresnel diffraction integral (see, for example, Goodman

[1995]),

U(u, v) =
z

iλ

�
U(x, y)

exp(ikr01)

r201
dxdy (3.48)

where U(x, y) is the scalar field value at a point (x, y) in the amplitude screen, U(u, v)

is the scalar field value in the diffraction pattern, and r01 is the distance from a point

(x, y) in the amplitude screen to a point (u, v) in the observation plane where the

diffracted field is sensed (see Figure 3.1),

r01 =
√
z2 + (u− x)2 + (v − y)2 = z

√
1 +

(
u− x

z

)2

+

(
v − y

z

)2

(3.49)

One of the basic assumptions of scalar diffraction theory is that the observation plane

is far removed from the amplitude screen (z � x, y). Applying a binomial expansion

to eq. (3.49),
√
1 + ε = 1 + 1/2ε − 1/8ε2 . . ., and retaining the first term in the

expansion of the amplitude, and first two terms in the expansion of the phase in eq.

(3.48),

U(u, v) =
eikz

iλz
e

ik
2z

(u2+v2)
� [

U(x, y)e
ik
2z

(x2+y2)
]
e−i2π(xfU+yfV )dxdy (3.50)

where fU = u
λz

and fV = v
λz

are the spatial frequencies in u and v. Eq. (3.50) is the

Fresnel transform of the function U(x, y). Further, we recognize the integral in eq.

(3.50) as the Fourier transform of a function U ′(x, y), which is the product of the

amplitude screen with a quadratic phase term as shown within the square brackets

in eq. (3.50). By dropping the third term in the binomial expansion of eq. (3.49), we
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have implicitly enforced the criterion that the phase contribution due to the 1/8ε2

term must be much less than a radian, or,

z3 � π

4λ

[
(u− x)2 + (v − y)2

]2
max

(3.51)

This is the well-known criterion defining the Fresnel diffraction regime (e.g., Goodman

[1995]). If the phase introduced by the e
ik
2z

(x2+y2) term in eq. (3.50) is also much less

than one radian,

z � k(x2 + y2)max

2
(3.52)

then eq. (3.50) simplifies further,

U(u, v) =
eikz

iλz
e

ik
2z

(u2+v2)
�

U(x, y)e−i2π(xfU+yfV )dxdy (3.53)

which is the Fourier transform of U(x, y). Eq. (3.53) is the Fraunhofer far field

approximation to the Huygens-Fresnel diffraction integral, and the criterion for its use

is given by eq. (3.52). The intensity measured in the far field (i.e., at the observation

plane a distance z from the amplitude screen) is equal to the magnitude of the field

squared,

I(u, v) = U(u, v)U∗(u, v) ∝ |F {U(x, y)}|2 (3.54)

where F is the Fourier transform operator. I(u, v) is proportional to the intensity of

the diffracted field.

3.2.4 Mie and Diffraction Theory: Some Practical Consider-

ations

Our code follows the formulation outlined in Section 3.2.2, making no other assump-

tions in its representation of the aggregate. The maximum number of expansion

terms N needed to assure convergence of the solution was determined algorithmically

according to the so-called Wiscombe stability criterion [Wiscombe, 1980], which for

8 < x < 4200 is given by N = xmax + 4.05x
1/3
max + 2, where xmax is the size parameter

of the largest sphere in the aggregate.
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The total memory requirement of the multiple scattering coefficients matrix is

on the order of M ∼ N4 + LN2, where L is the number of particles, and M is

in bytes. For large x, the computational cost of the Mie solution grows, roughly,

as x4 + Lx2 + 256x4/3. An important prerequisite step is to select an appropriate

minimum value of x—one which is sufficiently large to ensure that the spheres are in

the scalar diffraction theory regime, and yet sufficiently small so that Mie simulation

of aggregates computes in a reasonable time.

In adapting our diffraction theory approach to computer simulations, we require

some additional approximations beyond those introduced by the shadow projection

technique. In order to use a 2D Fast Fourier transform (FFT) to compute the diffrac-

tion pattern, we divided the amplitude screen into pixels of size ∆x by ∆y (we used

square pixels, ∆x = ∆y). Pixel size selection (i.e., choosing the spatial sampling

rate) is driven by three factors.

First, we need pixels that are small enough to well-represent the curved shadow

edges of a projected cluster of spheres. When viewing the amplitude screen as a

whole, the comprising particles should look like circles—not like blocks or staircases.

Second, we need pixels that are small enough to ensure that the main lobe of the

diffraction pattern is nearly free from the effects of aliasing. This is an important cri-

terion, since our investigation is focused on near-forward scattering. It is not possible

to completely eliminate aliasing, since the Fourier transform of the amplitude screen

is not band-limited (due to the finite extent of the shadow area and the discontinuity

present along its edge). We select the pixel size to ensure that the spatial sampling

frequency fs is large enough (fs =
1
∆x

= 1
∆y

) to keep the effect of aliasing acceptably

small over the main lobe of the diffraction pattern. We set as a weaker criterion that

the first sidelobe is also as free as possible of aliasing effects.

Smaller pixels correspond to a higher sampling frequency fs, and therefore to a

lower frequency-domain resolution ∆f = fs
K
, for an FFT of fixed size K × K. The

third pixel size selection criterion is that the combined selection of K and ∆x, ∆y

must yield a resolution ∆f that is sufficient to reveal details in the diffraction pattern

that are necessary for comparison with the Mie results.

To summarize: For the Mie simulations, the size parameter must be large enough
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to ensure that particles are within the scalar diffraction theory regime, but as small as

possible to minimize the computational cost. For the diffraction theory simulations,

we desire small pixels to minimize aliasing and to accurately represent the shape

of the particles, but large pixels for computational efficiency and frequency-domain

resolution. Selection of specific values for x, ∆x, and ∆y is discussed in Section 3.3.1.

Note that the Mie solution does not contain aliasing effects; its accuracy is limited,

however, by the number of expansion terms N used.

3.3 Simulation Results

We now compare Mie and diffraction theory predictions of the far field diffraction

pattern for several scenarios. The Mie calculations are performed using spheres of

relative refractive index m = 1.78 + i10−4. In the microwave frequency range, this

corresponds roughly to water ice at temperatures below −5o C [Sadiku, 1985]. We

study single-sphere, two- and three-sphere, and ten-sphere systems. We investigate

single sphere cases to: (1) select the pixel size of the amplitude screen; and (2) select

the minimum x required by this study. The two- and three-sphere simulations are

used to examine so-called pathological cases, i.e., cases where we expect discrepancies

between Mie and diffraction theory to be largest. The relative placement of spheres

in the simulation for the two- and three-sphere cases is determined using pre-defined

angles and distances as described in Section 3.3.2, and as shown in Figure 3.3. We

generate sphere locations for the ten-sphere cases randomly. Results for those simu-

lations are presented in Section 3.3.3.

Throughout this chapter, we compare the scattered signal intensity predicted by

Mie theory with diffraction theory for uz-plane cuts only (see Figure 3.1). This

approach simplified the execution of our simulations without loss of generality in

our comparison. We generated results for running hundreds of different aggregates,

all with unique orientations. The Mie theoretic polarization intensities given in eqs.

(3.46) and (3.47) are compared with diffraction theory results by taking a cut of
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I(u, v), eq. (3.54), along the u-axis,

Iu(θn) = I(un, v = 0) (3.55)

where un denotes the value of u associated with the nth pixel along the u-axis from

the boresight (i.e., θ = u = 0) direction. For a diffraction pattern generated by

computing the K×K–point 2D–FFT of an amplitude screen, the angle θn is given by,

θn = arctan

(
n
λfs
K

)
, 0 ≤ n ≤ K − 1 (3.56)

where n is the pixel number associated with un. For brevity, we drop the subscript

and refer to θn as θ from this point forward.

The two-sphere, three-sphere, and ten-sphere investigations summarized in this

chapter represent a total of 445 simulated cases. For the ith case of a given type (e.g.,

two-sphere, three-sphere, etc.), we define a difference measure ∆i between Mie and

diffraction theory,

∆i(θ) = I11(θ)− Iu(θ) (3.57)

where I11(θ) and Iu(θ) have been normalized by I11(0) and Iu(0), respectively. The

maximum difference for the ith case is defined as,

∆i,max = |∆i(0 ≤ θ ≤ θ1)|max (3.58)

where θ1 = arcsin
(

3.822
xmax

)
is the first null in the diffraction pattern of single sphere

of size parameter xmax, corresponding to the largest sphere possible in the ith case

simulation. For the case where the incident radiation is natural light, the incident

energy is unpolarized—all polarizations are equally probable. The scattered field

intensity of natural light is determined from the sum I11(θ) + I22(θ). In the case of

coherent incident radiation, the near-forward diffracted signal is negligibly depolarized

and the scattered intensity has the same polarization as the incident intensity. Hence,

in eq. (3.57), it is sufficient to use either I11(θ) or I22(θ), as we have done.

For each type of case, we define an associated mean difference, ∆ and standard
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deviation, σ∆,

∆(θ) =
1

M

M∑
i

∆i(θ) (3.59)

σ∆(θ) =

√√√√ 1

M

M∑
i

(
∆i(θ)−∆(θ)

)2
(3.60)

where M is the total number of cases simulated of each type. The maximum mean

difference, ∆max, and maximum standard deviation, σ∆,max, on the interval 0 ≤ θ ≤ θ1

are defined in a manner analogous to eq. (3.58),

∆max =
∣∣∆(0 ≤ θ ≤ θ1)

∣∣
max

(3.61)

σ∆,max = |σ∆(0 ≤ θ ≤ θ1)|max (3.62)

Our angular range of interest is driven by our scientific application: the analysis

of radio waves forward-scattered from particles in Saturn’s rings during the Cassini

ring occultation experiment. In this case, detectable forward-scattered signals are

dominated by diffraction by individual ring particles over angles θ < θ1.

We discuss the use of these measures in the ensuing sections. Results of the

simulations are summarized in Tables 3.1–3.4 and Figures 3.4–3.8.

3.3.1 Scattering from a Single Sphere

The spatial sampling rate (discussed in Section 3.2.4) determines how coarsely or

finely the spheres’ shadows are discretized in the amplitude screen. Since the far field

diffraction pattern (eq. (3.53)) solution for a circular disc exists in closed-form—the

so-called Airy pattern, which is of the form A(θ) =
[
2J1(x sin(θ))

x sin(θ)

]2
, with first null θ1

as defined in the text above—we determined the numerical diffraction pattern by

computing the Fourier transform of an amplitude screen representation of a circular

disc, and comparing it with the corresponding Airy pattern. We made this comparison

while varying the spatial sampling rate of the amplitude screen. Differences between

the FFT solution and the Airy pattern are introduced both due to aliasing, and due
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to distortions caused by differences between the shape of a perfect circular disc and

its discretized counterpart. Based upon these simulations, we chose to use the spatial

sampling rate of ∆x = ∆y = rmin

12
for all multi-particle simulations, where rmin is the

radius of the smallest sphere in the aggregate. With this sampling rate, the projected

area of a discretized sphere in our simulation was 97.5% of its true cross sectional

area (this percentage depends, to a small extent, on the method we used to generate

the amplitude screen shadow area within our code), and the effects of aliasing and

discretization were mitigated according to our stated criteria. This is seen clearly in

Figure 3.2(b)-(d), where the Airy pattern (dotted line) falls on top of the diffraction

pattern of the amplitude screen (dashed line) over the main diffraction lobe, as well

as the first sidelobe.

Since scalar diffraction theory is valid for large spheres only, and since the compu-

tational cost of solving the Mie solution grows very quickly with x and L as discussed

in Section 3.2.4, we seek to minimize x while retaining good agreement between Mie

and diffraction theory over the main lobe of the diffraction pattern. Figure 3.2(a)

summarizes the results. Here we show the difference between diffraction theory and

Mie theory, plotted in dB, for spheres of size parameter x = 20, 40, 80, and 140. We

normalize the abscissa scale by the value of the first null of a given particle’s diffrac-

tion pattern; each plot in the figure is scaled accordingly. Based upon these results,

and upon the time required to compute them, we determined that spheres of size

x = 40 were sufficiently large to show good agreement with diffraction theory over

the main lobe, while at the same time being computationally manageable. The agree-

ment between Airy, diffraction, and Mie solutions is shown in Figures 3.2(b)–3.2(d)

for x = 40, 80, and 140, respectively.

3.3.2 Scattering from Two and Three Spheres

Initially, we constructed sixty-three different configurations of two-particle aggregates,

and 176 different configurations of three-particle aggregates as a first foray into multi-

particle systems. For the two-particle systems, we varied the separation d between
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Figure 3.2: Comparison of Mie theory and diffraction theory solutions for scattering
of a linearly-polarized plane wave from a single sphere. (a) Difference between Mie
and diffraction theory for size parameters ranging from 20 to 140. The data is plotted
as a function of angle, normalized to the first null angle θ1 of the theoretical diffraction
pattern of the given particle size x. (b)-(d) Comparison of Mie and diffraction theory
with the analytic (Airy) solution for the diffraction pattern of a circular disc, as x
increases from 40 to 140.
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Figure 3.3: Definition of geometry and parameters for simulation of the two- and
three-sphere cases. Distances d, d1, and d2 are measured from center-to-center.
Spheres are of identical radius a, though differences have been introduced in (b)
to provide 3D perspective.
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particle centers, and orientation angle γ as shown in Figure 3.3(a). For the three-

particle aggregates, we varied the separations d1 and d2, and orientation angles γ,

φ, and η. These parameters are shown in Figure 3.3(b). We identified the cases

that showed the greatest difference between Mie and diffraction theory solutions, and

then investigated the corresponding sample subspace more thoroughly with additional

simulations. Most of the cases where the difference between Mie and diffraction

theory was greatest are pathological—cases that are highly unlikely to arise in nature.

However, even for these pathological cases—such as the case of three collinear particles

in alignment with the wave vector 	k, for example—the agreement between Mie and

diffraction theory over the main diffraction lobe is better than ∆max < 0.14 for the

cases studied.

Two-Sphere Cases

Referring to Figure 3.3(a), we performed initial simulations to investigate the com-

plete parameter space of d = 2a → 7a, in steps of 1a, γ = 0o → 75o in steps of

15o (36 cases). Based on the cases where ∆max was greatest, we performed further

simulations to investigate cases where particles are co-linear or nearly co-linear with

the wave vector (d = 2a → 10a; γ = 0o, 10o; and d = 2a → 7a; γ = 90o). The final

simulated parameter space spanned from d = 2a → 10a, and from γ = 0o → 90o, for

a total of M = 63 cases.

We computed the difference between the Mie theory and diffraction theory simu-

lation results, ∆i(θ), and the maximum difference, ∆i,max, over the main diffraction

lobe of an x = 40 particle (i.e., over the range θ
θ1

= 0 → 1 in Figure 3.4) for each

simulation. The three cases for which this maximum difference are least and greatest

(i.e., 6 cases in total) are plotted in Figures 3.4(a)-(c) and 3.4(d)-(f), respectively. In

all cases, we normalized the plots by the scattering amplitude in the exact forward

direction. We summarize the best and worst case results, along with the maximum

mean difference ∆max and maximum standard deviation σ∆,max, in Table 3.1.

In general, the best results correspond to cases where the sphere pair is touching or

nearly touching, and where one sphere does not completely eclipse the other (Figure

3.4(a)-(c)). Some systematic differences over the width of the main lobe characterized
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Figure 3.4: Two spherical scatterers (x = 40): Comparison of results for the three
best cases ((a)-(c)) and three worst cases ((d)-(f)) of 63 simulated cases. Normalizing
angle θ1 is the angle of the first null in the diffraction pattern of a single isolated
particle. Parameters d and γ are defined in the text, and in Figure 3.3(a).
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Table 3.1: Summary: Two-Sphere Scattering Investigations (x = 40). Parameters d
and γ are explained in the text and in Figure 3.3(a). For the rows corresponding to
specific figures, ∆max = ∆i,max. For the row corresponding to the average of the 63
cases, ∆max = ∆max. See Section 3.3 of the text for definitions of various ∆’s.

Case d γ ∆max σ∆,max

Fig. 3.4(a) 2a 30o .0040 –
Fig. 3.4(b) 2a 15o .0061 –
Fig. 3.4(c) 3a 60o .0102 –
Fig. 3.4(d) 10a 90o .1458 –
Fig. 3.4(e) 9a 90o .1375 –
Fig. 3.4(f) 8a 90o .1237 –

Average (63 cases) – – .0151 .0457

cases where the spheres were further apart and one sphere completely eclipsed the

other, and thus the shadow projected onto the amplitude screen was that of a single

circular disc (Figure 3.4(d)-(f)). In those cases, as expected, the diffraction theory

solution closely matches the Airy pattern instead of the Mie solution. The best case

corresponds to d = 2a, γ = 30o; The worst case to d = 10a, γ = 90o.

Three-Sphere Cases

Figure 3.3(b) shows the geometry of our three-sphere simulations. The center-to-

center distances d1 and d2, and angles η, φ, and γ were used to completely parame-

terize the simulation space. We constructed the geometry from these parameters in

the following way: (1) We placed the spheres collinearly along the x-axis with one

sphere at the origin, and the other two at distances d1 and d2 on either side; (2) We

rotated the +x sphere about the z-axis to create the angle η between the 3 spheres;

(3) We rotated all three spheres about the z-axis to introduce the angle φ as shown;

(4) We rotated the three spheres about the y-axis by an angle γ as shown.

We simulated a total ofM = 172 cases during our investigation of the three-sphere

geometry. Initially, we explored the parameter space spanned by d1 = 2a, 4a; d2 =

3a, 5a; η = 45o, 90o, 135o, 180o; and φ, γ = 0o, 45o, 90o (144 cases). Based upon the

results of both these investigations and upon the results of our two-sphere simulations,

we extended the parameter space to include simulations of d1, d2 = 2a, 3a, 4a, 5a;
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η = 180o; φ = 0; and γ = 70o, 80o (32 additional cases).

We summarize the results of the three-sphere simulations in Table 3.2. We discov-

ered that the poorest agreement, once again, correspond to the pathological case of

a co-llinear orientation of spheres whose shadows completely cover one another. The

separation distances d1 and d2 corresponding to the worst cases did not correspond to

the largest distances explored in the simulation space, in contrast to the correspond-

ing two-sphere investigations. The best-case results occurred for small separation

distances d1 and d2, and when there was minimal or no shadow overlap due to the

choice of η, φ, and γ. We present plots of the three best and three worst cases for the

three-sphere geometry in Figure 3.5.

Table 3.2: Summary: Three-Sphere Scattering Investigations (x = 40). Parameters
d1, d2, η, φ, and γ are explained in the text and in Figure 3.3(b). For the rows
corresponding to specific figures, ∆max = ∆i,max. For the row corresponding to the
average of the 176 cases, ∆max = ∆max. See Section 3.3 of the text for definitions of
various ∆’s.

Case d1 d2 η φ γ ∆max σ∆,max

Fig. 3.5(a) 2a 3a 45o 0o 45o .0032 –
Fig. 3.5(b) 2a 3a 45o 0o 0o .0069 –
Fig. 3.5(c) 2a 3a 45o 90o 0o .0077 –
Fig. 3.5(d) 4a 3a 180o 0o 90o .1313 –
Fig. 3.5(e) 4a 5a 180o 0o 90o .1262 –
Fig. 3.5(f) 3a 3a 180o 0o 80o .1127 –

Average (176 cases) – – – – – .0183 .0304

3.3.3 Scattering from Ten Spheres

The geometry of a ten-sphere aggregate is loosely depicted in Figure 3.1. For each

case, we populated a volume of 18×18×12 units in ξηz-space with 10 spheres, where

x = 40 spheres had corresponding radii of a = 2 units. Sphere placement inside the

volume followed a uniform random distribution in space. Spheres were allowed to

touch each other, but sphere intersection within the volume was not allowed.
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Figure 3.5: Three spherical scatterers (x = 40): Comparison of results for the three
best cases ((a)-(c)) and three worst cases ((d)-(f)) of 176 simulated cases. Normalizing
angle θ1 is the angle of the first null in the diffraction pattern of a single isolated
particle. Parameters d1, d2, η, γ, and φ are defined in the text, and in Figure 3.3(b).
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Monodistribution of Sphere Sizes

We simulated one hundred (M = 100) independent, randomly generated cases for the

ten-sphere monodistribution geometry. Each of these cases had ten x = 40 spheres

within the prescribed volume, giving a corresponding volume fraction for each case

of 0.086. Figure 3.6(a)-(c) shows the diffraction pattern of the three cases for which

∆i,max was least, and Figure 3.6(d)-(f) shows the diffraction pattern of the three cases

for which ∆i,max was greatest. We summarize the results in Table 3.3.

Figure 3.6(e) shows ∆i(θ) for all 100 cases, showing clearly how the differences

are distributed as a function of θ. The average ∆(θ) of the cases in Figure 3.6(e) is

shown in Figure 3.6(f). Figure 3.6(g) shows a plot of the standard deviation σ∆(θ).

The peak value in Figure 3.6(g) corresponds to σ∆,max, and is given in Table 3.3.

Table 3.3: Summary: Ten-Sphere Scattering Investigations (Monodistribution, x =
40). Particle placement within the simulation space follows a uniform random spatial
distribution. For the rows corresponding to specific figures, ∆max = ∆i,max. For the
row corresponding to the average of the 100 cases, ∆max = ∆max. See Section 3.3 of
the text for definitions of various ∆’s.

Case ∆max σ∆,max

Fig. 3.6(a) .0029 –
Fig. 3.6(b) .0029 –
Fig. 3.6(c) .0030 –
Fig. 3.6(d) .0544 –
Fig. 3.6(e) .0438 –
Fig. 3.6(f) .0388 –

Average (100 cases) .0024 .0186

To investigate the effect of dielectric loss, we simulated 70 additional 10-sphere

monodistribution cases. For each case, we varied the complex component of the

refractive index between m′′ = 0.1 and m′′ = 0. We found that the the effect of loss

on the simulated scattering behavior of the cluster was negligible. The results are

summarized in Figure 3.7.
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Figure 3.6: Ten identically-sized spherical scatterers (x = 40): Comparison of results
for the three best cases ((a)-(c)) and three worst cases ((d)-(f)) of 100 simulated
cases. Normalizing angle θ1 is the angle of the first null in the diffraction pattern of a
single isolated particle. Associated statistics: (g) superposed differences between Mie
and Diffraction theory solutions for each simulated case, (h) average of differences in
panel (g), and (i) the corresponding standard deviation.
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Figure 3.7: Comparison of Mie theoretic solutions for lossy vs. lossless spheres: A
study of 70 distinct aggregates of ten identically-sized spherical scatterers (x = 40)
was performed to characterize the effect of dielectric loss on the far-field radiation
pattern. A single case result is shown here, and is typical of our findings. The
imaginary component of the refractive index, m′′, is varied between m′′ = 0.1 and
m′′ = 0, as shown. Comparing the m′′ = 0.1 and m′′ = 0 simulations over all 70
cases, we found a worst-case discrepancy of ∆i,max = 0.02 over the main diffraction
lobe of a single particle. The mean and standard deviation of ∆i for the 70 cases is
∆max = 0.0002 and σ∆,max = 0.007, respectively. See Section 3.3 for an explanation of
the three ∆ terms (Note: We have modified the definition of ∆i (eq. (3.57)) somewhat
to apply to the loss study, i.e., ∆i(θ) = Im′′=0(θ) − Im′′=0.1(θ), with commensurate
modification to eqs. (3.58)–(3.60)).
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Figure 3.8: Ten spherical scatterers. Particle sizes distributed uniformly between
size parameters x = 40 and x = 80. Comparison of results for the three best cases
((a)-(c)) and three worst cases ((d)-(f)) of 106 simulated cases. Normalizing angle
θ1 is the angle of the first null in the diffraction pattern of a single isolated particle.
Associated statistics: (g) superposed differences between Mie and Diffraction theory
solutions for each simulated case, (h) average of differences in panel (g), and (i) the
corresponding standard deviation.
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Uniform Distribution of Sphere Sizes

We simulated one-hundred and six (M = 106) independent, randomly generated cases

with a uniform distribution in sphere size. The uniform size distribution ranged from

x = 40 to x = 80 (a = 1 → 2 units). Figure 3.8 shows the simulation results in an

analogous manner to the presentation of monodistribution results in Figure 3.6. Once

again, we find excellent agreement between Mie and diffraction theory predictions for

the far field scattering behavior of the aggregate, though the agreement is not quite

as good as it was for the ten-sphere monodistribution case (cf., Table 3.3 and Table

3.4).

Table 3.4: Summary: Ten-Sphere Scattering Investigations ( Uniform distribution,
40 ≤ x ≤ 80). Particle placement within the simulation space follows a uniform
random spatial distribution. For the rows corresponding to specific figures, ∆max =
∆i,max. For the row corresponding to the average of the 106 cases, ∆max = ∆max. See
Section 3.3 of the text for definitions of various ∆’s.

Case ∆max σ∆,max

Fig. 3.8(a) .0048 –
Fig. 3.8(b) .0083 –
Fig. 3.8(c) .0091 –
Fig. 3.8(d) .1028 –
Fig. 3.8(e) .0996 –
Fig. 3.8(f) .0972 –

Average (106 cases) .0037 .0372

3.4 Discussion

In general, we observed excellent agreement between Mie and diffraction theory results

for the vast majority of cases simulated during this study. The two- and three-

sphere simulation sets contained geometric configurations of particles that produced

the worst-case agreement between Mie and diffraction theory. Invariably, the worst-

case results correspond to pathological cases where the particle alignment is co-linear

with 	k. A similar conclusion was reported by Marouf [1993]. Generally speaking,

∆i,max increases as the separation between particles in these co-linear pathological
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Figure 3.9: (a) An amplitude screen generated from a volume containing ten spheres
and (b) its associated diffraction pattern. The scale of the amplitude screen is nor-
malized by the sphere radius a. The diffraction pattern of an single, isolated particle
is clearly seen in the diffraction pattern of the aggregate. Fine scale variation in the
pattern intensity is due to the phase relationship of the individual particles, which is
controlled by their relative spatial positions. Normalizing angle θ1 is the angle of the
first null in the diffraction pattern of a single isolated particle. The case presented
in (a), (b) corresponds to Figure 3.6(a). The diffraction pattern of a single, isolated
particle is shown in (c) for comparison.
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cases increases (see Tables 3.1–3.2), over the range of separations addressed by our

study (up to 10a). Qualitatively speaking, when the 	k-aligned, co-linear particles are

separated by a few radii, the diffracted wave from the first particle begins to fill the

shadow region behind the first particle before it encounters the second particle, and

so on. Clearly, this endfire type of configuration is quite different from scattering

from a single sphere, but none of those differences, in terms of projected shadow area

on the amplitude screen, are captured by the diffraction theory model. By contrast,

when those scattered fields are not allowed to fill in behind the first particle before

encountering the second, etc. (i.e., when the particles are touching or very close

together), the scattered fields are more similar to those scattered by a single particle,

and thus more similar to the diffraction solution of a circular disc. This is true while

the particles are in each other’s near field, i.e., in the Fresnel region. Note that as the

particle separation is increased into the Fraunhofer region for the 	k-aligned, co-linear

particle case, we expect the agreement between Mie and diffraction theory to once

again improve. We have not attempted to identify the separation distance at which

∆i,max stops increasing.

For the ten-sphere simulations, monodistribution and uniform size distribution

simulations showed a factor of 15 to 20 difference between best- and worst-case ∆i,max.

As expected, ∆max was less than the best-case ∆i,max for both mono and uniform

distributions. We attribute this to the random nature of the spatial distribution,

which has a statistically equal likelihood of producing a positive or negative ∆i(θ) for

any given θ, and thus we expect ∆max to tend to zero as M → ∞.

As the number of particles in an aggregate grows, we expect the effect(s) of any

pathological behavior in the population to contribute only minimally to the overall

scattering behavior of the aggregate. For the vast majority of the particles in the

aggregate, the scattering behavior is well-characterized by diffraction theory, and

those behaviors effectively ‘wash out’ any pathological effects that may differentiate

the diffraction theory solution from the true EM scattering behavior. To be clear,

the underlying assumption here is that the vast majority of particles in the aggregate

are not co-linear and aligned with 	k, which is certainly the case in radio occultation

observations of Saturn’s rings.
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Interestingly, we observe that the diffraction pattern of a cluster of particles com-

prises two main components: A component due to the scattering pattern of the

individual spheres in the aggregate, and a component representing the spatial ar-

rangement of the individual particles in the aggregate. This is akin to the so-called

element and array patterns in antenna theory, where the overall radiation pattern of

an antenna array is controlled by both the radiation pattern of the array’s individual

elements, and by the phase relationship between the elements, which is is controlled by

the position of the individual elements in space. This is evident in Figure 3.9, where

we show the diffraction pattern from an individual sphere alongside the diffraction

pattern of a particular ten-sphere aggregate. We discuss this phenomenon in more

detail in Section 4.2.

3.5 Amplitude Screen Model Results for Thick,

Homogeneous Rings

As discussed in Chapter 2, an interplay of gravitational and collisional forces at the

particle-to-particle level result in the formation of microstructure in Saturn’s rings,

on the scale of tens to hundreds of meters. Dynamical simulations of planetary ring

systems show that under most conditions, the steady-state distribution of particles

in Saturn’s rings is non-homogeneous (see Figure 2.11).

While a homogeneous model is unlikely to well-represent microstructure native

to Saturn’s main rings A–C (it is a model better suited to Ring D), it is useful for

two reasons. First, it provides a baseline case against which we observe degrees of

non-homogeneity in our measured experimental data; and second, it provides another

opportunity to test our amplitude screen method, since an analytic solution exists for

scattering from thick homogeneous rings.

EM forward-scattering from a homogeneous cloud of particles results in a broad-

ening of the forward scattering lobe, relative to the forward scattering lobe of a single

particle. Based on this, Marouf et al. [1982] worked out an exact analytical solution
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for the broadening due to scattering from a many particles thick (MPT), sparsely-

populated homogeneous ring model. We proceed by comparing the diffraction results

we computed using the amplitude screen method, with corresponding analytic solu-

tions for several instantiations of MPT homogeneous rings ranging in optical depth

between τ = 0.49 and τ = 8.24. Note that the use of the MPT model to estimate

particle size distributions in the rings is discussed in Section A.2 of Appendix A.

3.5.1 An Analytic Solution for Forward Scattering

Marouf et al. [1982] show that for a MPT ring model, the intensity of the forward-

diffraction lobe is given by,

I(τq, θ) = 2π

∫ ∞

0

ρJ0(2πρθ)e
−τq
(
ew̃

˜Φ(ρ)τq − 1
)
dρ (3.63)

where θ is the boresight angle, ρ is the independent variable in the transform domain,

J0 is the zeroth-order Bessel function of the first kind, and τq is the oblique optical

depth as defined in eq. (1.1). w̃ is the averaged single particle albedo, defined as,

w̃ =
Cs

Cs + Ca

(3.64)

where Cs and Ca are the average scattering and absorption cross-sections, respectively,

and the quantity Cs + Ca is often called the extinction cross section.

Noting that the Hankel transform (see Bracewell [2000], for example) is defined

as,

F (θ) = 2π

∫ ∞

0

f(ρ)J0(2πρθ)ρdρ (3.65)

we see that eq. (3.63) is the Hankel transform of the function f(ρ) = e−τq(ew̃
˜Φ(ρ)τq−1).

Φ̃(ρ) is the Hankel transform of the normalized phase function of a single particle,

Φ̃(ρ) = 2π

∫ ∞

0

J0(2πρθ)

(
Φ(θ)

4π

)
θdθ (3.66)

where the single particle phase function is given by Φ(θ), and is equivalent to the
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Fraunhofer diffraction pattern of the particle.

For the sake of simplicity, Marouf et al. [1982] develop their methods assuming a

Henyey-Greenstein model for Φ(θ),

Φ(θ) = Io(g)
1− g2

(1− 2g cos θ + g2)3/2
(3.67)

where g = 1 − 2/x is related to the electric size parameter x, previously defined in

eq. (3.40), Section 3.2.2. The factor Io(g) in eq. (3.67) is required to normalize the

integral of Φ to 4π over the half-space where Φ applies (see also eq. (3.66)),

∫ 2π

0

∫ π/2

0

Φ(θ) sin θ dθdφ = 4π (3.68)

Substituting eq. (3.67) into eq. (3.68) and evaluating yields the following normalizing

factor,

Io(g) =
2g

1− g2

[
1√

1− 2g + g2
− 1√

1 + g2

]−1

(3.69)

For electrically large particles, g → 1 as x → ∞. Taking the limit of eq. (3.69) yields

limg→1 Io(g) = 1. For particles larger than x = 100 or so, Io = 1 is a reasonable

approximation.

The Henyey-Greenstein function is one of many possible model choices to represent

Φ(θ). For our purposes, we want to make a direct comparison between the predictions

of MPT theory and the results produced using the amplitude screen method. Thus

for our analysis, a more suitable phase function is the Airy scattering pattern of a

single sphere,

Φ(θ) = Io(x)

(
2J1(x sin θ)

x sin θ

)2

(3.70)

which we have already shown to be well-approximated by our diffraction theory

method. As with the Henyey-Greenstein function above, the normalization factor

Io must be such that eq. (3.68) is satisfied. Substituting eq. (3.70) into eq. (3.68) and

solving for Io yields,
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Io(x) =
x2

2

[
1− J1(2x)

x

]−1

(3.71)

3.5.2 Comparison with the Amplitude Screen Model

Technically, the MPT theory of Marouf et al. [1982] requires that ring particles are

in each other’s far field. However the far field condition is not substantially violated

as long as the volume packing fraction of the rings,

fvol =
Vparticles

Vslab

(3.72)

does not exceed 3% or so [Marouf , 2006–2010]. Here, Vslab is the volume of a slab of

the rings containing the particles that are projected to create the amplitude screen,

and Vparticles is the total volume of the ring particles contained within that slab.

We proceed by comparing forward scattering lobe predictions computed from the

theory of Marouf et al. [1982]; i.e., using eq. (3.63) with eqs. (3.66), (3.70), and (3.71);

with the results of amplitude screen diffraction simulations produced via the methods

described previously in this chapter. We construct and populate slab volumes in order

to obtain a desired oblique optical depth τq, iterating both the number of particles

in the model Np and the thickness of the rings Tr to ensure that the requirements

fvol ≤ 0.03, and Tr ≥ 30 are met. Tr is specified in units of particle diameters of the

largest particle in the model. According to Marouf, these are sufficient conditions for

the model to remain consistent with MPT theory. The oblique optical depth τq of

the amplitude screens is computed according to,

τq = −2 ln

(
1− Ap

Atot

)
(3.73)

where Ap is the shadow area of all particles projected onto the amplitude screen, and

Atot is the total area of the screen. Normal optical depth is related to the oblique

optical depth according to eq. (1.2). Eq. (3.73) derives directly from eq. (1.1), since

Io ∝ A2
tot and I ∝ (Atot − Ap)

2. For our analysis (and without loss of generality),

we chose the ring opening angle B = 90o; thus τq = τ . Figure 3.10 shows examples
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Figure 3.10: Amplitude screen models of homogeneous, many particles thick (MPT)
rings. The normal optical depth of the models ranges from τ = 0.49 to τ = 8.24.
Higher optical depths were achieved by increasing the number of particles Np in the
simulation. The thickness of the rings Tr varies in each case, to ensure that the
volume fraction fvol of the rings does not exceed 3%. N simulations were performed
for each optical depth value studied, and their diffraction patterns averaged together
to produce the solution. Panels (a)–(f) show single instantiations of the N amplitude
screens used to obtain the diffraction pattern averages shown in the corresponding
panels of Figure 3.11. Cases shown are as follows: (a) τ = 0.49; Tr = 32, Np = 1500,
fvol = 0.001; (b) τ = 1.44; Tr = 32, Np = 3500, fvol = 0.014; (c) τ = 3.26; Tr = 43,
Np = 9870, fvol = 0.029; (d) τ = 5.61; Tr = 73, Np = 17, 000, fvol = 0.03; (e)
τ = 6.61; Tr = 86, Np = 20, 000, fvol = 0.03; (f) τ = 8.24; Tr = 107, Np = 25, 000,
fvol = 0.03.
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Figure 3.11: Comparison of the amplitude screen method with the theory of Marouf
et al. [1982] for a homogeneous, many particles thick (MPT) model of the rings.
Each diffraction solution shown in (a)–(f) is the computed average ofN unique diffrac-
tion patterns, each derived from an amplitude screen that we generated using an MPT
ring model with identical parameters (Tr, Np, fvol). The parameters were selected to
achieve a certain value of τ as indicated below; corresponding single instantiations
of these amplitude screens are shown in Figure 3.10(a)–(f). The Marouf et al. [1982]
solution is generated using eqs. (3.63) and (3.70). The normal optical depths and
number of unique averaged diffraction solutions N for each case are: (a) τ = 0.49,
N = 40; (b) τ = 1.14, N = 40; (c) τ = 3.26, N = 50; (d) τ = 5.61, N = 40;
(e) τ = 6.61, N = 40; (f) τ = 8.24, N = 55. All other relevant parameters are as
indicated in Figure 3.10(a)–(f).
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of amplitude screens having six different values of τ , ranging between τ = 0.49 and

τ = 8.24.

Eq. (3.63) gives the forward scattering lobe of the rings in a statistical sense. To

compare this result with our amplitude screen diffraction model, we must compute

the average diffraction pattern of N screens while holding Np and the slab volume

constant, thereby generating a statistical representation of scattering from rings of

a given packing fraction and optical depth. N must be large enough to average out

statistical fluctuations in the results—we determined that N ≥ 40 is sufficient in our

simulations. This topic is addressed in greater detail in Section 5.3.1.

Since the particle placement in each instantiation is unique, there is some variation

in the computed optical depth for each screen. For each of the N cases, the value of

τq is computed using eq. (3.73). The average value of τq of the N screens is used in

eq. (3.63) for the comparison. We used particles of electrical size x = 100 (see eq.

(3.40)) for all cases shown.

The results of the comparison are presented in Figure 3.11, showing excellent

agreement between the amplitude screen diffraction approach and the analytic ex-

pression for forward scattering, based upon the MPT model of the rings presented

in Marouf et al. [1982]. Similar good agreement between theoretical predictions and

numerical simulations of scalar diffraction by randomly blocked amplitude screen ring

models was reported by Marouf [1994, 1996]. The primary parameter of the thick

homogeneous rings model is the desired oblique optical depth τq; or alternatively, the

normal optical depth τ . The secondary parameters specifying the model are the thick-

ness of the rings Tr and the volume packing fraction fvol. If the homogeneous model

is to conform to the volume packing constraints of the MPT model, then fvol and

Tr are independent parameters only as long as the condition fvol ≤ 0.03 is satisfied.

For a given vignette size—i.e., the x- and y-dimensions of the amplitude screen (see

Figure 3.1)—and ring opening angle B, all other variables are specified automatically

for the model to remain self-consistent.
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3.6 Summary

A rigorous treatment of electromagnetic scattering from a cluster of spheres is afforded

by the application of the multiple particle formulation of Mie theory. However, to pro-

duce an accurate solution for scattering from electrically large spheres, and/or a large

number of spheres, the computational cost of this method is high. For our research

interest, scattering from clusters of electrically large Saturn ring particles in the range

x = 100 → 400, the computational requirement imposed by Wiscombe’s criterion and

the multi-particle formulation of Mie theory quickly exceeds the capability of today’s

computers—even for a small number (i.e., less than 50) of particles. By contrast,

the diffraction theory approach, initially developed by Marouf [1994, 1996, 1997] and

further developed here, captures the behavior of thousands of particles in small vi-

gnettes of Saturn’s rings, such as those produced by dynamical simulations [Salo,

1992; Schmidt et al., 2001; Salo et al., 2004; Morishima and Salo, 2006]. The method

is computationally limited only by the size of the 2D-FFT that must be performed

on the amplitude screen to generate the diffraction pattern.

By definition, diffraction theory does not account for the electromagnetic cou-

pling between ring particles that may be in each other’s near field—an effect which,

under some circumstances, could significantly alter the far field estimate. In this

chapter we have demonstrated that the far field radiation pattern produced by EM

scattering from aggregates of electrically large spherical dielectric particles is very

well-approximated by the results of scalar diffraction by their projected shadow area,

as long as the range of angular interest is limited to the near-forward direction.

Though the best results are seen for paraxial diffraction angles, diffraction theory

shows remarkable agreement with multi-particle Mie theory within the entire main

lobe of the particle cluster’s diffraction pattern.

We applied the amplitude screen method to MPT models of homogeneous rings,

for which an analytic description of the diffracted far-field exists. Results using the

diffraction theory method shows excellent agreement with corresponding analytic so-

lutions, providing a basis for further confidence in the amplitude screen approach.

The diffraction signature of anisotropic structure in Saturn’s rings is evident in
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the Cassini radio occultation experimental data [Thomson et al., 2007]. As long as

this structure is not hidden by an unfortunate observational alignment with 	k, the

likelihood of which is diminished by the near-monolayer thickness of Saturn’s rings,

then the diffraction theory approach outlined in this chapter provides a powerful and

computationally efficient tool to quantitatively characterize, in a statistical sense,

near-forward scattering by particle distributions in Saturn’s rings.

The diffraction theory results contained in this chapter form the foundation for

the methods that we have developed to extract estimates of the physical dimensions

of ring microstructure from the radio occultation data. Those methods, which are the

subject of Chapter 5, combine the results of this chapter with key properties of the

signal that we receive from Cassini during radio occultation observations. In the next

chapter, we discuss the Cassini radio occultation experiment, and provide detailed

descriptions of the observation geometry, and of the properties of both transmitted

and received Cassini radio signals.

�



Chapter 4

The Cassini Radio Occultation

Experiment

In this chapter, we describe the key aspects of the Cassini radio occultation experi-

ment.

In Section 4.1 we discuss the properties of the transmitted and received signal, the

considerations necessary to optimize the spacecraft trajectory for the observations,

and present an overview of many of the physical ring properties that can be esti-

mated using radio occultation data. Additional details on these topics are provided

in Appendix A.

In Section 4.2 we discuss the specific properties of the received signal that indi-

cate the presence of ring microstructure, and explain some of the limiting aspects of

the measurement that affect our ability to estimate microstructure dimensions. We

present several examples of Cassini radio occultation data that contain evidence of

ring microstructure, that were discovered during post-processing of the Cassini ob-

servations. Section 4.2 serves as a prelude to Chapters 5 and 6, where we describe

methods to estimate microstructure dimensions from diffracted Cassini radio signals,

and report all ring locations where evidence of periodic microstructure (PM) is present

in the radio occultation data.

Eight of the first ten radio occultation observations of the Cassini mission occurred

during orbital flyby geometries that were optimized for the experiment. In Section

97
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4.3, we discuss the details of this series of optimized observations, which were made

between May 3 and August 2 of 2005. Careful analysis of these observations led to

the uncovering of periodic microstructure in Rings A and B, along with estimates of

its physical dimensions.

4.1 Techniques, Observables, and Properties of the

Received Signal

The Cassini spacecraft and NASA’s Deep Space Network (DSN) together form an

instrument supporting radio occultation experiments to study Saturn’s rings. In

this dissertation, we describe several such occultation experiments using a radio link

between Cassini’s radio transmitter and at least one DSN receiver station. The radio

link is typically established at least 20 minutes before Cassini is due to pass behind

Saturn’s rings, as viewed from the DSN receiver(s). We calibrate the transmitted

signal during this time, before the signal begins to interact with the rings. As Cassini

continues on its trajectory in Saturn orbit, it moves behind the rings, as viewed from

the Earth. When this happens, the signal linking the transmitter and receiver is

said to be occulted (i.e., blocked) by the rings. The point where a ray linking the

transmitter and receiver intersects the rings is known as the ring piercing point (RPP).

The RPP traces out a trajectory in the ring plane that we refer to as the occultation

track. The experiment measures a one-dimensional sampling, along the occultation

track, of the transmission properties of the rings at radio wavelengths. The geometry

of a Saturn ring occultation experiment is shown in Figure 4.1. The occultation track

for the May 3, 2005 occultation of Saturn’s rings by Cassini is shown in Figure 4.2.

4.1.1 Transmitted and Received Signals

For Cassini, the transmitted signal is composed of three highly coherent, right hand

circularly polarized (RHCP) sinusoidal radio tones, well-separated in frequency, and

phase-locked to the same highly coherent local oscillator to ensure that any phase

modulation induced in the three transmitted tones by interaction with ring particles
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Figure 4.1: Ring Occultation Geometry. In the downlink configuration, a spacecraft
traveling at velocity 	vs points its antenna along the Earth intercept vector ûE and
transmits a coherent, nearly monochromatic sinusoidal radio wave. The transmitting
antenna illuminates a spot on the rings, the size of which has been greatly exaggerated
here for clarity. Ring particles within the spot forward-scatter EM energy towards
Earth at a frequency that is determined by the geometry and relative motion as per
eq. (4.1). The spectrum of color filling the spot in this figure is representative of the
resulting Doppler contours on the rings. The vector 	r, which identifies a particular
scattering region on the rings, has been drawn outside of the antenna spot—also in
the interest of clarity. The ẑ-axis is the planet’s pole vector, which also defines the
ring plane orientation. The x̂-axis is the unit vector projection of ûE into the ring
plane, and ŷ = ẑ × x̂.

is accurately measured. Cassini uses an ultra-stable oscillator (USO) as its local

oscillator, with measured phase stability of σy = 2 × 10−13 over a 1-second interval,

where σy is the Allan deviation of the USO [Barnes et al., 1971; Kliore et al., 2004].

Cassini transmits at 13 cm, 3.6 cm, and 0.94 cm wavelengths, in the radio bands

known as S–, X–, and Ka–band, respectively. One may think of the transmitted
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tones as separate radio channels at which the rings are probed. A consequence of

the high coherence of the transmitted signal is that radio wave diffraction, caused by

structures within the rings, is detectable. We discuss this in greater detail in Section

4.2.

Radio signals from Cassini are received in both left-hand and right-hand circular

polarizations, demodulated to an intermediate frequency (IF) band for sampling, and

recorded as complex samples of the signal voltage at the receiver output. The demod-

ulation frequency is controlled by a ‘predict’ file, which estimates the so-called sky

frequency—the transmitted frequency, Doppler-shifted by the motion of Cassini rel-

ative to the DSN receive antenna(s)—using predictive orbital mechanics algorithms

and the latest estimates of Cassini’s position and velocity. For the ring observa-

tions, the predict file is designed to continuously demodulate the sky frequency to 8

kHz, which is the center of a 16 kHz recording bandwidth, corresponding to 16,000

complex samples per second. The measured properties of the received signal are its

polarization, magnitude, and phase; and from these quantities as a function of time

we estimate its frequency, power, and power spectrum.

At each of the transmitted frequency channels (i.e., S-, X-, and Ka-bands), the

received signal comprises two components [Marouf et al., 1982; Tyler et al., 1983;

Marouf et al., 1983]:

1. Direct (Coherent) component: This is the transmitted sinusoid, attenuated and

phase shifted by the average effect of its interaction with the interceding ring

material along the very-near forward direction, well within the first several

Fresnel zones.

2. Scattered (Incoherent) component: This component of the signal corresponds

to energy forward-scattered towards the receiver from all of the ring parti-

cles illuminated by the transmitting antenna’s beam. The scattered signal is

incoherent—both due to the stochastic nature of the location of the scattering

ring particles, and due to the Doppler shift induced, relative to the transmit

frequency, by the relative motion of the transmitter, ring particles, and the re-

ceiver. With the best signal-to-noise ratio (SNR) available during both Cassini
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and Voyager observations of Saturn’s rings, the observable bandwidth of the

scattered signal was approximately 4 kHz, centered (roughly) on that of the

coherent signal (see Figure 4.3).

Schematic illustration of the direct (coherent) and scattered (incoherent) signals, as

well as other key features of an example observed spectrum are presented in Figure

4.3.

4.1.2 Trajectory Design and Doppler Contours

Energy is forward-scattered from ring particles illuminated within the beam pattern

of the Cassini transmit antenna to the receiver on Earth at a particular Doppler

frequency fD relative to the Doppler-shifted transmit frequency,

fD =
1

λ
(	vs − 	vp) · (ûp − ûE) (4.1)

where fD is in Hz; λ is the wavelength of the transmitted sinusoid; 	vs and 	vp are

the Saturn-relative velocities of the spacecraft and the scattering ring particle, re-

spectively; ûp is the unit vector from the spacecraft to the scattering particle; and

ûE is the unit vector from the scattering particle to the Earth, where the receiver is

located [Marouf et al., 1983]. Eq. (4.1) is a good approximation when the transmitter

(receiver) is much further away from the rings than the receiver (transmitter), so that

the unit vector from the transmitter (receiver) to receiver (transmitter) is essentially

equal to the unit vector from the scattering particle to the receiver (transmitter); see

Figure 4.1, and note that ûp is represented in the figure by a specific choice of û.

Energy that is forward-scattered towards Earth at a specific Doppler frequency

fD (see eq. (4.1)) maps to a locus of points in the ring plane. The Doppler con-

tours presented in Figure 4.2 show two instances during the May 3, 2005 occultation

of the Cassini spacecraft by Saturn’s rings. White lines represent 2 kHz intervals

in Doppler frequency; shading from blue through red represent the continuum of

positively- through negatively-shifted Doppler signals.

The occultation track geometry of the first several diametric Cassini ring occul-

tations were optimized by the Cassini tour designers to best align the contours of
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Figure 4.2: Occultation Geometry and Doppler Contours. Saturn is shown as it was
seen from Earth during Cassini’s REV 7 encounter on May 3, 2005. The green line is
the occultation track with ingress on the right and egress on the left, as the spacecraft
traveled from right to left in this view. Two Doppler contour maps are shown—one
each for specific points during the ingress and egress observation. The antenna spot
for the Ka-band transmission are shown superimposed on the contours. The spot
size is smaller for the ingress observation because for this particular orbital pass, the
spacecraft was closer to the rings during ingress. Bluer color represents a Doppler
shift fD > 0; redder color corresponds to fD < 0. Doppler contours at 2-kHz intervals
are drawn in white. Contours of constant Saturn radius are shown in black, scaled
relative to the radial distance of the ring piercing point (RPP) at (x, y) = (0, 0).
The REV 7 observation was optimized for alignment of radial and Doppler contours;
however, some misalignment is unavoidable.
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constant Doppler frequency with the contours of constant radius, shown in black in

Figure 4.2. A close alignment of Doppler with radial location means that individual

ringlets/radial structures scatter energy at the same Doppler frequency. Ideally, this

leads to a received signal spectrum that maps energy at a given frequency to a specific

radial location on the rings. In practice, perfect alignment is extremely difficult if not

impossible to achieve, since it requires a very special spacecraft trajectory for each

occultation pass.

Because of orbital dynamics constraints, the achievability of good Doppler contour

alignment varies from pass to pass. From Figure 4.2, it is clear that the Cassini

REV 7 egress observation was better aligned than the REV 7 ingress observation.

Nonetheless, the ingress alignment is still reasonably good.

For optimized observations, the Doppler contour gradient within Cassini’s antenna

footprint on the rings is reasonably well aligned with the ring piercing point (RPP)

velocity vector 	vRPP—Doppler contours tend from low to high frequency across the

antenna footprint and in the direction of travel, as is evident in Figure 4.2. As

the leading edge of the Cassini high-gain antenna (HGA) pattern encounters a ring

feature, energy is scattered from the feature towards Earth at a (relatively) large

positive Doppler frequency. As the RPP passes through and past the feature, signals

scattered from the feature to Earth sweep from high to low in Doppler.

Since the induced Doppler shift is proportional to λ−1 (see eq. (4.1)), longer

(shorter) wavelengths yield Doppler contours that are proportionally expanded (con-

tracted) in the ring plane. The Doppler contour expansion (contraction) is matched

a commensurate increase (decrease) in the Cassini HGA beamwidth, which is propor-

tional to λ. Since 	vRPP is the same regardless of the transmit frequency, the net effect

is that the Doppler contours associated with longer wavelength transmissions transit

a feature more slowly, and thus the transition from low to high Doppler frequency

occurs over a broader range of radial locations of the RPP. Thus ring features that are

visible in spectrograms of the received signal appear slanted at an angle that scales

in direct proportion with with the transmitted signal wavelength. We illustrate this

point in Figure 4.4.
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4.1.3 Observables

Despite the simplicity of the basic experiment, a surprising wealth of information

can be derived from the received signal. From the coherent component, we obtain

high-resolution diffraction corrected estimates of the optical depth of the rings for

each of the frequency channels along the occultation track trajectory [Marouf et al.,

1986, 2005a, b, 2006a, b, 2007b; Rappaport et al., 2008; Colwell et al., 2009; French

et al., 2010]. In turn, the optical depth profiles can be used to estimate accurately the

physical dimensions of density and bending waves (introduced in Chapter 2) which

exist throughout the rings [Rosen and Lissauer , 1988; McGhee et al., 2006; Rappaport

et al., 2006; Marouf et al., 2007a]. Estimates of the local ring thickness and surface

mass density follow directly from estimates of the physical dimensions of these waves

[Rosen, 1989]. For other resolved ring features, methods have been developed to

estimate particle sizes, ring thickness, and the degree of particle crowding [Marouf

et al., 1982, 1983; Zebker et al., 1983, 1985]. Optical depth profiles obtained from the

Voyager 1 radio occultation of Saturn resulted in the discovery of ten new waves in the

rings [Rosen and Lissauer , 1988; Rosen, 1989]. Eight of these waves were identified

as being caused by orbital resonances (introduced in Chapter 2) with specific moons;

the source of the other two remains a mystery.

Three techniques are used in concert to estimate ring particle size distributions

over the millimeter to several tens of meters size range [Marouf et al., 1982, 1983, 1986].

For small particles, combined measurements of the differential extinction and the sig-

nal phase at two or more frequencies are used to estimate the number density of ring

particles in the millimeter to decimeter size range. The diffraction lobes of particles

larger than the Cassini high-gain antenna (i.e., of radius a > 2 meters) are narrower

than the spacecraft antenna beamwidth; as a result, information regarding the num-

ber density of particles in that size range is contained in the scattered signal. Analysis

of the scattered signal yields number density estimates for particles ranging in size

between approximately 2 meters and several tens of meters; the upper size limit of the

estimate is controlled by the sampling interval of the measured diffraction pattern of

the rings. For particles in the intervening decimeter to 2 meter size range, a bistatic

scattering technique is used to sample the broader diffraction lobes of these particles.
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In this case, the Cassini antenna is pointed away from the Earth by an angle that is

proportional to λ/2a for the smallest particle to be sensed in this size range.

The estimated particle size distributions can be used to compute the expected

optical depth at a given frequency, which can be checked against the measured optical

depth value as a method for determining the self-consistency of the model and for

characterizing the error in the estimate. A theoretical summary of techniques used

to produce estimates of these and other quantities is provided in Appendix A.

The high SNR of the Cassini occultation experiments relative to Voyager, com-

bined with the larger ring opening angles of 19.10−23.6o present during the Cassini’s

summer 2005 tour of Saturn, has resulted in the richest data set ever gathered with a

ring occultation experiment. High SNR is very helpful in these experiments, because

it improves our ability to probe the most optically thick regions of the rings (within

Ring B), and to detect weaker scattered and diffracted signals originating from within

the region of the rings that are illuminated by Cassini’s high-gain antenna.
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Figure 4.3: Ring Occultation Signal Properties. The coherent component of the
received signal travels along the very-near-forward direction from the spacecraft to
Earth (downlink configuration), with fD ≈ 0 due to the forward geometry (see eq.
(4.1) with ûp = ûE). The coherent signal is attenuated and phase shifted by its transit
of the rings, relative to a coherent reference signal. The incoherent scattered signal
is composed of energy scattered from particles along the near-forward direction, and
spread in frequency according to eq. (4.1). The forward scattering lobes of particles
are drawn here as a spectrum of color to emphasize the geometric dependence of
fD. The power spectrum of actual Cassini data from a radial location of r ≈ 2.1Rs

(Ring A) is shown, color-coded to be self-consistent with the scattering depiction in
the figure, and with the Doppler contours of Figure 4.2. The non-Gaussian nature of
the scattered signal indicates the presence of fine-scale structure in this region of the
rings.



108 CHAPTER 4. THE CASSINI RADIO OCCULTATION EXPERIMENT

Sp
acecraft

trajecto
ry

-2
0

2

0 10 20 30

F
requency (kH

z)

Intensity (dB)

R
in

g
 D

ep
th

C
o

h
eren

t Sig
n

al 
fro

m
 C

A
SSIN

I

R
in

g
 M

aterial

C
O

H
EREN

T
A

N
D

SC
ATTERED

SIG
N

A
L

FO
R

W
A

RD
SC

ATTERIN
G

FRO
M

 TH
E

RIN
G

S

C
A

SSIN
I-Earth

 Lin
e o

f Sig
h

t

2A

2a

C
o

h
eren

t Sig
n

al

θ
4

Th
e Scatterin

g
 A

n
g

le D
eterm

in
es th

e Stren
g

th
 

an
d

 Freq
u

en
cy o

f each
 Scattered

 Sig
n

al C
o

m
p

o
n

en
t 

B
eam

w
id

th
 o

f Fo
rw

ard
 Scattered

 Sig
n

al
 is Inversely Pro

p
o

rtio
n

al to
 Particle Size

Scatterin
g

 Even
ts w

ith
in

 th
e R

in
g

s O
ccu

r
at D

ifferen
t D

o
p

p
ler Lo

ci o
n

 th
e R

in
g

 Plan
e

N
A

SA
D

eep
 Sp

ace N
etw

o
rk

A
n

ten
n

a

FFT

θ
3

θ
2

θ
1

Scattered
 Sig

n
al

C
o

h
eren

t Sig
n

al

Scattered
 Sig

n
al

θ
5



4.1. PROPERTIES OF THE RECEIVED SIGNAL 109

Next page.

Figure 4.4: Doppler signature of a gap in the rings. Distinct features in Saturn’s rings
appear slanted in spectrograms of Cassini radio occultation data. The slant angle
depends on the wavelength of the transmitted signal, as is evident by comparing
the X- and Ka-band spectrograms shown in panels D and E, respectively. Panels
A–C depict an ingress occultation sequence, and show portions of the X- and Ka-
band antenna footprints on the rings (centered on P , the ring piercing point (RPP))
moving with velocity 	vRPP as shown. In panels A–C, the values and relative scaling
of the X- and Ka-band Doppler contours are represented by color within the antenna
footprints as described in the caption of Figure 4.2. In panels D–E, color represents
the power contained in the scattered signal, as shown in the scale included to the right
of panel E. Points P1–P3 represent distinct locations |	ro| of P during its motion along
the occultation track (not shown). At P1 (panel A), the positively Doppler-shifted
(i.e., blue-shifted) portion of both the Ka- and X-band footprints are illuminating
the gap, which scatters no energy. Therefore only red-shifted Doppler signal energy
is received when the RPP is located at P1. At P2, the X-band signal scatters large
positive and negative Doppler-valued signals from the leading and trailing gap edges
only, with no scattering in-between. The Ka-band footprint is completely contained
within the gap, scattering no energy. At P3, both footprints fully illuminate the rings,
and broadband scattering is received at both wavelengths. Compare panels A–C and
their descriptions with the scattered spectrum at points P1–P3 in panels D and E.
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4.2 Detection of Microstructure in the Rings

Cassini radio signals at S-, X-, and Ka-bands (13-, 3.6-, and 0.94-cm λ) are generated

from a single ultra-stable oscillator (USO), as described in Section 4.1. A consequence

of the high coherence of the transmitted signal is that radio wave diffraction, caused

by structures within the rings, is detectable. Diffracted signals originating from ring

microstructure and macrostructure (see Chapter 2) contribute to the shape and fea-

tures of the frequency spectrum of the received signal. Radio waves diffracted from

large-scale structures such as ring divisions and gaps—with length scales on the order

of tens to thousands of kilometers—modulate the amplitude of the coherent compo-

nent of the received signal. This was first observed and reported during the Voyager

radio occultation experiment; see Marouf and Tyler [1982] for an excellent example

of microwave edge diffraction from the Encke gap.

The high-resolution optical depth profiles mentioned in Section 4.1 are obtained

by removing the effects of diffraction from the received coherent signal, producing

sharpened optical depth profiles that are not diffraction-limited (e.g., Marouf et al.

[1986]; Rosen [1989]). This process is described in detail in Appendix A. In this case,

diffraction is an unwanted artifact that corrupts the measured direct signal, degrading

the resolution of the profiles to scales larger than several Fresnel scales of diffraction.

4.2.1 Diffraction from Ring Microstructure

Diffraction effects are processed out of received Cassini signals to sharpen optical

depth profiles of the rings. But diffraction is not always an unwanted signal artifact

of the measurement technique—in our analysis, we use diffracted signals to detect

and estimate the dimensions of ring microstructure.

Where microstructure exists within the rings, the local optical depth may vary

significantly over short distances. As the Cassini radio signal probes the rings along

the occultation track, these variations modulate the amplitude of the coherent signal

with much greater frequency than the modulation induced by macrostructure. For

structures on the order of tens to hundreds of meters, the corresponding optical depth

variation is well-sampled by the experiment (the 16-kHz sample rate corresponds to



112 CHAPTER 4. THE CASSINI RADIO OCCULTATION EXPERIMENT

one sample every 1–2 meters of RPP movement along the occultation track; see vRPP

in Table 4.1). In the special case of periodic microstructure, the induced amplitude

modulation is also periodic, and the frequency spectrum of the received signal (at

S-, X-, and Ka-bands) contains sidelobes similar to those characteristic of an AM

radio signal. A complementary point of view is that periodic microstructure in the

rings behaves like a diffraction grating (to first order), producing detectible first-order

diffraction (grating) lobes when illuminated by the highly coherent transmitted signal

from Cassini.

The diffraction signature of individual particles and of their arrangement in an ag-

gregate is contained in the overall diffraction pattern of ring microstructure, as shown

in Chapter 3. The scattering behavior of microstructure is analogous to the far-field

radiation pattern of a multi-element antenna, which is computed from the far-field

pattern of the comprising antenna elements in combination with the phase relation-

ships between those elements—the so-called element and array factors mentioned in

Section 3.4.

In a ring occultation experiment, the physical dimensions of ring microstructure

are inferred from its diffraction signature in a statistical sense only for two main

reasons. First, ring particles are moving at speeds ranging between approximately 16

and 24 km/s in their Keplerian orbits about Saturn, within the main rings. We sample

the radio signals at 16 kHz and Fourier transform blocks of 4096 complex samples;

thus one spectral frame of processed data corresponds to approximately 1/4-second of

observation time. Ring particles move approximately 4–6 km along their orbits during

this period, and the RPP moves between 5–6 km along the occultation track. This

motion effectively averages the diffraction signature of any microstructure comprising

particles imaged during a given spectral frame. We could reduce the integration time

in an effort to minimize this effect, but the improvement is not beneficial (particles

move several meters during a single sample) and doing so degrades the SNR of the

spectral frame. And second, the microstructure itself (to varying degrees that depend

on the strength of and type of microstructure) is constantly being destroyed and re-

formed within the rings, as mentioned in Section 2.2.

Nonetheless, we expect estimates of ring microstructure dimensions that derive
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from its diffraction signature to be accurate measures of the local averages of those

dimensions. The reason for this is that locally, the statistics of ring microstructure are

controlled by properties such as particle size distribution, volume and surface mass

density, local gravitational influences, etc., which do not change significantly on the

spatial scale of the 4–6 km sample averaging (in most regions of the rings), or on the

temporal scale of the Cassini mission’s lifetime.

4.2.2 Evidence of Ring Microstructure

Examples of diffraction from ring microstructure are shown in Figure 4.5. Panels

A and B show spectrograms of the received signal, produced from X-band data

received during our May 3, 2005 ring occultation experiment. Periodic microstructure

is evident here (see figure caption), within the regions bounded by dashed lines (i.e.,

within the regions 123.15–123.3 and 123.7–124.4 thousand km from Saturn’s center).

We average these regions to produce the spectra shown in panels C and D.

In panel C, sharp sidelobes at ±70–100 Hz relative to the strong (∼35 dBn, or

decibels relative to the sensible noise floor) coherent signal are clearly seen. These

sidelobes are characteristic of diffraction from regions of periodic optical depth within

the rings; they represent the first-order diffraction lobes of periodic microstructure.

The coherent carrier and sidelobes are superimposed on a broader scattered signal,

which peaks at ∼10–12 dBn in the center of the panel and appears consistent with

homogeneously-distributed rings or possibly a packed monolayer structure; cf. Figures

3.11 and 5.10.

Panel D also contains evidence of PM, although the sidelobe peaks are not as

prominent as in Panel C. In this case, the background scattered signal shows an

asymmetry characterized by a near-linear decrease in the scattered signal power over

the interval -500 to 500 Hz. This is caused by averaging the scattered signal over a

range that includes an absence of positive Doppler scattering—see the portion of the

averaged region that is close to 123.7×103 km in panel A.

We averaged the spectrogram in Panel B to produce the spectrum shown in Panel

E. Here, we also see evidence of microstructure. Though more subtle than indications
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of PM, the double humps on either side of the coherent signal may possibly indicate

the presence of gravitational wakes, which are known to exist broadly throughout

Rings A and B [French et al., 2007]. Compared with Panel C, the humps in Panel E

show an enhancement in the scattered power in the range -500–500 Hz, where the peak

signal level of the humps is ∼15 dBn, compared with ∼10–12 dBn seen in Panel C. In

Chapter 5, we show that simulated RF signals forward-scattered from gravitational

wakes produce similar enhancements in near-forward scattering, reminiscent of the

humps shown in Panel E; see Figure 5.10.

PM features evident in our spectrograms show an obvious slanting that depends

on the transmitted signal wavelength, similar to the feature slanting discussed in

Section 4.1.2 and illustrated in Figure 4.4. There is no high-to-low frequency sweeping

associated with diffraction from ring microstructure—the Doppler frequency of the

first-order diffraction sidelobes is controlled by the physical dimensions of the PM.

The slanting of the feature is evident in the different radial locations that mark the

beginning (and end) of the positive and negative Doppler sidelobes diffracted by the

PM feature.

For PM features in the rings, the measured Doppler frequency of the sidelobes

is the same at all three Cassini transmit wavelengths. This is because the sidelobe

diffraction angle θd (discussed in greater detail in Section 5.2) and the spacing of

Doppler frequency contours (discussed in Section 4.1.2) in the ring plane are both

proportional to λ, compensating for each other exactly. The slanting and Doppler

properties of signals diffracted from PM are explained illustratively in Figure 4.6. We

explain the properties of PM diffraction more thoroughly in Section 5.2.
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Figure 4.5: Diffraction from ring microstructure. Panels A and B show spectro-
grams of X-band (3.6-cm λ) received during REV 7 ingress Cassini radio occultation
observations. The coherent signal is the horizontal red line near the center of the
spectrograms. In A, the diffraction signature of microstructure appears as roughly
parallel lines displaced ±70–100 Hz from the coherent signal. Three sets of dashed
lines and indicated ranges in A and B identify the swaths averaged to form the
spectral plots shown in C–E, as shown. Spectrograms of REV 12 ingress data (not
shown) were also averaged and are plotted in C–E. REV 7 occultation data produced
a stronger scattered signal than REV 12 data because Cassini was ≈70,000 km closer
to the rings during REV 7 (see Fig. 4.9). In C, we see the sharp first-order diffraction
lobes characteristic of periodic microstructure (PM). The PM signal is superimposed
on background scattering that appears fairly homogeneous. PM is also evident in
D, but the sloped background scattering shelf indicates that the PM is superposed
on an unknown anisotropic background structure. The soft double lobes in E are
characteristic of scattering from crowded monolayers, but it is unknown if that is
uniquely true or if gravitational wakes or other anisotropy in the rings could produce
this spectrum. The magnitude of the coherent signals in C–E vary inversely with
average optical depth τ over the region (τ ≈ 1.1 in panels C–D; τ ≈ 0.8 in panel E).
In all panels, signal power is plotted in decibels relative to the sensible noise floor,
abbreviated dBn.
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Figure 4.6: Doppler signature of periodic microstructure in the rings. Panels A–C
depict an ingress occultation sequence, showing a portion of the Cassini high-gain
antenna (HGA) footprint transiting the rings from right to left with velocity 	vRPP.
The rings piercing point (RPP) is shown at three distinct locations P1–P3 during the
panel sequence. A small blue (red) dot represents the origin within the HGA beam
of the positive (negative) Doppler-shifted first-order diffraction lobes of the PM at
X-band. At these locations, Cassini signals are diffracted through an angle θd towards
Earth; see Section 5.2 for a more thorough explanation. Similarly, a large blue (red)
dot represents the origin of S-band sidelobe diffraction within the HGA footprint. X-
and S-band signals originate in different locations because θd is proportional to λ;
Doppler frequencies are the same at all transmitted λ because the Doppler contour
spacing in the ring plane is proportional to λ in a way that exactly compensates for
differences in θd at different transmit wavelengths. The slanting of PM features in the
spectrograms is proportional to the distance between the diffraction lobes (i.e., the
red/blue dots) at each transmitted λ—thus spectrograms of the S-band data appear
more slanted than X-band, which appear more slanted than Ka-band. Compare
panels A– C and their descriptions with the scattered spectra at points P1–P3 in
panels D and E. See Figure 6.3 for a comparison of PM diffraction at 13-, 3.6-, and
0.94-cm wavelengths.
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4.3 Cassini Ring Occultation Observations, May–

August 2005

The Cassini spacecraft flew 4 orbits of Saturn between May 3 and August 2 of 2005

that were optimized to align Doppler contours with radial contours, as described in

Section 4.1. These four orbits, named REV 7, 8, 10, and 12 according to a NASA/JPL

Cassini Tour convention, produced data for both ingress and egress observations on

each orbital flyby, generating eight radio occultation data sets at each of the three

transmit frequencies (13 cm, 3.6 cm, and 0.94 cm wavelength) for a total of 24 data

sets.
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Figure 4.7: Location of DSN complexes around the world.

As mentioned in Section 4.1, NASA’s Deep Space Network (DSN) is an integral

component in the ring occultation experiment. There are three primary DSN facilities:

Goldstone (35o 25.529′ North, 116o 53.383′ West), Madrid (40o 25.738′ North, 4o

14.963′ West), and Canberra (35o 24.160′ South, 148o 58.878′ East), each separated

from the other by approximately 120o of longitude (see Figure 4.7) in order to provide

near-constant coverage to any spacecraft mission served by the DSN. The choice of
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DSN location and receiver was dictated by the frequency coverage required by the

experiment, and by the visibility of Cassini at the three DSN sites during Earth receive

time (ERT) of Cassini’s signal. Generally, this is determined by the elevation angle of

Cassini above the local horizon; see Appendix B. Cassini signals are received at the

DSN ground stations approximately 80–90 minutes after their transmission, delayed

by the one-way light time from Cassini to the Earth present during the summer of

2005.

The local ring longitude and Cassini-RPP distance of the REV 7, 8, 10, and 12

observations are shown in Figures 4.8 and 4.9, respectively. For our purposes, zero

local ring longitude is defined by the projection in the ring plane of the unit vector

pointing from Saturn to the Earth at the time of the observation.

4.3.1 Details of the REV 7–12 Observations

The predicted timing, geometry, and operational details of the REV 7, 8, 10, and 12

observations are summarized in Figures 4.10–4.13 [Marouf , 2006–2010]. The start and

end Earth receive times of the live movable block (LMB) are given in coordinated

universal time (UTC) in the upper right and left of the figures (Figure 4.10 gives

times in pacific time (PT) as well). The LMB is a planned sequence of operations

that must be performed during the observation, which is uploaded as a single block to

the spacecraft to command its onboard equipment. Event times within an LMB are

relative to an epoch that can be updated a week to ten days before a given experiment,

based on an accurate spacecraft trajectory prediction.

The orientation of Saturn as seen from the Earth is shown in the center of Figures

4.10–4.13. The occultation track is shown as a black line with ticks marking 10

minute intervals in time during Cassini’s orbital pass; the A, B, C, and F rings are

also labeled. In the lower half of Figure 4.10, the start and end times of ring (ROI,

ROE) and Saturn (SOI, SOE) occultation ingress and egress events are noted in both

UTC and PT. The predicted beginning and end times of geometric occultation ingress

and egress are also noted. In Figures 4.11–4.13, ROC and SOC are used instead to

denote blocks of time corresponding to ring and Saturn occultations, respectively.
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Figure 4.8: Occultation track longitudes during the REV 7, 8, 10, and 12 ring oc-
cultation observations, May–August 2005. The upper graphic shows the occultation
tracks as seen from above Saturn’s north pole. For our purposes, zero longitude is
defined as the projection in the ring plane of the vector from Saturn to Earth at the
time of the observation. In the lower panels, the ingress and egress occultation lon-
gitudes are plotted separately and in greater detail. Rings A–D are shown as shaded
bands in the upper panel (all unlabeled), and also in the lower panels where only
Ring D is unlabeled, for brevity.
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Figure 4.9: Distance from Cassini to the ring piercing point (RPP) during the REV
7, 8, 10, and 12 observations. Ingress and egress are shown separately, with a broken
region in-between representing the 133,800-km span between inner Ring D ingress
and inner Ring D egress. A graphic panel corresponding to the brightness of Saturn’s
rings in backscattered light is shown along the top of the plots to lend some visual
context to the Saturnocentric distance axis.

The DSN complex(es) used during each observation are shown as color-coded bars

at the bottom; green for Canberra, blue for Goldstone, and yellow for Madrid. Within

a DSN complex, the specific antennas used are identified by their deep space station

(DSS) number. DSS 14, 43, and 63 are 70-meter (diameter) antennas, while the

others are either 25-meter or 34-meter antennas. The antennas are pointed during

the experiment by a combination of monopulse (MP; see Gudin and Gawronski [2000]

for a description of the monopulse tracking method) and blind pointing methods.

The timing of enabling and disabling monopulse (EMP, DMP) is labeled explicitly in

Figures 4.11–4.13.

The type of transmitted signal is denoted at the bottom of the figures as either

two-way non-coherent (TWNC) off (1-way), or 1-way downlink; both descriptions
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correspond to a one-way transmission generated by Cassini’s ultra-stable oscillator

(USO).

The specific sequence and predicted timing of the comprising events of the REV

7, 8, 10, and 12 radio occultation observations are included in Appendix B, along

with plots of Cassini’s elevation as a function of ERT at the available DSN receiving

stations.
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4.4 Summary

In this chapter we have briefly described the Cassini radio occultation of Saturn’s

rings. In the experiment, the radio occultation signal received is a superposition of

coherent waves transmitted through the rings, energy diffracted from ring structures

contained within the first several Fresnel zones, and energy forward-scattered towards

Earth by illuminated ring particles. Despite its simplicity, the Cassini radio occul-

tation experiment yields estimates of many physical features in the rings, on scales

varying from thousands of kilometers down to individual particle sizes. A detailed

summary of quantities that are estimated using radio occultation data is included in

Appendix A.

The diffracted signal contains information about the fine-scale structure of the

rings—i.e., the arrangement of ring particles on scales of tens to hundreds of meters.

Evidence for the presence of ring microstructure is given in Section 4.2. Although we

are not able to measure the exact compositional geometry of microstructure deter-

ministically, the Cassini radio observations contain the equivalent of a spatial average

of the microstructure over a range of ring longitudes (i.e., in azimuth). From this we

estimate the microstructure dimensions in a statistical, averaged sense. In the next

chapter, we detail our methods for producing those estimates.

�



Chapter 5

Fitting Microstructure Models to

Radio Occultation Data

In Chapter 3, we showed that the far-field radiation pattern produced by EM scat-

tering from an aggregate of electrically large particles is well-approximated by the

diffraction pattern of a representative amplitude screen, when observations are lim-

ited to the near-forward direction. We construct the amplitude screen by projecting

the shadow area of the aggregate particles into a plane perpendicular to the wave

vector 	k of the illuminating EM wave. In Chapter 4, we described the Cassini radio

occultation experiment, and showed that the measured data contains clear evidence

for the existence of microstructure in the rings.

In this chapter, we build upon the results of Chapter 3 and present a set of

techniques to estimate the physical dimensions of microstructure evident in regions

of Saturn’s rings. We begin this chapter with an overview of those techniques.

5.1 Overview of the Method

The goal of the analysis described in this chapter is to match models of ring mi-

crostructure to the evidence of microstructure that we see in the Cassini radio occul-

tation data. To this end, we have developed a forward-theoretic modeling approach

that we apply specifically to regions in the rings that contain periodic microstructure

131



132 CHAPTER 5. FITTING MODELS TO THE CASSINI DATA

(PM), producing estimates of the structural wavelength λgr and orientation φgr as a

function of radial location of these structures in the rings. We report those results in

Chapter 6.

In general, the technique relies upon the diffraction theory results of Chapter 3.

We begin with a parameterized model of ring microstructure, which we select from

one of the four basic microstructure models we introduced in Section 2.3,

1. Homogeneously distributed thick rings

2. Packed monolayers

3. Gravitational wakes

4. Periodic microstructure (PM)

We create parameterized models of these four types of ring microstructure either

by using the amplitude screen methods described in Chapter 3, or by using ana-

lytic methods that are based on diffraction theory. These two distinct methods are

described in detail in Sections 5.2.1 and 5.2.2, respectively.

We generate amplitude screens using two distinctly different procedures. In the

first procedure, we employ particle aggregate models to represent ring microstructure,

as described in Chapter 3. With the particle aggregate model, we describe the behav-

ior and/or location of individual particles statistically in terms of means and standard

deviations, producing unique instantiations (or realizations) of microstructure that

each follow the same underlying statistics. In the second procedure, we construct

an amplitude screen that has sinusoidally-varying transmittance, which we generate

without the need to place and project the shadows of an aggregate of particles. We

use the particle aggregate model to represent all four types of ring microstructure

listed above; we use the sinusoidal transmittance model to represent the periodic or

pseudo-periodic nature of gravitational wakes and PM only.

From the amplitude screens, we compute far-field diffraction patterns in the spa-

tial frequency domain. The diffraction pattern of all instantiations are averaged to

produce a mean diffraction pattern for a given set of underlying microstructure statis-

tics. In the case of the sinusoidal transmittance model, we do not need to perform

this averaging since the sinusoidal screen does not contain any statistical variation.
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We map locations in the ring plane where signals originate to the angular fre-

quency domain associated with the Cassini transmissions at 13-, 3.6-, and 0.94-cm

wavelengths, and then compute the Doppler frequency fD associated with signals

originating from those locations. The amplitude of the Doppler-shifted signals are

scaled by the antenna gain and diffraction pattern amplitude, and summed to pro-

duce a synthetic received signal corresponding to a specific ring piercing point (RPP)

location during a particular radio occultation observation.

For periodic microstructure, we reduce the complexity of this process by seeking

only the Doppler frequencies at the location in the ring plane where the first-order

diffraction lobes originate. We further simplify this task by defining an analytic

expression, based on diffraction theory, that yields the location of the lobes in the ring

plane. This analytic description does not require the creation of amplitude screens,

and depends only on a given set of physical parameters that we describe later in this

chapter.

We optimize our choice of the microstructure’s model parameters using a least-

squares approach to drive the convergence of the simulated received signal spectrum

to the actual received signal spectrum for selected spectral features, thus obtaining

estimates of the model parameters that best fit the radio occultation experimental

data for a particular location in the rings over multiple observations. For the case

of PM, we optimize λgr and φgr to match the first-order sidelobe frequencies only,

simplifying the problem significantly.

In Section 5.2.1, we describe the method for generating amplitude screens that

represent vignettes of ring microstructure. This section highlights the generality—

and hence the modeling power—of the amplitude screen method. In Section 5.2.2,

we describe analytic models that provide an additional means to model two specific

types of microstructure.

In Sections 5.3–5.4 we show how the models of Section 5.2 are used in conjunction

with Cassini radio occultation measurements to produce estimates of ring microstruc-

ture.
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5.2 Microstructure Modeling Techniques

In this section we discuss two different methods for modeling ring microstructure. The

first method employs the amplitude screen modeling approach, which we described in

detail in Chapter 3. The amplitude screen method yields diffraction patterns U(u, v)

that represent the statistically-averaged far-field scattering behavior of a particular

microstructure model with a given set of model parameter values.

In the second method, we apply analytic expressions that take model parameters

and either describe U(u, v) directly, or skip ahead to a later step in the process

(described in Section 5.3) where we find the Doppler frequencies associated with key

features in the diffracted signal spectrum.

5.2.1 Microstructure Simulations using the Amplitude Screen

Method

We generate amplitude screens using either the particle projection technique (see

Figure 3.1), or by using a screen transmittance function T to generate amplitude

screens with sinusoidally varying transmittance. Henceforth, we shall refer to the

screens produced using these two techniques as particle aggregate models and sinu-

soidal transmittance models, respectively. Regardless of the technique used to gener-

ate the screen, the far field diffraction pattern of the microstructure is computed via

the method described in Chapter 3.

We create particle aggregate models either by explicitly specifying the mean and

standard deviation of physical dimensions and other model parameters (which are

discussed below for each model), or by using the results of dynamical planetary ring

simulations that produce evolutions of ring particle distributions that obey the un-

derlying physics of the model. Since the diffraction signature of microstructure is not

particularly sensitive to the size distribution of the particles, we populate our models

with identically-sized particles.
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Homogeneously Distributed Thick Rings

We provide only a brief summary of the homogeneous, many particles thick (MPT)

rings model here, since it was described in detail in Section 3.5. We parameterize the

model by the normal or oblique optical depth τ or τq, respectively; the volume packing

fraction fvol (eq. (3.72)); and the thickness of the rings Tr. As described in Section

3.5, fvol and Tr cannot always be selected independently. The number of particles Np

contained in the vignette is a secondary parameter, used to achieve the correct value

of τ while adhering to the MPT requirement that fvol ≤ 0.03. The linear dimensions

xmax and ymax of the vignette affect the value of Np required to achieve a given τ ; see

eq. (3.73). Examples of amplitude screen vignettes corresponding to these different

parameters are given in Figure 3.10.

Packed Monolayers

Dynamical models predict that some regions of Saturn’s rings may comprise a single

monolayer of relatively large ring particles, surrounded by a cloud of smaller particles;

the ensemble being no more than 50–100 meters thick in total (e.g., Deau et al. [2008]).

As a monolayer of ring particles becomes crowded, the spatial distribution of particles

becomes less random, and more like a lattice as the particles pack closer and closer

together. This results in a distinct deviation from the broadened Airy diffraction

pattern produced by homogeneous rings.

As crowding in the monolayer increases, simulations show increased extinction in

near-forward scattering (relative to the MPT model) that improves and eventually

matches MPT model scattering at angles close to θ ≈ 0.5θ1; see Figure 5.1. In the

figure, both the MPT and monolayer models have τ = 0.78, and θ1 is the first null

in the diffraction pattern of a single particle as defined in Section 3.3. This behavior

was reported by Marouf [1996, 1997].

We use particle aggregate models to represent packed monolayer microstructure.

Generating parameters to the packed monolayer model include optical depth (τ or

τq), particle radius a, vignette dimensions xmax and ymax. These parameters, in turn,

specify the number of particles Np contained within the vignette. The thickness of a
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Figure 5.1: Comparison of scattering from homogeneous MPT, and packed monolayer
models of planetary rings. In both cases, the average diffraction pattern of N = 100
amplitude screens are shown. We created the amplitude screens using a normal
projection of the rings; i.e., τq = τ . The average optical depth for both cases is
τ = 0.78. In the figure, the abscissa scale is normalized to the first null in the
diffraction pattern of a single particle, θ1.

packed monolayer is fixed at Tr = 1.

Gravitational Wakes

Gravitational wakes are thought to be common throughout Saturn’s Rings A and

B, as discussed in Chapter 2. These are pseudo-periodic structures that are in a

constant state of dissolution and re-formation, and are aligned in the ring plane

at angles of 20o–25o to the local azimuthal unit vector (e.g., French et al. [2007]).

Particle aggregate models of gravitational wakes can be produced from the output

of dynamical simulations (Figure 5.2(a)), or by explicitly specifying the mean and
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standard deviation of wake spacing and orientation (cant angle) as shown in Figure

5.3.

In Figure 5.2, we show amplitude screens and diffraction patterns that we created

using the results of dynamical simulations performed by Heikki Salo at the University

of Oulu [Salo, 2006]. Salo’s simulations produced a time-domain evolution of the

position and velocity of 5330 1.66-m radius ring particles as the particles orbit Saturn.

Other physical parameters specified in the model are surface mass density σρ = 500

kg m−2, and volume mass density ρ = 450 kg m−3 (σρ and ρ are described in more

detail in Appendix A). Initially, the particles are homogeneously distributed within

the 300× 300× 55 m simulation volume; the volume is centered in the ring plane at

a distance of 100,000 km from Saturn’s center.

During the simulation, Salo’s code outputs the position of all particles contained

within the simulation volume at the end of each of 100 successive orbits of Saturn. For

the given input parameters, the homogeneous initial distribution of particles evolves

to a distribution that contains distinct wakes, as seen in Figure 5.2(a), by the tenth

orbit. A detailed description of the simulation is given in Salo [1995].

Salo shared with us the files containing the position of each of the 5330 particles

at the end of each of 100 consecutive simulated orbits of Saturn (i.e., 100 files in

total). We used these files to create N = 90 amplitude screens, corresponding to the

particle aggregates defined by Salo’s files for orbits 11–100, and in which gravitational

wakes are evident. Figure 5.2(a) is an amplitude screen produced from one of Salo’s

particle position files. In Figure 5.2(b) we show the average diffraction pattern of

N = 90 vignettes. Figure 5.2(c) is a plot of the diffracted signal intensity along the

dashed line shown in white in Figure 5.2(b), which is oriented at a cant angle of

approximately 25o to the u-axis, showing the enhanced scattering in the very near

forward direction that is characteristic of wakes. Figures 5.2(b)–(c) show diffraction

in the spatial frequency domain; a method for transforming to the Doppler frequency

domain and comparing the results with Cassini data is the subject of Section 5.3.

We also represent gravitational wakes using the parameterized, statistically gen-

erated particle aggregate model shown in Figure 5.3. The model is specified by its

optical depth (either τ or τq), the mean λgr and standard deviation σgr of the wake
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Radial line
from Saturn
barycenter

O

ûgr

Gravitational Wakes or
Periodic Microstructure

grλ
grφ

ûr
�ro

φ̂

Figure 5.3: Statistically generated amplitude screen model of gravitational wakes or
periodic microstructure, showing placement in the ring plane. The vector r̂o defines
the position of the ring piercing point O relative to Saturn’s barycenter; ûr is the unit
vector pointing from Saturn’s barycenter to the RPP. The orientation of the structure
in the ring plane is specified by ûgr (alternatively by φgr). The mean structural
period λgr is shown; its standard deviation σgr (not labeled) controls the width of the
normally-distributed particle clusters that form the wakes and/or PM.
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Figure 5.4: Deterministic sinusoidal transmittance amplitude screen model of periodic
microstructure, showing placement in the ring plane. The screen transmittance T (	r)
is defined in eq. 5.1, where 	r is a position vector originating at Saturn’s barycenter,
as is 	ro which defines the RPP. The angle between 	r and 	ro is exaggerated here, for
clarity. All other labels and geometry are as in Figure 5.3 (note that σgr is not defined
in this model).

spacing, and the orientation or cant angle φgr of the wakes in the ring plane, relative

to the azimuthal unit vector φ̂. This wake model is further constrained by specifying

the ring thickness Tr or the packing fraction fvol. We populate a ring slab volume

according to the defined statistics, and the number of particles Np is adjusted iter-

atively in our model until the output of eq. (3.73) equals the defined optical depth

specification.
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Periodic Microstructure

With the Cassini radio occultation experiment, we have detected periodic microstruc-

ture at five distinct locations in the rings [Thomson et al., 2007]. Colwell et al. [2007]

and Sremcevic et al. [2009] used the Cassini ultraviolet imaging spectrograph (UVIS)

to detect PM in regions of Rings A and B, and reported results that are consistent

with our observations.

As was the case for gravitational wakes, particle aggregate models of PM are

produced either by using the output of dynamical simulations to determine the ring

particle locations in the ring plane, or by using the statistically generated parameter-

ized model shown in Figure 5.3. For PM investigations, the particle aggregate model

is useful for investigating the impact of the orientation angle φgr and ring thickness Tr

on the observed optical depth. However, if our goal is simply to identify the geometry

required to produce the first-order diffraction lobes that are the hallmark of PM (e.g.,

Figure 4.5(a)–(b)), then we only need a model that is specified by λgr and φgr.

For this, we define an amplitude screen with transmittance T (	r), containing a

deterministic sinusiodal amplitude component. The model is completely specified

by four parameters, which are: i) the average transmittance T of the screen, ii) the

sinusoidal amplitude ∆T of the variation in screen transmittance, iii) the structural

period λgr, and iv) the orientation vector ûgr (or alternatively, φgr), which we define

relative to an axisymmetric orientation. With this,

T (	r) = T +∆T cos

(
2π(	r · ûgr)

λgr

)
(5.1)

where 	r is the radius vector from Saturn’s center to points within the amplitude

screen; see Fig. 5.4 for the screen geometry. The parameter T is determined by the

observed normal optical depth τ ,

T = exp

(−τ

2µo

)
(5.2)

where µo = sinB, and B is the ring opening angle (see Figure 5.8; cf. Fig. 15 of Tyler

[1987]). The parameter ∆T is determined from the observations according to,
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∆T = 2T · (∆I)−1/2 (5.3)

where ∆I is the ratio of the observed intensity of the zeroth-order (the coherent

signal) and first-order diffraction lobe in the received signal spectra, accounting for

the gain of the illuminating antenna. The fine-scale variation in normal optical depth,

τfs, within a specific PM feature is related to these parameters,

τfs,max = −2µo ln(T −∆T ) (5.4)

τfs,min = −2µo ln(T +∆T ) (5.5)

We also use the deterministic sinusoidal screen transmittance model (Figure 5.4)

to represent gravitational wakes.

5.2.2 Microstructure Modeling using Analytic Methods

In Section 5.2.1, we discussed the use of either a statistical particle aggregate model or

a deterministic sinusoidal screen transmittance model to construct amplitude screens

(see Chapter 3) that represent one or more of the four types of microstructure intro-

duced in Section 2.3 and discussed again in Section 5.1.

We now describe two analytic microstructure models that yield expressions of

the model diffraction pattern U or intensity I = UU∗. For the case of periodic

microstructure, we give an equation that describes the location of the first-order

diffraction lobes in the ring plane. The key advantage to the analytic approach is that

it eliminates the need to generate amplitude screens and compute their diffraction

patterns.

Homogeneous MPT Model

An expression for the far-field diffraction pattern associated with the homogeneous,

many particles thick microstructure model was given in Section 3.5 [Marouf et al.,

1983],
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I(τq, θ) = 2π

∫ ∞

0

ρJ0(2πρθ)e
−τq
(
ew̃

˜Φ(ρ)τq − 1
)
dρ (3.63)

with

Φ(θ) = Io(x)

(
2J1(x sin θ)

x sin θ

)2

(3.70)

Io(x) =
x2

2

[
1− J1(2x)

x

]−1

(3.71)

Here, we assume that the far field intensity is symmetric, so I(θ) = I(u, v) where

θ = β =
√
β2
x + β2

y and eq. (5.10) describes the mapping between (u, v) and (βx, βy).

We discussed the relationship between I and U in Chapter 3 (see eq. (3.54)).

Diffraction Grating Model

The sinusoidal transmittance amplitude screen model described in Section 5.2.1 is be-

haviorally similar to a diffraction grating. Using the same model description, defined

by eqs. (5.1)–(5.5), we introduce a diffraction grating model that is solved analytically

rather than by computing the diffraction pattern of an amplitude screen.

For a given λgr and φgr, the theoretical diffraction pattern of an illuminated diffrac-

tion grating contains three distinct spectral peaks corresponding to the zeroth-order

signal and the two first-order diffraction lobes, as shown in Figure 5.5 (see also Figure

5.11). The lobes diffract at an angle θd relative to the line-of-sight that is determined

by the grating period λgr and the wavelength λ of the illuminating radio wave,

θd =
λ

λgr

(5.6)

Signals diffracted from the rings corresponding to the first-order lobes of a sinusoidal

grating appear to originate from locations S1 and S2 in the ring plane, defined by the

position vectors,

	S1,2 = 	ro ∓
( |	rco| sin θd
sin(γ ∓ θd)

)
ûgr (5.7)

relative to Saturn’s center of mass. Here, 	ro is the radius vector from Saturn’s center
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ûgr

= 2 k̂�k

Figure 5.5: Properties of a sinusoidal diffraction grating. First-order lobes are
diffracted at an angle θd with respect to the incident plane wave vector 	k, in the
plane containing both k̂ and the grating orientation vector ûgr. Energy diffracted
towards the observer by the first-order lobes originates at S1 and S2, which are along
the line of diffraction grating lobes, defined as the intersection of the plane containing
k̂ and ûgr, and the ring plane (see also Figure 5.6). The line of diffraction grating
lobes is also the line oriented along ûgr that includes point O. This description is also
valid for signals originating at the observer and arriving at the distant source of the
illuminating plane wave in this figure, by reciprocity. Compare with Figures 5.6 and
5.12.
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ûE
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Figure 5.6: Diffraction grating and Cassini observation geometry. The view shown
is drawn in the plane that contains ûgr and ûE (note that ûE = k̂); the line of
diffraction grating lobes is in the plane of the page. The ring plane, containing a
sinusoidal diffraction grating parameterized by λgr and ûgr, protrudes from the page
at an unspecified angle. Angle γ is between −ûE and ûgr. Point O defines the RPP;
S1 and S2 are points in the ring plane where Cassini signals diffracted through an
angle θd are redirected towards Earth along ûE. Compare with Figures 5.5, and 5.12.



146 CHAPTER 5. FITTING MODELS TO THE CASSINI DATA

to the ring intercept point O, 	rco is the vector from the Cassini spacecraft to point O

(	rco = 	ro − 	Rc; see Figure 4.1 or 5.12), and γ = cos−1(−ûE · ûgr); see Figure 5.6.

5.3 Comparing Model Behavior with Radio Occul-

tation Measurements

We match power spectral features derived from the diffraction pattern of presumed

ring microstructure models with key features in the power spectrum of signals received

from Cassini, which contain the diffraction signature of the true ring microstructure.

Our approach comprises two main techniques: a general technique, and a faster,

simpler technique that is specific to periodic microstructure. We used the second

technique to produce the estimates of the physical dimensions of PM in the rings

that we present in Chapter 6.

With either the general or PM-specific approach, we adopt the implicit assumption

that the nature of the microstructure is statistically stationary over multiple Cassini

observations. In our case, the stationary assumption spans the May–August 2005

timeframe of the observations we use in our analysis.

The methods we describe in this chapter require accurate estimates of the position

and velocity of Cassini, Saturn, and the Earth in order to reconstruct the observa-

tional geometry and to calculate associated quantities—such as 	ro and fD—required

in the analysis. To this end, we use the SPICE information system, which is provided

to the scientific community and maintained by the NASA/JPL Navigation and An-

cillary Information Facility (NAIF). SPICE includes a large suite of software (mostly

in the form of subroutines) to assist scientists in planning and interpreting scientific

observations from space-based instruments. The Cassini project office releases files

called SPICE kernels on a regular basis, which contain the best estimate of Cassini’s

actual trajectory during a fixed range of dates. NAIF also releases kernel files for

all major solar system objects (planets, moons, etc.). We incorporated SPICE sub-

routines in our code in order to read SPICE kernel files and compute highly-resolved

estimates of the Cassini radio occultation geometry.
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5.3.1 General Approach

In this section, we outline a general approach that applies to all models that use ring

particle aggregates to represent ring microstructure. We describe an iterative fitting

procedure for estimating ring microstructure at a single location 	ro in the rings. The

iterative process is repeated for multiple 	ro to resolve microstructure features that

span a range of ring radii.

To be clear, a full development and application of the general approach is beyond

the scope of this dissertation. However, the general approach provides an excellent

pedagogical framework with which to present the basic concepts and procedures that

are essential to the techniques we use to fit models of periodic microstructure to the

Cassini data. Our PM model fitting techniques derive from the general method but

are specialized for PM analysis and therefore limited by comparison, as we describe

in Section 5.3.2. A complete development of the general approach is an important

future step in the analysis of Cassini radio occultation data to investigate the nature

of ring microstructure.

Generating the Diffraction Screens: Particle Aggregate Models

We begin with a region of the rings containing microstructure that we wish to investi-

gate, and we choose a particle aggregate model from those introduced in Section 5.2.1

to fit to the measured Cassini radio occultation data. For each unique set of model

parameters (i.e., unique values of parameters τ , λgr, σgr, φgr, Tr, etc.), we generate N

amplitude screens, each of which are unique instantiations or vignettes corresponding

to a single statistical description of the rings.

Each vignette is generated as shown in Figure 3.1—by projecting the shadows of

particles into a plane perpendicular to the unit wave vector k̂ = ûE. Particle positions

in our model use the coordinate system introduced in Figures 4.1 and 4.2, where ẑ

is Saturn’s pole vector, x̂ is the unit vector projection of ûE in the ring plane, and

ŷ = ẑ× x̂. The position (x, y) of particles is preserved in the creation of the amplitude

screen—thus ∆x = ∆y
sinB

for amplitude screens constructed using an equal number of

pixels in x and y. Figure 5.7 depicts the projection process as it pertains explicitly



148 CHAPTER 5. FITTING MODELS TO THE CASSINI DATA

Incident
 Radio Wave

ẑ
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Figure 5.7: Constructing amplitude screens from models of ring microstructure. The
general procedure for screen construction is explained in Chapter 3. Significant ring
particle overlap is evident along the x-dimension in the amplitude screen, due to the
acute ring opening angle. If the two dimensions of the amplitude screen comprise the
same number of pixels, then ∆x = ∆y

sinB
, where B is the ring opening angle defined in

Section 1.2.

to the rings.

There is often a tradeoff to be made between resolving the diffraction signature of

individual particles and that of the structures formed by those particles, as discussed

in Section 3.2.4. Figure 5.2(b) illustrates the problem: when the microstructure has

characteristic dimensions that are many particles in extent, the spectral diffraction

signature of the microstructure exists on a proportionally smaller scale that the par-

ticles. This is due to the inverse relationship that exists between dimensions in the

spatial domain and the spatial frequency domain.

For microstructure vignettes that are hundreds of particles long in x and/or y, it is

impractical to resolve the diffraction pattern of both the particles and the structure

since the small values of ∆x and ∆y required quickly lead to very long numerical

transforms. Depending on the nature of the microstructure, it may be necessary to

increase ∆x and ∆y in order to properly sample the structure, thus decreasing the

spatial sampling frequency fsx (fsy) and the frequency-domain resolution ∆fx (∆fy).

In the limit, we can reduce the spatial resolution to one pixel per particle, focussing

in on the diffraction signature of microstructure in the process.
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We compute the diffraction pattern of the N amplitude screens using the methods

described in Chapter 3. We apply a 2D Hamming function to each amplitude screen

a priori to mitigate the spectral leakage effects associated with the finite length of the

FFT. We average the N diffraction patterns incoherently (cf., eq. (3.54)) to obtain,

U(u, v) =

√√√√ 1

N

N∑
i=1

Ui(u, v)U∗
i (u, v) (5.8)

thus creating a single diffraction pattern U(u, v), that represents the statistical be-

havior of the particular model type (wakes, PM, etc.) and unique parameter values.

We choose N large enough to reduce the statistical noise in the spatial frequency

domain, inherently introduced by amplitude screen models that contain statistically-

defined dimensions. A possible criterion for N is to require the maximum difference

between the diffraction patterns produced by averaging (N − 1) and N diffraction

patterns to be less than a small value ε,

ε ≥
∣∣∣∣∣ 1N

N∑
i=1

U2
i (u, v)−

1

N − 1

N−1∑
i=1

U2
i (u, v)

∣∣∣∣∣
max

(5.9)

where ε is on the order of a few percent, and U2 = UU∗.

We apply a linear paraxial transformation to map the spatial frequency domain

U(u, v) to the angular frequency domain U(βx, βy),

βx = λu βy = λv (5.10)

where λ is the wavelength of the Cassini signal used in the analysis (either 13 cm, 3.6

cm, or 0.94 cm; see Section 4.1).

Generating the Diffraction Screens: Screen Transmittance Models

The sinusoidal screen transmittance model depicted in Figure 5.4 is defined determin-

istically, not statistically. In this case we compute U(βx, βy) using a single amplitude

screen for each unique set of parameter values (i.e., N = 1). Otherwise, the procedure
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is exactly the same as that described above for particle aggregate models.

Doppler Signal Synthesis

The incoherent or scattered signal spectrum is a superposition of signals forward-

scattered or diffracted towards Earth from regions in the rings that are illuminated by

the Cassini high-gain antenna. We receive these signals at Earth, and each is Doppler-

shifted with respect to the transmitted signal frequency as discussed in Section 4.1.

To test a presumed model of ring microstructure, we must synthesize a received

signal spectrum Is(fD) that corresponds to the average diffraction pattern U(βx, βy)

of the specific model, and which is consistent with the observational geometry of

the actual experiment. Reconstructing the observational geometry ensures a correct

mapping of Doppler frequency fD to precise locations in the ring plane.

Figures 5.8 and 5.9 show the geometry and general approach of the Doppler syn-

thesis method. A fraction of the Cassini transmitted signal power that propagates

along ûp to illuminate point P is diffracted through an angle βp to propagate along

ûE towards Earth. For P located at a point (xi, yj) in the ring plane (the xyz coordi-

nate system is explained in Figure 4.1), the signal intensity scattered from P towards

Earth depends on both the diffraction pattern U(βxi
, βyj) of the rings and on the

incident power illuminating the rings, which in turn is a function of the gain of the

Cassini high-gain antenna (HGA),

Is(βx, βy) = G(βx, βy) · U2
(βx, βy) (5.11)

Is(βx, βy) is the normalized intensity of signals scattered to Earth from points in the

rings defined by βx and βy, and G(βx, βy) = G(β) is the pattern gain of the Cassini

antenna (cf., eq. (3.70)),

G(β) =

[
2J1 (ηka sin β)

ηka sin β

]2
(5.12)

where β =
√
β2
x + β2

y . Here, J1 is the first-order Bessel function of the first kind, a is

the radius of the Cassini high-gain antenna (a = 2 meters), k = 2π/λ, and η is a factor
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Figure 5.8: Diffraction and Doppler geometry in the ring plane. Radio waves prop-
agating along ûp from Cassini intercept the rings at point P , located at (xi, yj) in
the ring plane. Microstructure present in the rings in the vicinity of P diffracts a
portion of the transmitted signal energy towards Earth along ûE. The diffraction

angle βp = cos−1(ûp · ûE) =
√
β2
xi
+ β2

yj
is subtended between ûp and ûE. The angle

αxi
= B+βxi

is formed by projecting the ray 	up linking Cassini and point P at (xi, yj)
into the x̂ẑ plane; similarly, βyj is formed by projecting 	up into the ŷẑ plane, as shown.
Angle B is the rings opening angle, and the subscripts i and j have been dropped
from αxi

and βyj in the figure, for brevity. For a given observational geometry, sig-
nals scattered towards Earth from point P map to a particular Doppler frequency
fD. Doppler values are represented graphically in the figure by a color spectrum as
in Figure 4.2, but are not to scale. The line-of-sight ray linking Cassini and Earth
pierces the rings at point O. The reader is referred to Figure 4.1 for a more general
view of the geometry shown in detail in this figure.
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Figure 5.9: Determining the magnitude U(βxi
, βyj) and Doppler frequency fDp of sig-

nals received from point P in the ring plane. Radio waves transmitted by Cassini and

illuminating the rings at point P at (xi, yj) are diffracted by an angle βp =
√

β2
xi
+ β2

yj

towards the Earth, as shown in Figure 5.8. For a given observational geometry, and
an assumed model of ring microstructure producing an average diffraction pattern
U(βx, βy), each ordered pair (βxi

, βyj) maps to a single point (xi, yi) in the ring plane.
Signals from P are received at a relative magnitude Is(βxi

, βyj), defined in eq. (5.11),
and at the Doppler frequency associated with P . Contributions from all points in
the rings are used to synthesize a received signal spectrum Is(fD) associated with a
particular model of ring microstructure.

that accounts for the deliberate de-focussing of the Ka-band signal in the HGA. For

Cassini, η = 1 for X- and S-band transmissions, and η = 0.806 for Ka-band, yielding
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a half-power beamwidth of βHP|Ka = 0.0015 radians.

Since each unique ordered pair (βxi
, βyj) maps to a single point (xi, yj) in the

ring plane, and each point in the ring plane has an associated Doppler frequency fD,

we can synthesize a received signal spectrum that corresponds to a specific model of

ring microstructure and occultation signal wavelength—represented by Is(βx, βy)—

and to a specific observational geometry. For each value of (βx, βy), we compute the

corresponding position vector ûp (see Figure 5.8) by first finding the vectors 	x and 	y

that locate the point (x, y) relative to the RPP,

	x =
|	rco| sin(βx)

cosB
x̂ (5.13)

	y = |	rco| tan(βy)ŷ (5.14)

where x̂ and ŷ are as shown in Figure 4.1, B is the ring opening angle, and 	rco was

introduced in eq. (5.7). The vector from Cassini to (x, y) is given by 	rp = 	rco+	x+ 	y,

and it follows that ûp is defined as,

ûp = |	rp|−1	rp (5.15)

For homogeneous ring models, we compute the Doppler frequency fD associated with

each (βx, βy), using the computed value of ûp in eq. (4.1). For other models of ring

microstructure we use modified formulae to compute fD, which we discuss below and

define in eqs. (5.17)–(5.17).

We store the numerical values of Is(βx, βy) and the associated Doppler values fD

in corresponding K ×K matrices, and then collapse the matrices into two vectors of

length 1 × K2. We sort values contained in the Doppler vector in ascending order,

and commensurately re-order the Is vector. Finally, a histogram algorithm is used to

sum the Is vector in Doppler bins that are sized to match the frequency bin size of

the measured Cassini signal, thus producing the synthesized received signal spectrum

Is(fD).
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Next page.

Figure 5.10: Synthesis of Is(fD) from models of ring microstructure. Panels A–D
show single instantiations of amplitude screens representing a particular microstruc-
ture model, along with the Doppler power spectra Is(fD) that we synthesized from
the average of N = 100 unique diffraction patterns U(βx, βY ). The different mi-
crostructure models shown represent a range of simulated optical depths. Shown are
A a homogeneous MPT ring model (τq = 3.26, Np = 9870, Tr = 43), B a packed
monolayer model (τq = 1.53, Np = 4000, Tr = 1), C gravitational wakes (τq = 0.60,
Np = 5330, Tr = 17), and D periodic microstructure (τq = 0.15, Np = 2170, Tr = 6).
In all panels, Is(fD) is synthesized at X-band, assuming the REV 7 ingress geom-
etry and |	ro| = 123,100 km from Saturn’s barycenter. The bias of all synthesized
Doppler spectra have been chosen to facilitate comparison with the power spectra of
microstructure contained in Figures 4.5 and 6.4. The coherent signal component is
not included in Is(fD). In panel B, the near-forward extinction associated with scat-
tering from packed monolayers (shown in Figure 5.1) is spread over roughly ±2 kHz
(see the 3 dB beam pattern in Figure 4.2), and therefore is not distinctly seen in our
synthesis. Note the scattering enhancement in the near-forward direction produced
by gravitational wakes, panel C, as compared with the more superimposed sidelobe
nature produced by periodic microstructure, panel D. These results are preliminary
and are intended for qualitative comparisons and/or illustrative purposes only.
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Computing the Doppler Frequency

Eq. (4.1) describes the Doppler frequency expected due to forward-scattering from

ring particles. When anisotropic models of ring microstructure (such as gravitational

wake or PM models) are considered, significant contributions to the received signal

spectrum are attributed to diffraction from the periodic or pseudo-periodic clusters

of particles contained in those models. For non-homogeneous models, it is not the

motion of the constituent particles that predominantly determines the Doppler fre-

quency or frequencies associated with distinctive spectral features—it is the apparent

motion of the entire structure in the ring plane. For example, an azimuthally sym-

metric structure (i.e., ûgr = ûr; see Figures 5.3 and 5.4) may comprise many particles

moving at Keplerian velocities, but the structure itself appears stationary. Regular

microstructure appears to move at a velocity 	vgr in the ring plane [Thomson et al.,

2007],

	vgr = (	vp · ûgr) ûgr (5.16)

Diffracted radio waves from the structure are Doppler-shifted accordingly,

fDgr =
1

λ
(	vs − 	vgr) · (ûp − ûE) (5.17)

We use eq. (5.17) in place of eq. (4.1) to synthesize Is(fD) for models of periodic

microstructure and gravitational wakes. From this point forward we refer to fDgr

using fD and an equation reference, for brevity.

Figure 5.10 shows a set of results generated by applying the frequency synthesis

techniques using several models of ring microstructure. In the figure, we chose the

scale and bias of the panels containing synthesized frequency responses Is(fD) to

facilitate a qualitative comparison with the measured power spectra shown in Figures

4.5 and 6.4. The observational geometry used in the synthesis corresponds to the REV

7 Cassini occultation experiment, at a point during the ingress observation when the

Cassini-Earth line-of-sight pierced the rings at |	ro| = 123.1×103 km. These results are

preliminary and are intended for qualitative comparisons and/or illustrative purposes

only. See the figure caption for more details.
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5.3.2 Periodic Microstructure

For the case of periodic microstructure, the sharp first-order diffraction lobes char-

acteristic of PM (see the simulation results shown in Figure 5.11) allow us to greatly

simplify the modeling procedure. In this case, synthesis of Is(fD) is not required—

rather, we need only find the two Doppler frequencies, fD1 and fD2, corresponding to

the peaks of the first-order diffraction lobes.

Sinusoidal Transmittance Model

We use the first-order diffraction lobe peaks β1 and β2 evident in the angular frequency

domain of the sinusoidal transmittance model to compute the diffraction lobe peaks

fD1 and fD2 in the Doppler frequency domain. Figure 5.11 shows an example of

a diffraction pattern U(βx, βy) generated from a sinusoidal transmittance model of

periodic microstructure, as detailed in Section 5.2.1. We use a peak-finder algorithm

to uniquely determine the two first-order diffraction lobe peaks in U(βx, βy), which we

show located at (βx1 , βy1) and (βx2 , βy2) in the figure. We find the associated Doppler

frequencies fD1 and fD2 directly using the approach described in eqs. (5.13)–(5.15)

above; eq. (5.17) is used to compute the specific Doppler frequencies.

Analytic Diffraction Grating Model

The procedure for finding fD1 and fD2 is even simpler for the (analytic) diffraction

grating model, which is depicted in Figure 5.12. In this case, there is no need to

generate any amplitude screens. For a specific observational geometry, we compute

	S1 and 	S2 using eq. (5.7). Then 	rpi = 	rco + 	Si, and we compute ûp1 and ûp2 using eq.

(5.15). Substituting into eq. (5.17) yields fD1 and fD2, respectively.



158 CHAPTER 5. FITTING MODELS TO THE CASSINI DATA

 

-5000

0

5000
50000-5000

Y (meters)

X
 (

m
et

er
s)

-0.0072

0.0072
0.0072-0.0072

β
x 

(r
ad

ia
ns

)

βy (radians)

0

0

β1

β2

(a) (b)

Figure 5.11: An example of (a) the sinusoidal transmittance model of periodic mi-
crostructure, λgr = 100 m, and (b) its associated diffraction pattern U(βx, βy).
Values of β are computed for an X-band signal, λ = 3.6 cm. Note the spacing
∆β = |	β1 − 	β2| = 2so, where so = λ−1

gr .

5.4 Least-Squares Fitting of Model Parameters to

the Data

We use an iterative least-squares fitting approach to determine the optimal set of

model parameters that fit the synthesized frequency spectrum to the frequency spec-

trum of the Cassini data. For periodic microstructure models, we only fit at two

locations in the spectrum. Specifically, we fit the measured first-order diffraction lobe

frequencies, designated fm1 and fm2, to the sidelobe frequencies in the synthesized

spectrum, fD1 and fD2. In this case, it is not necessary to synthesize Is(fD). For

the PM model case, we now describe the process of fitting model parameters to the

experimental data.
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Figure 5.12: Diffraction grating model of periodic microstructure in the rings. (a)
Line-of-sight ray linking Cassini and Earth is directed along ûE and pierces the ring
plane at point O; ûgr is in the plane of the rings, and defines the orientation of the
periodic structure. Points S1 and S2 correspond to locations in the ring plane where
first-order diffraction grating lobes of the structure originate and propagate along ûE

to the Earth-based receiver. The grating lobes are directed at angle ±θd relative to
ûE. All angles shown are in the plane defined by ûE and ûgr. Color within the antenna
footprint represents variations in the Doppler shift of signals scattered to Earth by
the rings; the antenna footprint size is exaggerated for clarity. (b) The grating is
represented by parallel green lines in this schematic top view of the rings. Signals
diffracted to Earth from S1 and S2 are Doppler-shifted by fD1 and fD2 relative to the
signal along the line-of-sight, represented by the colors at S1 and S2. ûr = |	ro|−1	ro is
the radial unit vector pointing from the center of Saturn to O.

5.4.1 Fitting Models of Periodic Microstructure

Figure 5.13 shows the spectrum of the Ka-band Cassini received signal recorded during

the REV 7 ingress occultation observation, May 3, 2005. The spectrum shown is an

average over a 25-km range along the occultation track, centered on a point ro =
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123,249 km from Saturn’s center.

For each radial location |	ro| in the rings for which we wish to fit a model of

periodic microstructure, we must first determine the actual first-order diffraction lobe

frequencies, fm1 and fm2, from the measured Cassini radio occultation data. Using a

four-parameter Gaussian model,

F (f ;P i) = Ci exp

(
−(f − fmi)

2

2σ2
i

)
+ Foi (5.18)

we adjust the amplitude Ci, standard deviation σi, bias Foi, and first-order diffraction

lobe frequencies fmi, where i = 1, 2, to fit the measured data as shown in Figure 5.13.

The vector P i = [Ci fmi σi Foi] defines the model’s independent fitting parameters.

The Gaussian model (eq. (5.18)) is fit to the Cassini spectral data using a least-squares

optimization routine that employs a Levenberg-Marquardt algorithm to minimize the

sum-of-squares error Γ(P ) according to,

Γ(P ) =
K∑
k=1

[
I(fk)− F (fk;P )

]2
(5.19)

where I(fk) is the intensity of the received signal spectrum at frequency fk, and

F (fk;P ) is the parameterized function that minimizes Γ(P ); in this case, given by

eq. (5.18). Here, we limit the range of frequencies, f1 to fK , such that F (fk;P ) is

optimized to fit either the upper or lower diffraction lobe—never both at once. This

is depicted in Figure 5.13 by a distinct break in the red line representing the Gaussian

model fit to each diffraction lobe.

The Levenberg-Marquardt algorithm interpolates between the Method of Gradient

Descent, and the Gauss-Newton algorithm. The Levenberg-Marquardt algorithm is

more robust than the Gauss-Newton algorithm, capable in many cases of finding a

solution even when the starting guess P o is very far from the final minimum.

We apply this fitting process to all of the Cassini datasets included on our analysis,

and at each radial location in the rings under investigation. For each Cassini dataset,

the fitting process yields six frequency estimates—fσ1−, fm1, fσ1+, fσ2−, fm2, and

fσ2+—that fit the received signal spectrum at a single radial location in the rings. The
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Figure 5.13: Estimating the first-order diffraction lobes of periodic microstructure
using a Gaussian model. The measured data (shown in blue) was recorded during the
ingress portion of the Cassini REV 7 radio occultation experiment. The plot shows
the Ka-band (λ = 0.94 cm) received signal, averaged over approximately 25 km of
radial extent along the occultation track centered at |	ro| =123,249 km from Saturn’s
barycenter. Key parameters of the Gaussian fitting function, defined in eq. (5.18),
are shown. fσi− and fσi+ denote the frequency at one standard deviation on either
side of the peak fmi.
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Gaussian peaks fm1 and fm2 are our estimates of the mean Doppler frequency of the

first-order diffraction lobes in the Cassini data. We use the estimates fσi+ = fmi + σi

and fσi− = fmi − σi to estimate a frequency spread that characterizes deviation from

the assumed monochromatic model; specifically, we define upper and lower bounds on

the diffraction lobe Doppler frequencies as (fσ1−, fσ2+) and (fσ1+, fσ2−), respectively.

We use the frequency spread to estimate the corresponding spread in the diffraction

grating model parameters.

The diffraction grating model comprises two parameters, λgr and φgr, as described

in Section 5.2.2. To fit λgr and φgr to the data we apply the Levenberg-Marquardt

least-squares algorithm a second time—this time, we fit the diffraction grating model

to the measured data,

Γ(	ro, P ) =
imax∑
i=1

M∑
j=1

[
fmij(	ro)− fDij(	ro,

	Sij ;P )
]2

(5.20)

where imax = 2. The output of the Levenberg-Marquardt algorithm that minimizes

eq. (5.20) is a least-squares estimate of the model parameters P = [λgr φgr] that best

fits all of the Cassini data used in the analysis, at a single radial location |	ro| in the

rings. The function fDij is given by eq. (5.17), which we use to compute fD1j and fD2j

for each of the M Cassini data sets, where the jth observation geometry is completely

specified by 	ro and 	Si (eqs. (5.6) and (5.7)) for each Cassini observation. Nominally,

the algorithm fits fDij to the diffraction lobe frequency estimates fmij produced using

eq.(5.19), as described above. We compute all pertinent geometric quantities—such

as the position and velocity of Cassini, Saturn, the rings, and Earth at the time of

each observation—using trajectory and other ancillary SPICE files provided by the

Cassini Navigation Team at JPL, as described at the beginning of Section 5.3.

We repeat the fitting process using our ±σ estimates, using fσi+ and fσi− in place

of fmi in eq. (5.20) to place upper and lower bounds (respectively) on estimates of

λgr and φgr at a particular radial location.

For analysis, we have a total of 24 data sets available; i.e., 3 transmitted signals

(13, 3.6, and 0.94 cm-λ) recorded on ingress and egress observations during four

Cassini orbits (REVs 7, 8, 10, and 12). We use a subset of these data sets in our
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estimates of PM features in the rings for reasons discussed in Chapter 6.

5.4.2 Other Models

The procedure described for fitting models of periodic microstructure to Cassini sig-

nals applies to other microstructure models as well, although generally the less distinct

spectral features (relative to the sharp features present in the PM signal spectrum)

attributable to other microstructure tends to complicate the fitting process. In the

worst case, one may choose to fit every point in the synthetic spectrum Is(fD) to

corresponding points in the Cassini received signal. Difficulties arise here, since this

approach requires the absolute signal level of Is to be physically consistent with the

measured Cassini received signal spectrum; a challenging task indeed. This approach

can easily lead to large imax (which is the number of points in the synthetic spectrum),

and thus large number of data points in the least-squares algorithm eq. (5.20).

A more reasonable approach is to select key features in the received signal spec-

trum that are easily distinguished, and thus only require estimating the frequency

fD at which they occur. Here, imax is the number of spectral features used in the

fitting process. The fitting algorithm for this problem is similar to that of eq. (5.20),

with appropriate modifications to the function fDij . This approach greatly simplifies

the fitting process by eliminating the need to accurately synthesize the signal bias

contained in Is(fD).

A detailed discussion of techniques for fitting models other than periodic mi-

crostructure is beyond the scope of this dissertation.

5.5 Summary

In this chapter, we have explained the framework of a general method for fitting mod-

els of ring microstructure to signals received from Cassini during radio occultations of

the rings. We have developed the method in more detail for the specific case of fitting

periodic microstructure models to the Cassini data. For the case of PM, the method
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does not require synthesis of a received signal spectrum Is(fD)—we need only esti-

mate the Doppler frequencies fD1, fD2 of the first-order diffraction lobes produced by

the periodic structure, and evident in the Cassini received signal spectrum at specific

locations in the rings.

In the next chapter, we present experimental evidence for the presence of periodic

microstructure in the rings, detected during our preliminary analysis of Cassini radio

occultation data. We presented a subset of this evidence previously in Section 4.2.

We apply our PM analysis to the data, and present estimates of the structural period

and orientation of the PM in all regions of the rings where it is detected. These results

are also reported in Thomson et al. [2007].

�



Chapter 6

Estimates of Periodic

Microstructure in Saturn’s Rings

Radio occultation of Saturn’s rings by the Cassini spacecraft on May 3, 2005, revealed

several remarkable phenomena in Rings A and B. In limited regions of the rings, the

observations indicate the presence of periodic microstructure. The uncovering of these

structures [Thomson et al., 2006a, 2007] is based on our observation of diffraction

effects in 0.94- and 3.6-cm wavelength (λ) coherent sinusoidal signals transmitted

from Cassini through the rings, and received at the ground stations of the Deep

Space Network (DSN).

As we have discussed in previous chapters, the periodic variations in the optical

depth of the rings where PM is present diffract the incident electromagnetic wave

in a manner similar to that produced by a giant diffraction grating. The sharpness

of the spectral features in the observed diffraction signature permits inference of the

structural period, λgr, with resolution of few tens of meters. The observed first-order

diffraction lobes that we detect are typically 5–10 dB stronger than the spectral power

of the background broadband scattered signal. The absence of detectable higher-order

diffraction lobes in the computed spectra indicates that the optical depth variation

of the structure is close to sinusoidal within the 5–10 dB detection limit.

In this chapter, we apply the analysis methods explained in Chapter 5 to the

PM signals we detected in our Cassini radio data, and present our estimates of the

165
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physical dimensions of the PM in regions of the rings in which we detect it.

6.1 A Survey of Periodic Microstructure in Sat-

urn’s Rings

We identify PM features at two locations in the inner part of Ring A, within radial

bands of 123.05–123.4 × 103 km and 123.6–124.6 × 103 km (350 and 1000 km wide,

respectively). We designate these two features A123.2 and A124.1, respectively. In

Ring B, PM is detected within two broad regions, previously designated B2 and B4

[Marouf et al., 2006b], spanning 99.0–104.5 × 103 km and 110.0–117.5 × 103 km,

respectively. The intervening region, B3, spanning 104.5–110.0 × 103 km, is an op-

tically thick region that almost completely extinguishes the radio signals except for

some narrow regions. PM is also evident close to the inner edge of region B1 (92.0–

99.0× 103 km), within the radial band 92.1–92.6× 103 km (500 km wide), a feature

we designate B92.4. The PM features were observed during eight optimized radio

occultation passes between May 3, 2005 and August 2, 2005, and appear relatively

unchanged during that observational period as shown in Figure 6.2. The most obvi-

ous features are A123.2 and A124.1, which are evident in all three Cassini transmit

bands as shown in Figure 6.3. No PM features are evident in other regions of Ring

A, or in Rings C or the Cassini Division.

Panels A to D in Figure 6.1 depict four spectrograms of the signal observed over

the inner region of Ring A. The presence of the periodic structure is evidenced by

dark red lines in the spectrograms, running roughly parallel to the coherent signal at

≈ 0 Hz, but offset from it on either side by roughly 70–100 Hz. They were observed on

both the ingress and egress sides and on different orbits (see caption of Fig. 6.1). We

interpret these spectrally localized features as the signature of the first-order grating

lobes generated by diffraction from periodic ring structure. Similarly, panels E to G

depict three spectrograms of the signals received from feature B92.4 near inner B1

and its neighborhood, and from within regions B2 and B4. The grating lobe signature

is less distinct than in Ring A because of the larger background optical depth, but
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nevertheless is clear in several locations where the optical depth is sufficiently low to

allow signal detection.
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Next page.

Figure 6.1: Spectrograms of 3.6 cm-λ signal observed during May 3, 2005 ring oc-
cultation ingress (panels A, E, F and G) and egress (panel B), and on August 2,
2005 occultation ingress (panel C) and egress (panel D). The coherent signal is the
horizontal red line near the center of each panel. The diffraction signature of peri-
odic microstructure appears as roughly parallel horizontal lines displaced ±70–100
Hz from the coherent signal in Ring A (A–D) and ±50–120 Hz Ring B (E–G). The
signature is clearly evident for the two indicated features in inner Ring A, over the
roughly 500 km inner part of region B1 (E) and over most of the detectable subre-
gions of the ≈5000 km-wide region B2 (F). It is more muted over most of region B4
(G). Other evident broadband features correspond to energy forward scattered by
the background structure in the rings.
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Figure 6.2: Evidence of periodic microstructure feature A123.2 in spectrograms of
Cassini radio occultation data. Panels A–D contain spectrograms of the Ka-band
(λ = 0.94 cm) ingress data taken during the REV 7, 8, 10, and 12 observations,
respectively, spanning a three month time period between May 3–August 2, 2005.
During this time period, the PM feature appears unchanged. The coherent signal
is evident in the data as a solid red line through the features. The coherent signal
frequency is slightly different in each panel due to small errors in the sky frequency
predictions used to heterodyne the RF signal, as discussed in Section 4.1.
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Figure 6.3: PM features A123.2 and 124.1 are seen in spectrograms of Cassini S-, X-,
and Ka-band (λ= 13, 3.6, and 0.94 cm, respectively) radio occultation data, shown
in panels A–C, respectively. The slanting of the feature in the frequency domain is
a function of the wavelength of the observation, as described in Section 4.1.2. The
higher SNR of the X- and Ka-band signals is evident in the brightness of the features
and the color scaling, relative to the S-band data.
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Figure 6.4: Power spectra of periodic microstructure features in Saturn’s rings. Panels
A–E are produced using 3.6 cm-λ (X–band) radio occultation data recorded during
the Cassini REV 7 ingress observation of the rings. Panel A shows the received signal
spectrum of feature A123.2., averaged over the radial range 123.1–123.35×103 km.
Similarly, panels B–E show the spectra of features A124.1 and B92.4, and regions
B2 and B4, respectively. The radial range of the signal averaging in panels B–E
is 123.9–124.5×103 km, 92.28–92.5×103 km, 99–104×103 km, and 110–116×103 km,
respectively. In each panel, the signal intensity is plotted in decibels relative to
the average coherent signal intensity over the extent of each particular feature. All
distances are given with respect to Saturn’s geometric center. Compare with Figures
4.5, 5.10, 6.1–6.3; see the text for a more detailed discussion.
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6.2 Estimates of Physical Parameters λgr and φgr

The results we present in this chapter derive from our analysis of REV 7, 8, 10, and 12

ingress and egress observations, which occurred between May 3 and August 2, 2005.

These observations were optimized for the experiment, as described in Chapter 4.

For features A123.2 and A124.1 (Fig. 6.1), we estimate λgr, φgr in approximately

25-km radial steps across the features. Within each step, a series of spectral slices

of the received signal are non-coherently averaged to reduce noise and sharpen the

diffraction lobes, facilitating cleaner Gaussian fits. The procedure is applied to both

the 0.94 cm- and the 3.6 cm-λ measurements from each of the eight ring observations.

We apply the diffraction grating modeling approach described in Chapter 5 to

obtain estimates of the PM features identified in Section 6.1. We present our estimates

of λgr and φgr for ring features A123.2, A124.1, and B2 in Figure 6.5. The figure is

presented in four parts, (a)–(d), and each part contains four panels, A–D. Part (a)

and (b) contain estimates of λgr and φgr, respectively, computed using the diffraction

grating model explained in Section 5.2.2. Parts (c) and (d) depict estimates of λgr

and φgr that we compute using the sinusoidal transmittance screen model described

in Section 5.2.1. In all parts (a)–(d), panels A and B correspond to features A123.2

and A124.1, respectively, and panels C and D correspond to two sub-regions of B2,

which we discuss in more detail below. Each panel of Figure 6.5 contains parameter

estimates we obtained by processing the Ka-band data, shown in blue; blue dots

represent point estimates of either λgr or φgr; a blue shaded region represents the

uncertainty bounds on the estimate, computed from fσ1−, fσ1+, fσ2−, and fσ2+ as

explained in Section 5.4. Similarly, red dots and shaded regions correspond to the

estimates we produced using X-band data. Purple regions mark the overlap of blue

and red regions. The mean values λgr and φgr are shown as dashed lines in the figure.

Estimates of λgr for features A123.2 and A124.1 are presented in Figure 6.5(a)

panels A and B, respectively. Across the ‘flattest’ part of feature A123.2, λgr varies

between 140–160 meters. Near the edge of A123.2, the structural period λgr sharply

increases; this does not appear to be a general characteristic of PM feature boundaries,

cf. panels B–D of Figure 6.5. Averaging the λgr estimates across all of A123.2 yields
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an average structural period λgr = 163+−6 meters, where the bound on the average

is the standard deviation of the fluctuations in the estimates across the feature. For

feature A124.1, λgr varies between 180–250 meters with an average λgr = 217+−8

meters. Possible systemic deviation from the mean estimate is evident in Figure

6.5(a), panel B.

Colored regions in Fig. 6.5 characterize the deviations from the local estimates λgr

and φgr due to Doppler spreading of the observed spectral features around the mean

frequency. As evident, the deviations for A124.1 are larger than for A123.2. Spectral

spreading of the first-order diffraction lobe frequencies seen in A124.1, combined with

a general increase in the background scattered signal level in A124.1 as compared

with A123.2, leads to estimates of fmi with larger standard deviation. For A123.2, the

0.94 cm-λ estimates were better constrained than the 3.6 cm-λ estimates, primarily

because of the weaker background scattered signal at 0.94 cm-λ.

In presenting the estimates of λgr and φgr for region B2, we have removed the large

optical depth feature between 100.0–101.1 × 103 km (see Figure 6.1, panel F), thus

splitting B2 into two sub-regions as shown in Figure 6.5, panels C and D. In general,

estimates of λgr within B2 vary between 100–200 meters, with λgr = 146+−14 meters.

Spectral averages for B2 were computed over approximately 100 km-wide bands to

mitigate noise. The spread in the B2 estimates is better-constrained than the Ring

A results for two reasons. First, we are averaging over 100-km as opposed to 25-km.

Second, because the background scattered signal is much weaker in B2 than in Ring

A, the grating lobes peaks appear more distinct, enhancing the ability to estimate

fmi.

For the relatively optically thick (τ > 2) feature B92.4 and region B4, the mea-

sured grating lobes appear less spectrally confined compared with region B2 and Ring

A features. Because of SNR limitations, we only use 3.6 cm-λ data in our estimates.

For B92.4, we estimate fmi from one spectral average over most of its radial extent

of a 500-km band between 92.1–92.6 × 103 km. The feature-wide average λgr is ap-

proximately 115+20
−15 meters. For B4, we spectrally averaged a 5000-km swath from

110.0–115.0× 103 km, yielding λgr ≈ 250+150
−75 meters.

Results for all regions studied show that the data is best fit with diffraction grating
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Table 6.1: Summary of PM Features in the Rings

Grating Model Sine Screen Model

Feature Radial Location (km) λgr (m) φgr (deg.) λgr (m) φgr (deg.)

A123.2 123.05–123.4× 103 km 163 -0.30 157 -0.06
A124.1 123.6–124.6× 103 km 217 -2.7 202 -2.8
B92.4 92.1–92.6× 103 km 115 -0.43 118 -2.0
B2 99.0–104.5× 103 km 146 -0.48 138 1.5
B4 110.0–117.5× 103 km 250 -1.6 240 -1.9

models that are approximately axisymmetric. The corresponding φgr estimates are

presented in Figure 6.5(b). For features A123.2 and A124.1, φgr varies in the range

-3o ≤ φgr ≤ 3o across the most prominent part of the features (see also Thomson

et al. [2006a]). Estimates of φgr across feature B2 are somewhat chaotic, most likely

due to the large and rapid changes in optical depth evident throughout this region;

see Figure 6.7(c). The average estimates φgr for features A123.2, A124.1, and B2 are

−0.30o, −2.7o, and −0.48o, respectively. Feature-wide estimates of φgr for B92.4 and

B4 are −0.43+0.25
−0.44 degrees and −1.6+0.88

−1.8 degrees, respectively.

As a comparison, we also applied the sinusoidal transmittance screen model de-

scribed in Section 5.2.1 to obtain estimates of PM features in the rings, obtaining very

similar results as compared with the diffraction grating model, as expected. Those re-

sults are presented in Figure 6.5(c)–(d). Estimates of λgr and φgr using both methods

are summarized in Table 6.1.

Our observations of fine-scale, axisymmetric structures in the rings are consistent

with those reported by other Cassini instrument science teams for a subset of the

structures reported here. Images of the rings presented in Fig. 5A and 5F of Porco

et al. [2005] show fine-scale irregular structure, though the pixel resolution of these

images is not sufficient to capture the true nature of the structure. Fig. 5A captures

the middle of B92.4, while Fig. 5F shows a region very close to A123.2. Colwell et al.

[2007] report evidence for 160-m structure in the vicinity of 114.15× 103 km, within

the outer part of region B4. This is comparable to our estimate for this region, though

a direct comparison is difficult to make since we report only an average over a broad,
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5000 km swath between ro = 110× 103 km and ro = 115× 103 km.
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Figure 6.5: Estimates of the structural period λgr and orientation φgr of periodic
microstructure detected in Saturn’s rings. Estimates of λgr and φgr produced using a
diffraction grating model are shown in Figures (a) and (b), respectively; Figures (c)
and (d) show estimates of λgr and φgr produced with a sinusoidal transmittance screen
model. In each of Figures (a)–(d), panels A and B detail features A123.2, A124.1,
while C and D show region B2. Estimates in red are 3.6 cm-λ data, estimates in
blue are 0.94 cm-λ data. The red and blue shaded regions correspond to the spread
in λgr computed based on the 1-σ width of Gaussian functions fitted to the observed
spectral features in the 3.6 and 0.94 cm-λ observations, respectively. Light purple is
shown where the red and blue regions overlap. The dashed lines represent the average
of the estimates, λgr and φgr, across a given region.
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(a) Estimates of the structural period λgr using a diffraction grating model.
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(c) Estimates of the structural period λgr using a sinusoidal amplitude screen model.
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Figure 6.6: Fine-scale optical depth variation τfs within features in Ring A is shown
using REV 7 ingress data. Feature A123.2 estimates are shown in panels A and C;
feature A124.1 estimates are shown in panels B and D. Ka- and X- band data are
shown in blue and red, respectively. Estimates of the normal optical depth τ retrieved
by analysis of the coherent signal are shown as solid lines in the plots. The fine-scale
optical depth variation τfs is indicated by the shaded area.
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6.3 Optical Depth Variation within Features A123.2

and A124.1

In Ring A, PM features exhibit first-order diffraction lobes that are 5–10 dB above the

background scattered signal, as shown in Figures 4.5 and 5.13. Taking advantage of

the high SNR in this region, we applied the theory of Section 5.2.1, eqs. (5.2)–(5.5),

to estimate the fine-scale variation in optical depth τfs that exists within features

A123.2 and A124.1. The results are presented in Figure 6.6, which shows that τ

varies by approximately ±0.3 within the two features. Estimates we calculated using

both Ka-band and X-band data produced consistent results for τfs,min and τfs,max.

6.4 Discussion

The origins of periodic microstructure in the rings is a subject of ongoing debate

and research. At present, a phenomenon known as viscous or pulsation overstability

is the leading dynamical theory to explain the existence of PM in Saturn’s rings

(e.g., Cuzzi et al. [2002]). In this section we discuss the threshold conditions for the

onset of viscous overstability (VO) in the rings, and compare those conditions with

our observations to determine whether the VO threshold criteria explains the limited

regions where PM is detected. We also present and discuss evidence in our data

that may possibly indicate regions of Ring B where PM is superimposed on other

microstructure.

6.4.1 Concurrent Microstructure

Salo et al. [2001] report that axisymmetric periodic structure due to viscous over-

stability co-exists with gravitational wakes in dynamical simulations, as long as the

wakes are not too prominent. This coexistence is not predicted by any known analytic

theory [Schmidt et al., 2009].

Evidence for the existence of gravitational wakes is clearly present in the radio

occultation data in both Rings A and B [Marouf et al., 2006a]. The broad presence
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of gravitational wakes across Rings A and B has been observed in back-scattered and

UBVRI-filtered optical images of the rings taken using the Hubble Space Telescope

(HST) [French et al., 2007], and at radiometric wavelengths using the Very Large

Array (VLA) [Dunn et al., 2007].

There is evidence contained in our scattered signal observations that hints at a

superposition of PM with other microstructure. In panels C–D of Figure 6.4, we

see varying degrees of a double-humped structure in the forward scattering lobe—in

addition to the distinct sidelobes associated with PM—that may indicate the presence

of gravitational wakes, or possibly a packed monolayer of large particles (cf. Figure

5.1). Using the received signal synthesis technique explained in Chapter 5, we have

been unable to produce a synthesized spectrum I(fD) from packed monolayer models

that contains these double-humped features (Figure 5.10). However, we have not

performed a thorough investigation of the packed monolayer model parameter space,

and thus we are unable to rule out monolayers as a possible cause of humps in the

signal spectrum. In panel E the narrow forward-scattering pattern, as compared with

that of all the other panels in the figure, as well as the small region of enhancement in

very near forward-scattering that is visible very close (in frequency) to the coherent

signal may indicate the presence of gravitational wakes in combination with larger

particle sizes (on average). This conjecture is unproved, and we leave the analysis of

this phenomenon as a suggestion for future work.

6.4.2 The Onset of Viscous Overstability

In dynamical studies of dense rings, viscous overstability is accompanied by the for-

mation of axisymmetric structures with small-scale periodicity on the order of one

to few hundreds of meters [Schmit and Tscharnuter , 1999; Salo et al., 2001; Schmidt

et al., 2001; Salo and Schmidt , 2009]. Recent theoretical studies by Latter and Ogilvie

[2008, 2009] investigate the onset of viscous overstability (VO) using dense kinetic gas

theory to model the rings, and propose that nonlinear wavetrains arising naturally

in a viscously overstable disk can explain the presence of axisymmetric periodic mi-

crostructure.
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Planetary rings become overstable if the extent to which viscosity increases with

optical depth exceeds a certain rate (e.g., Schmidt et al. [2009]). Latter and Ogilvie

[2008] conclude that regions of overstability are possible anywhere in the rings, as

long as a threshold optical depth τth is exceeded, although they also conclude that

the filling factor—not τ , explicitly—is the parameter that determines the onset of VO.

In both theoretical and dynamical studies, models of the rings predict a threshold

optical depth on the order of τth ∼ 1.

Other than τth, specific estimates of the physical conditions that produce viscously

overstable regions vary. Schmit and Tscharnuter [1995] say that VO onset occurs

when,

β =
d[ln νσρ]

d[ln σρ]
≥ sufficiently large (6.1)

where ν is the kinematic shear viscosity, and σρ is the surface mass density of the

rings. Salo et al. [2001] interpret the results of Schmit and Tscharnuter [1995] to

yield the following VO onset condition,

β =
dν

dτ

(τ
ν

)
> βcr =

1

9
(6.2)

This is inconsistent with dynamical simulation results generated by Schmidt et al.

[2001], who propose a different VO onset condition,

β =
d[ln ν]

d[ln σρ]
≥ βcr = 1 (6.3)

which is derived from hydrodynamic theory and is consistent with dynamical simu-

lation results [Schmidt et al., 2001]. This appears now to be a generally agreed-upon

threshold condition [Schmidt et al., 2009].

Several forms exist in the literature for computing ν. Colwell et al. [2009] report

that,

ν = k1
c2

Ω

τ

τ 2 + 1
+ 4k2Ωτa

2 (6.4)
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where c is the velocity dispersion of ring particles, Ω is the angular velocity of Kep-

lerian ring particles, a is the radius of ring particles, and k1 ad k2 are “constants of

order unity”. An alternative is offered by Schmit and Tscharnuter [1995],

ν = 0.26
c2

Ω
τ 1.26, 0 ≤ τ ≤ 2 (6.5)

We seek to determine if the VO onset condition βcr is correlated with the presence

of PM in our observations. To this end, we compute ν using both eqs. (6.4) and (6.5).

For Ring A, we obtain values of σρ as a function of the radial position in the rings

by interpolating between mean estimates of σρ reported in Table 1 of Spilker et al.

[2004]. Therein, mean values range between 11.3 ≤ σρ ≤ 65.2 g cm−2. These are

consistent with values used by Salo et al. [2001] to simulate regions of similar optical

depth. Schmit and Tscharnuter [1995, 1999] report values of σρ ≈ 100 g cm−2 in

Ring B.

Schmit and Tscharnuter [1995] use a velocity dispersion value of c = 0.2 cm s−1 in

Ring B. Sremcevic et al. [2008] measure the velocity distribution by analyzing spiral

density wave measurements obtained from stellar occultation experiments, yielding

an estimate of c = 0.2–0.5 cm s−1 in Ring A. We use c = 0.2 cm s−1 in our calculations.

We use eqs. (6.1)–(6.3) to compute the parameter β. In Figure 6.7(a) we show β,

computed using eq. (6.3) and with values of ν obtained using eq. (6.5), superimposed

on a spectrogram of the Ring A PM features A123.2 and A124.1. Results show

that β tends to zero in regions where PM is established, and oscillates between large

positive and negative values (i.e., β > ±10) in the intervening regions. This behavior

is phenomenologically the same as the estimates of β we produce using eqs. (6.1) and

(6.2) as well, although the actual computed values vary.

Our β calculation is inconclusive, due to our poor knowledge of the fine-scale

variation of σρ in the rings. In Figure 6.7(a), the behavior of β is dominated by the

optical depth variation contained in the numerator term ∂[ln ν] of eq. (6.3); cf. eq.

(6.5). In computing the denominator term ∂[ln σρ], σρ is estimated at 1117 radial

locations by interpolating amongst the 40 points reported in Spilker et al. [2004].

This produces a smoothly-varying curve σρ(r), which is undersampled for use in a
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rate-of-change calculation.

We could not compute β in Ring B, since we do not have an estimate of σρ(r)

in that region (recall we have only a single value, σρ ≈ 100 g cm−2). Plots of the

numerator ∂[ln ν] alone over radial regions bounding feature B92.4, and regions B2

and B4, yielded results that are also inconclusive.

In summary, better estimates of σρ(r) are needed in order to compute meaningful

estimates of β.

6.4.3 Optical Depth Characteristics of PM Regions

Although our calculations of the VO onset condition β ≥ βcr are not conclusive, a pre-

liminary assessment of the correlation between measured optical depth characteristics

and the presence of PM yields more promising results. Here, we focus our attention

on Ring A and feature B92.4, since the highly oscillatory nature of the optical depth

in regions B2 and B4, combined with the large observed optical depth, renders any

conclusions drawn from our observations in those regions more uncertain.

Optical depth observations suggest that regions of PM are bounded by sharp

transitions in ring optical depth, combined with the condition that the normal optical

depth τ > 1. In Ring A, relatively sharp transitions in optical depth on the order of

∆τ > 0.3 appear to bound PM feature A123.2 on either side, and feature A124.1 on

the low side (i.e., on the side closest to Saturn); see Figure 6.7(a). On its upper side

(i.e., r ≈124,500 km), feature A124.1 appears to dissipate as the local optical depth

decreases below τ ≈ 1. This is consistent with the predictions of hydrodynamical

theory and with the results of dynamical simulations, as discussed in Section 6.4.2.

In feature B92.4, we see similar behavior—the region containing PM is bounded

by sharp transitions in optical depth, where ∆τ > 0.3 on both sides of the feature.

This is evident in Figure 6.7(b).

The same is true of regions B2 and B4. However, the optical depth in these regions

exceeds the measurement capability of the radio instrument in many places, making

it impossible to determine whether PM features exist continuously across B2 and B4,

or whether the sharp transitions in optical depth—to values of τ that completely
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Figure 6.7: Optical depth and spectrogram plots of periodic microstructure features
observed during the REV 7 ingress occultation. In each plot, the top panel shows the
optical depth at 13, 3.6, and 0.94 cm wavelengths (S-, X, and Ka-band, respectively).
The spectrograms are produced from the X-band (λ = 3.6 cm) received signal. Shown
are (a) features A123.2 and A124.1; (b) feature B92.4; (c) the B2 region; and (d) the
B4 region. In (a), we overlay the computed value of the dynamical parameter β (see
eq. (6.3)) on the spectrogram plot. According to Schmidt et al. [2009], the onset of
viscous overstability occurs when β ≥ 1. Our calculations are not conclusive on this
point. See the text for a more detailed discussion.
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extinguish the radio signals—actually bound regions containing PM.

It is foolish to mistake correlation with causation, and we do not make that mistake

here. Our intent is to make a preliminary report of our observations regarding τ and

the presence of PM. A definitive cause of PM in Saturn’s rings remains to be proved;

that task is beyond the scope of this dissertation.

6.5 Summary

We have uncovered and reported on five distinct instances of periodic microstructure

in Saturn’s Ring A and B. The mean structural period λgr of the PM we observe

varies between 115–250 meters. We determine that all PM regions are approximately

axisymmetric, with mean estimates of the orientation (using both the grating and

sinusoidal screen methods) ranging between −2.8o ≤ φgr ≤ 1.5o. The results of these

investigations are reported formally in Thomson et al. [2007].

Axisymmetric structure with small-scale periodicity on the order of hundreds of

meters is predicted by both hydrodynamic theory, and by dynamical simulations of the

rings. These structures appear in regions of the rings that exhibit a phenomenology

known as viscous overstability (VO), the onset of which is controlled by a parameter

β, and by the condition that τ > 1.

We observe the termination of feature A124.1 at approximately r =124,500 km

when the optical depth τ decreases below τ ≈ 1, which is consistent with theory

[Latter and Ogilvie, 2008; Schmidt et al., 2009]. Elsewhere, we observe the termination

of PM features when relatively large changes in optical depth, ∆τ > 0.3 or so, occur.

Theory and dynamical simulation results predict that regions where the shear

viscosity is increasing much faster than the optical depth mark the onset of viscously

overstable regions. Measures of this are formalized by the parameter β, versions of

which are presented in eqs. (6.1)–(6.3). We are unable to effectively compute β in

the rings due to the poor spatial resolution of our surface mass density σρ estimates

in regions of the rings where PM exists. Thus we cannot conclusively state whether

or not the conditions for VO have been strictly met in the regions where we have

observed PM. We leave this as an open question for future researchers to answer.
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Chapter 7

Summary and Conclusions

In this chapter we summarize the findings of our work, and its relevance in the context

of the pre-Cassini understanding of Saturn’s rings. This is followed by a discussion

of the assumptions and limitations inherent to our model, and the associated impli-

cations for our results. Suggestions for future work are discussed in the final section.

7.1 General Results

The methods that we have developed for estimating the dimensions of microstructure

in Saturn’s rings rely on our ability to apply scalar diffraction theory to the analysis

of forward scattering from ring microstructure. We have proved that the assumptions

of scalar diffraction theory are satisfied by the conditions of the radio occultation

experiments. Specifically, we showed that as long as the ring particles are electrically

large, and as long as we are measuring radio signals in the near-forward scattering

direction, then scalar diffraction theory produces estimates of the scattering pattern

that closely mimic those produced using full electromagnetic theory. Both of these

conditions are met by the experiment. Our detailed analysis is shown in Chapter 3

and also in Thomson and Marouf [2009].

We have shown that axisymmetric periodic microstructure with length scales vary-

ing between 100–250 meters exists in (at least) five distinct regions within Saturn’s

195
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rings. We uncovered two distinct features in Ring A at radial locations 123.05–

123.4×103 km and 123.6–124.6×103 km, which we have named A123.2 and A124.1,

respectively. These features have mean structural periods ranging between 160–220

meters. At a radial location spanning 92.1–92.6×103 km in Ring B, feature B92.4 is

detectible with an estimated mean structural period of 115 meters. PM structure is

seen in two broad regions of Ring B known as B2 and B4, located at 99–104.5×103

km and 110–117.5×103 km, respectively. Here, we estimate mean structural periods

of 146 meters and 250 meters, respectively. These details are summarized in Chapter

6 (see Table 6.1). The results are also reported in Thomson et al. [2007].

Prior to Cassini, the existence of axisymmetric periodic microstructure had been

predicted by dynamicists investigating the properties of planetary rings. Some scien-

tists had applied dynamical theory specifically to Saturn’s Ring B, which was known

(after Voyager) to contain regions of sharply oscillating optical depth. However, no

measurements of ring optical depth existed on length scales that could detect PM

features with wavelengths on the order of 100 meters, which was the value of λgr

predicted by dynamicists.

Our results were among the first direct observations of these features in the rings.

We had the good fortune to be in the right place at the right time—and with the

right instrument—to validate the predictions of the dynamical theory.

7.2 Assumptions and Limitations

Several assumptions were incorporated in the development of our methods. First, we

have assumed in our analysis that features contained in the rings do not change during

the period of our observations, which spanned the dates May 3–August 2, 2005. The

observations we made during this period were used together to produce estimates of

the dimensions of detected periodic microstructure. We believe that this is a reason-

able assumption, since we do not detect any evidence that the either the location of

the features, or the physical dimensions of the features changed significantly during

that three-month period. This is not surprising, since the collisional and gravitational

forces that create these features are not changing on short time scales. It is possible
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that inter-particle collisions could break larger ring particles apart over time, driving

an evolution in the particle size distributions local to a PM feature that could perhaps

change the dimensions of the feature in some measurable way. However, we believe

that those mechanisms take place on time scales that are longer than the 3-month

period of the observations we use in our analysis, although that point is not proved.

In fitting our PM models to the data, we assume a sinusoidal variation in optical

depth. The optical depth variation of PM regions in the rings, caused by VO and

predicted by hydrodynamic theory and dynamical simulations, are not purely sinu-

soidal. Theory predicts a nonlinear periodic structure, and thus diffraction from PM

should produce higher order sidelobes in the received signal. The best-case SNR we

achieved with first-order sidelobe measurements was on the order of 5–10 dBn (the

3.6 cm-λ measurements of feature A123.2); higher order diffraction lobes were not

detected within this 5–10 dB detection limit. From this, we surmise that most of the

diffracted signal power is contained in the first-order lobes, and that our estimates of

structural period and orientation should be correct, even if the precise variation of

optical depth within a period of the structure remains unknown.

Another limitation in our method is caused by the slanting of features in our

spectrograms, as explained in Section 4.1.2. Currently, our sidelobe peak estimation

algorithm, eq. (5.20), fits a Gaussian function to the diffraction sidelobes at each

step in |	ro| without de-slanting the spectrogram to remove the effect of the finite

HGA spot size. Thus, we incur errors in our estimates of the physical dimensions of

PM. Because of its greater slant angle, the X-band data is more vulnerable to this

error than is Ka-band. The errors are greatest in parts of a PM feature where the

physical dimensions are changing—at either end of feature A123.2, for example. In

the middle of a feature, the Doppler frequencies associated with PM are relatively

constant, which lessens the estimation error. Averaging over broader swaths in the

rings also reduces the error, but yields a coarser spatial resolution of our λgr and

φgr estimates. The limitation due to spectral slanting represents the most significant

weakness in our model.
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7.3 Contributions

As we have stated in Section 1.3, the major contributions of this work are as follows:

1. We uncovered five distinct locations in Saturn’s rings A and B exhibiting highly

periodic, fine-scale variation in the ring optical depth. The physical period of

these variations range between 100–250 meters [Thomson et al., 2007].

2. An exhaustive study, comparing the results of a multiple scattering formulation

of Mie theory against the results of scalar diffraction theory. The study, which

examined 2-, 3-, and 10-sphere clusters of particles, shows that diffraction theory

accurately predicts the far-field scattering pattern of particle aggregates, as long

as the region of interest is limited to electrically large particles scattering in the

near-forward direction [Thomson and Marouf , 2009].

3. Derivation of the exact solution for the five-term power-law expression of Al-

lan variance, showing that the exact solution and the well-known approximate

solution converge very quickly; i.e., the approximate form is sufficient and sat-

isfied by most imaginable measurement conditions [Thomson et al., 2005]. An

adaptation of this paper is included as Appendix D.

4. Demonstration of the equivalence of the Radon and Abel Transforms, as they

are applied in atmospheric radio occultation [Thomson and Tyler , 2007]. An

adaptation of this paper is included as Appendix E.

7.4 Future Work

Prior to Cassini, the only radio occultation data available for Saturn’s rings were

gathered during the Voyager 1 flyby of Saturn on November 13, 1980; a single egress

pass lasting approximately 1000 seconds, with a ring opening angle of B ≈ 6o.

Cassini has produced multiple radio occultation datasets, sampled during obser-

vations that span a range of ring opening angles between 0 ≤ B ≤ 23.6, and over

many ring longitudes. With multiple experimental observations—at radio and other



7.4. FUTURE WORK 199

wavelengths—of the same ring system now available, the time evolution of rings can

be studied. The azimuthal asymmetry of Saturnian ring optical depth, thought to be

produced by canted gravitational wakes [Salo, 1992; Salo et al., 2004], can be mea-

sured by comparing occultation tracks at different Saturnian longitudes. Analysis

of the effect of changing observational parameters, such as ring opening angle and

longitude, add a new dimension to data reduction that is certain to result in a more

complete picture of the structure and dynamics of the rings, and how they evolve

over time.

There are many opportunities for improvement, extension, or application of the

methods developed in this dissertation. On the signal processing side, more advanced

peak detection methods could be used to produce better Gaussian (or other) fits to

features of the received signal, improving the input to our estimation codes. Advanced

estimation methods, such as Kalman filtering, could be applied to use different kinds

of data together to produce better estimates of physical microstructure dimensions.

Advanced signal processing methods could also be used to determine definitively the

sensitivity of the measurement to the presence of higher-order diffraction lobes in the

received signal, and to verify with greater confidence that they are not hidden in our

received signal.

Theoretical studies that determine the uniqueness of scattering from homogeneous

rings, monolayers, clumped ring models, gravitational wakes, and periodic microstruc-

ture can be performed by using the amplitude screen method in combination with

statistical methods. The findings of such a study could help guide the use of different

microstructure models in cases where diffraction features contained in the scattered

signal are more subtle, and therefore determining the underlying microstructure is

more challenging.

Collaborative partnerships with ring dynamicists could yield estimates of many

underlying physical properties of the rings that that best-fit regions of the rings con-

taining detected microstructure. In this scenario, dynamical simulations are used to

generate vignettes of the rings that contain microstructure. The underlying physi-

cal properties—such as surface mass density, ring thickness, etc.—are varied in the

optimization that fits synthesized spectral features to those detected in the Cassini
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received signal.

Figure 7.1: This panoramic view of the unlit side of Saturn and the rings is a composite
of 165 images taken by the Cassini wide-angle camera during approximately three
hours on Sept. 15, 2006. Colors in the mosaic were created by digitally assembling
ultraviolet, infrared and clear filter images, then adjusting the composite to resemble
natural color. Cassini was over 1 billion km from Earth, approximately 2.2 million
km from Saturn, and 15 degrees above the ring plane when the images in this mosaic
were taken. The resolution of Saturn in the image is about 260 km/pixel. Image is
PIA08329, NASA Photojournal website.

�



Appendix A

Radio Occultation Studies of

Planetary Rings

The following sections contain a brief theoretical overview of ring radio occultation

analysis. In Section A.1, we describe how the coherent component of the received

signal is processed to obtain optical depth profiles for both circular and elliptical ring

systems. We describe factors that limit profile resolution and measurement sensitivity.

Section A.2 explains how we estimate particle size distributions by analyzing the

scattered signal, and by analyzing optical depth measurements taken at different

radio frequencies. We include a brief discussion of methods used to obtain estimates

of the surface mass density of the rings.

A.1 Optical Depth Profiles

The average effect of scattering from ring particles along the very-near-forward path

from the transmitter to receiver (well within the first several Fresnel zones) causes an

amplitude and phase modulation of the coherent component of the received signal.

Extinction (i.e., attenuation) of the transmitted signal by interceding ring material

is characterized in terms of the optical depth of the rings.

Optical depth is a measure of a medium’s opacity to the propagation of radiation

of a certain wavelength. If the rings are illuminated with an incident electromagnetic

201
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wave of intensity Io, and the intensity just behind the rings is I, the oblique optical

depth τq is defined as,

τq = − ln (I/Io) (1.1)

For the classical many particles thick (MPT) ring model, the normal optical depth τ

is related to the oblique optical depth by,

τ = µoτq (1.2)

where µo = sinB is the sine of the ring opening angle B, which is the angle that

the wave vector 	k of the incident light makes with the ring plane; or alternatively,

the angle between the plane of the rings and the plane defined by the transmitter,

receiver, and the geometric center of the planet under study; see Figure 5.8. The

wavelength dependence of optical depth, though not explicitly stated here, is an

important feature of the rings that can be exploited to determine ring particle sizes,

as discussed in more depth in Section A.2.

Mathematically, the rings can be modeled as a thin screen of complex transmit-

tance. During a radio occultation experiment, the screen is illuminated on one side

by a coherent plane wave. The amplitude and phase of the wave at any point imme-

diately behind the screen is the product of the incident wave’s complex amplitude,

and the complex screen transmittance at that point. Following Huygens-Fresnel the-

ory, spherical waves propagate away from secondary point sources formed behind the

screen, generating a diffraction pattern in all of space behind the screen. The re-

ceiver ‘flys’ through this diffraction pattern, sampling the magnitude and phase of

the diffracted field. These one-dimensional (i.e., along the receiver trajectory) sam-

ples are used to reconstruct the assumed 1-D transmittance profile of the rings, and

from that the optical depth.

The diffracted received signal T̂ is related to the complex transmittance of the

rings T by a modified form of the Huygens-Fresnel integral [Marouf et al., 1986],

T̂ (ro, φo) =
sinB

iλ

∫ 2π

0

∫ ∞

0

T (r, φ)
eiψ(ro,φo;r,φ)

|	Rc − 	r | ρ drdφ (A.1)
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where 	r is the vector from the planet’s center to the point (r, φ) in the rings. The

estimate T̂ contains energy scattered from everywhere the rings are illuminated; in the

theoretical limit, from everywhere in the r-φ plane, as evidenced by the integration

limits in eq. (A.1). The point where the line of sight between the transmitter and

receiver intersects the ring plane is given by 	ro → (ro, φo); 	Rc is the vector from the

center of the planet under study to the spacecraft; and λ is the wavelength of the

transmitted signal. The phase function ψ is given by,

ψ(ro, φo; r, φ) = kD
[√

1 + 2ξ + η − (1 + ξ)
]

(A.2)

where

ξ = cosB(ro cosφo − r cosφ) (A.3)

η =
[
r2 + r2o − 2rro cos(φ− φo)

]
/D2 (A.4)

and D =
∣∣∣	Rc − 	ro

∣∣∣, k = 2π
λ
.

A.1.1 Circular Rings

If we assume that the rings are locally circular, as is likely the case for Saturn, then

azimuthal symmetry T (r, φ) = T (r) yields a simplified form of eq. (A.1),

T̂ (ro) =
sinB

iλ

∫ ∞

0

rT (r)

∫ 2π

0

eiψ(ro,φo;r,φ)

|	Rc − 	r | dφdr (A.5)

Further simplification of eq. (A.5) is possible by evaluating the φ-integral using the

stationary phase method [Marouf et al., 1986]. If there exists a value of φ = φs that

solves dψ
dφ

= ∂ψ
∂φ

= 0 that is valid for any value of r, and which also satisfies the

criterion that |	Rc − 	rs | ≈ D, where 	rs → (r, φs), then eq. (A.5) reduces to,

T̂ (ro) =
1− i

2F

∫ ∞

−∞
T (r)eiψ(ro,φo;r,φs)dr (A.6)

where the Fresnel scale F is defined as,
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F =

√
λD

2

(
1− cos2 B sin2 φo

sin2 B

)
(A.7)

In general, an exact solution to eq. (A.6) does not exist. Several approximate

solutions were developed by Marouf et al. [1986], and have been used to process both

Voyager and Cassini radio occultation data. Marouf obtained a quadratic approxi-

mation of ψ by expanding ψ in powers of the parameter (ro−r)/D and retaining only

terms up to and including the second order in the expansion (see the section titled

Quadratic Approximation of ψ in Appendix A of Marouf et al. [1986]), thus reducing

eq. (A.6) to,

T̂ (ro) =
1− i

2F

∫ ∞

−∞
T (r)ei

π
2 [

ro−r
F ]

2

dr (A.8)

This equation has an exact mathematical inverse,

T (r) =
1 + i

2F

∫ ∞

−∞
T̂ (ro)e

−iπ
2 [

r−ro
F ]

2

dro (A.9)

which, under ideal conditions, may be used to determine the complex transmittance

of the rings T (r) from the diffraction-limited observations T̂ (ro). A fourth-order

polynomial approximation to ψ (see the section titled Polynomial Approximation of

ψ in Appendix A of Marouf et al. [1986]) yields,

T (r) =
1 + i

2F

∫ ∞

−∞
T̂ (ro)e

−i[C2(r−ro)2+C3(r−ro)3+C4(r−ro)4]dro (A.10)

Equations (A.9) and (A.10) have the form of Fresnel transforms, which are con-

volution integrals of the form,

T (r) = T̂ (r) ∗ h(r) =
∫ ∞

−∞
T̂ (ro)h(r − ro) dro (A.11)

In fact, eqs. (A.8) and (A.9) define a Fresnel transform pair. One can think of the

application of eqs. (A.9) or (A.10) as analogous to applying a matched filter, h(r),

to the measurement T̂ (r). The filter compensates for the effect of the Huygens-

Fresnel wavelets that propagate from all locations on the rings and sum together, via
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superposition, to form T̂ (r). An estimate of the true complex transmittance T (r)

is recovered, limited by the quadratic or quartic phase approximations introduced

above, as well as other practical limitations mentioned below.

A.1.2 Elliptical Rings

A technique for analyzing elliptical rings was developed while processing radio occul-

tation data collected during Voyager 2’s encounter with Uranus [Gresh et al., 1989;

Gresh, 1990]. For elliptical rings, the locus of points in r and φ defining an individual

ringlet adhere to the following,

r =
a(1− e2)

1 + e cos ν
(A.12)

where a is the semi-major axis of the ellipse, e is the eccentricity, ν = (φ− ω) is the

mean anomaly (see Vallado [2001], for example), and ω is the angle of periapse. The

complex transmittance may be written as,

T (r, φ) = T (a) =

∫ ∞

−∞
δ(a− a′)T (a′)da′ (A.13)

where the transmittance is now parameterized for each elliptical ringlet by its semi-

major axis a. The limits of the integration here serve as a mathematical convenience

[Gresh et al., 1989; Gresh, 1990]. Substitution of eq. (A.13) into eq. (A.1) yields,

T̂ (ro, φo) =
sinB

iλ

∫ ∞

−∞
T (a′)

[∫ 2π

0

∫ ∞

0

δ(a− a′)
eiψ(ro,φo;r,φ)

|	Rc − 	r | r drdφ

]
da′ (A.14)

Since the δ-function effectively defines a path of integration in r-φ space, the contents

of the square brackets in eq. (A.14) can be replaced by a contour integral,

T̂ (ro, φo) =
sinB

iλ

∫ ∞

−∞
T (a′)

∫
c

eiψ(ro,φo;r,φ)

|	Rc − 	r |
dl

|∇a′(r, φ)|da
′ (A.15)

where dl is a unit element along the path C defined by the ellipse satisfying eq. (A.13)

for a = a′, and ∇a′ is the two-dimensional gradient of a′ with respect to r and φ.
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Eq. (A.15) is the elliptical analogue to eq. (A.5) for circular rings. Following the

same methodology, the stationary phase method is applied to simplify eq. (A.15) by

searching along the contour C for the ordered pair (rs, φs) that satisfies the condition,

dψ

dφ

∣∣∣∣
φs

=

(
∂ψ

∂φ
+

∂ψ

∂r

∂r

∂φ

)
φs

= 0 (A.16)

Note that unlike the case of circular ringlets, r now varies with φ during the search for

the stationary phase point. This criterion applies to stationary phase analysis for both

circular and elliptical ring cases, though it is simpler for circular rings since ∂r
∂φ

= 0.

If the effect of ellipticity on d2ψ
dφ2 at φ = φs is neglected, stationary phase analysis of

the contour integral results in a simplification of eq. (A.15) to the following,

T̂ (ro) ≈ 1− i

2F

∫ ∞

−∞
T (r)eiψ(ro,φo;rs,φs)dr (A.17)

Equation (A.17)—for elliptical rings—and eq. (A.6)—for circular rings—differ

only in their corresponding stationary phase points. The form of these two equa-

tions is identical, and thus identical methods (via eqs. (A.9) or (A.10), for example)

can be used to retrieve the ring transmittance profile for either geometric case, subject

to the correct use of rs and φs.

A.1.3 Resolution Limitations in the Reconstruction Process

Several Fresnel scales F would define the resolution limit of the optical depth profiles

obtained from the diffraction-limited observations T̂ (ro) prior to diffraction correction

[Rosen, 1989]. Once eq. (A.9) or (A.10) is applied to remove the effects of diffraction

from the data, the theoretical resolution limit approaches the size of the receiving

antenna as SNR→ ∞ and ∆ro → 0, where ∆ro is the sample spacing. Since this

resolution requires an infinite number of samples, each with well-determined phase

generated by perfect oscillators (i.e. zero phase noise) at the transmitter and receiver,

it is a very difficult limit to achieve indeed.

In practice, the reconstruction process is limited to resolutions on the order of a

few hundred meters for Saturn’ rings and several tens of meters for Uranus’ rings. For
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Saturn, profile resolutions of 400 meters are more typical best-case reconstructions.

Limiting factors include the non-constancy of F , the extent of the data used in pro-

cessing, the phase stability of the on-board reference UltraStable Oscillator (USO),

amplitude variation due to antenna pointing errors, and the stochastic variation of

the signal amplitude and phase [Marouf et al., 1986; Rosen, 1989].

A new symbol, X̂, is introduced to represent the true received signal in the pres-

ence of noise. Thermal noise introduced primarily by the ground station antenna

constitutes an additive noise component (X̂ = T̂ + n̂), while multiplicative phase

noise (X̂ = T̂ eiφ̂n) is introduced by phase instabilities in both the transmitter and

receiver reference oscillators. Including these non-idealities, eq. (A.10) is re-written

to more accurately reflect the actual reconstruction process,

X(r) =
1 + i

2F

∫ r+W/2

r−W/2

X̂(ro)w(r − ro)e
−i[C2(r−ro)2+C3(r−ro)3+C4(r−ro)4]dro (A.18)

where the finite extent of the data used to reconstruct X(r) is treated by applying

a window function w with width W about the point r. Eq. (A.18) has been used to

reconstruct optical depth profiles of Saturnian and Uranian rings using Voyager radio

occultation data, and of Saturn’s rings using Cassini data [Marouf , 2006–2010].

Using the quadratic phase approximation, eq. (A.8), the observed ring transmit-

tance can be viewed as the convolution of the actual ring transmittance T (r) with a

filter of phase,

φQ(ro) =
π

2

(ro
F

)2
(A.19)

The effect of finite filter width W is quantified for the quadratic phase case by calcu-

lating the derivative of the phase to get the spatial frequency [Rosen, 1989],

fQ � 1

2π

dφQ(ro)

dro
=

ro
2F 2

cycles/meter (A.20)

The bandwidth of an unweighted (w = 1) reconstruction filter of width W is therefore

fQ,BW = W
2F 2 , and the resolution of this filter is the reciprocal of filter bandwidth,
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∆RW � 1

fQ,BW

=
2F 2

W
meters (A.21)

Marouf et al. [1986] derive eq. (A.21) using a different approach.

The spatial sampling frequency is defined as the reciprocal of the radial sample

spacing, fs = ∆r−1
o . In order to avoid aliasing in the reconstruction of the complex

transmittance, the filter bandwidth may not exceed the complex sampling frequency,

or fQ,BW ≤ fs. Thus a maximum is imposed upon the width of the reconstruction

filter,

Wmax =
2F 2

∆ro
(A.22)

When W = Wmax, the best possible resolution of ∆RWmin = ∆ro is achieved.

In practice, a window function other than w = 1 is applied to the filter in order to

reduce reconstruction artifacts induced by the effect of unwanted sidelobes, which

result from abrupt amplitude transitions at the edges of the window function. Strong

sidelobes in the filter function erode the dynamic range of the reconstruction process,

inhibiting the resolution of regions where transmittance changes abruptly, such as at

ring gap edges. Rosen studied the effect of windowing on profile reconstruction, and

discusses the associated issues in Rosen [1985] and Rosen [1989]. He determined that

the application of a Kaiser-Bessel window (with weighting parameter α = 2.5) offers a

reasonable tradeoff between resolution and sensitivity, improving the dynamic range

of the reconstruction process from 13dB to 57dB, while reducing the resolution to,

∆R ≈ 1.65∆RW (A.23)

Limitations on ∆R are also introduced by the variation and uncertainty of F

within the filter window W , and by the quadratic and quartic (4th-order polynomial)

phase approximations to ψ used in the reconstruction integrals of eq. (A.9) and eq.

(A.10), respectively. The interested reader is refered to Marouf et al. [1986] for a

detailed review of these effects.

Historically, eq. (A.18) with its quartic polynomial phase approximation was used
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to reconstruct ring transmittance profiles for Voyager 1’s observations of Saturn [Tyler

et al., 1983; Marouf et al., 1986; Rosen, 1989], and Voyager 2’s observations of Uranus

[Gresh et al., 1989; Gresh, 1990; Marouf , 2006–2010]. Theoretically, the polynomial

coefficients Cn are properly computed from derivatives of ψ during the Taylor series

analysis. In practice, this proved prohibitively difficult due to ψ’s functional depen-

dence on φs. Instead, the coefficients Cn in eq. (A.18) were determined using a fitting

algorithm, and the integral computed using numerical methods [Marouf et al., 1986].

The resolution of the reconstructed noisy profiles X(r) depend on the width W and

shape of the window. Longer window lengths W lead to higher resolution profiles, but

an accurate determination of φc is required over the full width of the window. Thus

the largest single limitation in the profile resolution is the accurate determination of

the phase φc over many seconds, thus enabling the use of a large data window W .

A.1.4 Profiling Ring Optical Depth

Since I/Io = |X|2, eq. (1.1) can be re-written as,

τq = − ln
(
X2

R +X2
I

)
(A.24)

where XR and XI are the real and imaginary components of the retrieved ring trans-

mittance in the presence of noise, respectively (X = XR + iXI). The phase shift

introduced in the coherent carrier wave is denoted φc,

φc = arctan

(
XI

XR

)
(A.25)

Uncertainty inherent in the noisy measurementX(r) of the true ring transmittance

T (r) sets limits on the confidence with which one can report the optical depth τ(r).

Marouf et al. [1986] defined confidence intervals for τ in terms of a threshold optical

depth τth,

τth = −µo ln (CPN/2) (A.26)

where PN is the post-reconstruction noise power, and C is a random variable that
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has χ2 statistics and two degrees of freedom. For the Kaiser-Bessel window discussed

in Section A.1.3, the post-reconstruction noise power is given by,

PN = 0.32P̂N
W

Wmax

= 0.32P̂N
∆ro
∆RW

(A.27)

which depends on the total noise power P̂N at a fixed sampling rate,

P̂N =
1

SNRo

ṙo
∆ro

(A.28)

SNRo is the free-space signal-to-noise ratio of the observation, integrated over a one-

second interval, and ṙo is the time rate-of-change of the ring plane intercept, also

known as the ring piercing point (RPP).

The confidence region is defined by Marouf et al. [1986] as a circle of radius√
CPN/2 in the complex transmittance plane, centered on the true complex ring

transmittance T = TR + iTI ,

(XR − TR)
2 + (XI − TI)

2 = CPN/2 (A.29)

The probability P (χ2 < C) that the noisy recovered complex ring transmittance X is

within the confidence region defines the confidence interval of τ , expressed in terms

of upper and lower bounding values. Marouf et al. [1986] report that for 50%, 70%,

and 90% confidence, C = 1.39, 2.41, and 4.61, respectively. In general, the confidence

interval of τ is given by [Marouf et al., 1986],

τL = τth − 2µo ln
[
e−(τ−τth)/(2µo) + 1

]
0 ≤ τ ≤ ∞ (A.30)

τU =

⎧⎨⎩τth − 2µo ln
[
e−(τ−τth)/(2µo) − 1

]
0 ≤ τ ≤ τth

∞ τ ≥ τth
(A.31)

where τL and τU are the lower and upper confidence bounds on τ . Note that the

threshold optical depth τth discussed in this section and defined in eq. (A.26) is

different from the τth discussed in Section 6.4.2.
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A.2 Particle Size Distributions

Radio occultation techniques provide estimates of the number density of ring parti-

cles of a given physical size contained in a ring system under study using two distinct

methods. First, large particles—particles ranging from a radius amin that is roughly

the size of the spacecraft antenna (Cassini’s high gain parabolic antenna has a diam-

eter of four meters), and up to radius amax that is limited by the spectral resolution

and corresponding SNR of the experiment—are sensed by analyzing the aggregate

forward scattering lobe of the received signal. Second, particles ranging in diameter

from decimeters down to the order of the shortest wavelength used in the experi-

ment are sensed by a comparison of the optical depth of the rings at two (or more)

frequencies [Marouf et al., 1982, 1983; Zebker et al., 1985].

Generally, the number density n(a) of particles in the rings are modeled as a

power-law distribution of the particle radius a,

n(a) =
(ao
a

)q
n(ao) (A.32)

The parameter ao is chosen for convenience in fitting eq. (A.32) to the data, and

the power law index q controls the exponential rate at which the number density of

particles decreases as a function of their radius. The term n(a) is also referred to as

the particle size distribution. The general definition of n(a) is,

n(a) =
dN(a)

da
particles/m2 per meter (A.33)

where N(a) is the cumulative distribution of all particles of radius ≤ a present in

a column of unit cross-sectional area perpendicular to the ring plane. The product

n(a)da is the number of particles of radii between a and a+ da existing in that same

column.

We now discuss both methods used to obtain particle size distributions: Analysis

of the near-forward scattered signal (suprameter-sized particles), and analysis of the

differential optical depth (submeter-sized particles).
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A.2.1 Suprameter-Sized Particles

The incoherent component of the received radio occultation signal contains informa-

tion about the size of the particles that forward-scatter the transmitted signal to the

receiver. Following Marouf [1975], Marouf et al. [1982], and Marouf et al. [1983], the

power spectral density of the scattered signal of a given angular frequency ω, and at

a given time t, can be expressed as,

S(ω, t) =

∫
spot

σd(β,	r)
G2(β, t)

|	Rc − 	r|2 δ(ω − Ω(	r)) d	r (A.34)

where σd(β,	r) is the differential scattering cross section of the rings per unit surface

area, β is the scattering angle relative to the Earth-spacecraft line of sight, G is the

spacecraft’s antenna gain pattern, and δ(ω − Ω(	r)) is a delta function defining the

locus of points scattering at a particular frequency ω = Ω(	r). Eq. (A.34) is formulated

for an uplink geometry, although the equation holds for a downlink configuration as

well due to reciprocity. The integration in eq. (A.34) is performed over the antenna

beam pattern, as it is projected on the rings.

If the contours of constant Doppler Ω are aligned with ringlet contours (be they

elliptical or circular), then the power scattered by a particular ringlet is given by,

Ps(t) �
∫ ω2(t)

ω1(t)

S(ω, t) (A.35)

=

∫
ringlet

σd(β)
G2(β, t)

|	Rc − 	r|2 δ(ω − Ω(	r)) d	r + ε (A.36)

where the error term ε is introduced primarily by misalignments between ringlet

features and the Doppler contours. The two frequencies ω1(t) and ω2(t) correspond

to the frequencies at the inner and outer edge of a ringlet feature. Eq. (A.36) can be

solved [Marouf et al., 1983; Zebker et al., 1983] to obtain the scattering cross section

σd(β), given the received signal time sequence and its corresponding geometry.

The shape of the scattering cross section σd(β) is a composite result of scattering

from the entire ensemble of particles that interact with the EM wave as it propagates
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through the rings. Factors such as the thickness of the rings, and the density and

size distribution of particles within the rings influence the number of particles (in

a statistical sense) that the EM wave interacts with, thus influencing the shape of

σd(β). Multiple scattering events within the rings leads to a convolutional broadening

of the scattering lobe of σd(β).

The Hankel transform of the single-scattering cross section of the rings, σ̃d1(ρ), is

related to the Hankel transform of the differential scattering cross section σ̃d(ρ). For

the case of a many particles thick (MPT) model of the rings, the equation relating

the two is [Marouf et al., 1983],

σ̃d1(ρ) = µoe
−τq ln

(
1 + µ−1

o σ̃d(ρ)e
τq
)

(A.37)

Zebker et al. [1985] derived a similar expression, corresponding to a ring model com-

posed of a finite number Tr of thin layers (FNL). The layers are defined such that

each particle in a given layer acts independently of any other particles in that layer,

σ̃d1(ρ) = µoe
−τq/Tr

([
1 + µ−1

o σ̃d(ρ)e
τq
]1/Tr − 1

)
(A.38)

The action of eqs. (A.37) and (A.38) may be interpreted as a nonlinear filter-

ing operation in the Hankel transform domain, effectively compensating for the lobe

broadening introduced by multiple scattering and observed in σ̃d(ρ), thus recovering

the single scattering term σ̃d1(ρ).

Marouf et al. [1983] showed that the equivalent single-scattering cross section

σd1(β) derives from,

eτqσd1(β) =
k2

4

∫ amax

amin

a4
[
2J1(kaβ)

kaβ

]2
n(a) da (A.39)

where a is the particle radius, k = 2π
λ

is the propagation constant of the transmitted

EM wave of wavelength λ, and J1 is the first-order Bessel function of the first kind.

The integration limits amin ≤ a ≤ amax define the range of particle sizes that can

be sensed by processing the incoherent, forward-scattered signal. These limits are

controlled by the SNR of the received signal, and the size of the spacecraft antenna
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constrains amin as discussed above. Marouf et al. [1983] also show that the product

eτq σ̃d1(ρ) can be related directly to particle size distribution models of ring systems,

eτq σ̃d1(ρ) = π

∫ amax

amin

a2C

(
λρ

a

)
n(a) da (A.40)

where the function C(z) = (2/π)[cos−1(z) − z(1 − z2)1/2] for 0 ≤ z ≤ 1; C(z) = 0

elsewhere, arises from taking the Hankel transform of eq. (A.39) since,

H
{[

2J1(kaβ)

kaβ

]2}
=

4π

(ka)2
C

(
λρ

a

)
(A.41)

The script letter H denotes the Hankel transform operation. Combining eq. (A.40)

with eqs. (A.37) and (A.38) yields two equations, corresponding to the MPT model

of the rings,

µo ln
(
1 + µ−1

o σ̃d(ρ)e
τq
)
= π

∫ amax

amin

a2C

(
λρ

a

)
n(a) da (A.42)

and to the FNL model of the rings,

µoTre
−τq/Tr

([
1 + µ−1

o σ̃d(ρ)e
τq
]1/Tr − 1

)
= π

∫ amax

amin

a2C

(
λρ

a

)
n(a) da (A.43)

The left-hand side of eqs. (A.42) and (A.43) are completely determined from the

data and the choice of ring thickness model (MPT or FNL). The right-hand side of

eqs. (A.42) and (A.43) are essentially determined by the number density n(a), which

may be recovered by inverting the integral equations above numerically. Alternatively,

the parameters ao and q in the power-law model of n(a), eq.(A.32), are adjusted in

an iterative process until the left-hand side of eqs. (A.42) and/or (A.43) matches the

right-hand side, thus fitting a power-law model of the particle size distribution in the

rings to the measured data.
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A.2.2 Submeter-Sized Particles

The optical depth of the rings, as measured at a given wavelength, is related to the

particle size distribution n(a) and the extinction efficiency Qext(a, λ) of the rings,

τ(λ) =

∫ ∞

0

πa2Qext(a, λ)n(a)da (A.44)

for the MPT ring model [Marouf et al., 1982, 1983], and,

τ(λ) = 2µoN

[∫ ∞

0

πa2

2µoN
Qext(a, λ)n(a)da− 1

]
(A.45)

for the FNL model of the rings [Zebker et al., 1985]. For the purpose of calculation, it

is common (e.g., Marouf et al. [1983]) to model the ring particles as dielectric spheres

with an index of refraction m̃ = m′ − im′′, and to compute Qext using Mie theory (a

brief introduction to Mie theory is presented in Chapter 3). The extinction efficiency

varies with a
λ
from Qext(

a
λ
� 1) � 1 to Qext(

a
λ
� 1) ≈ 2 (the so-called extinction

paradox). For Voyager at Saturn, the parameter amin was assumed to fall well within

the Rayleigh range of the shortest radio wavelength.

If we have optical depth measurements at two or more frequencies, then we can

take advantage of the dependence ofQext on
a
λ
to obtain an estimate of the populations

of different particle sizes. Taking the difference,

∆τ12 = τ(λ1)− τ(λ2) (A.46)

For a measured ∆τ , an assumed amin well within the Rayleigh range, and given

values of amax and q, one may re-arrange eq. (A.46) to solve for n(ao). Furthermore,

computing ∆τ
τ(λ1)

from the measured data yields q for a given amax [Marouf et al., 1983].

In principle, the differential phase,

∆φ12 = φ(λ1)−
(
λ2

λ1

)
φ(λ2) (A.47)

can be used as an additional means to estimate the number density. Generally, ∆φ is

positive for a � λ; ∆φ → 0 for a � λ; and ∆φ < 0 suggests the presence of charged
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particles [Gresh et al., 1989; Gresh, 1990].

For an assumed power law distribution, differential measurements of optical depth

place a lower bound on q, an upper bound amin, and constraints on the relationship

between q and amin between these bounds. Measures of differential optical depth

produced from Cassini data at three frequencies (S-, X-, and Ka-bands) were used

to make the image shown in Figure 2.3, which is color-coded to show the range of

particle sizes populating the rings.

A.2.3 Surface Mass Density and Ring Thickness

The local surface mass density of the rings can be estimated by measuring the wave-

length λw of spiral bending waves and density waves present in the ring system.

Bending and density waves are introduced in Section 2.1.2.

In the asymptotic far-field of a bending wave—i.e., far enough from the resonance

location for the wavelength of the disturbance to be relatively constant—the inviscid

(undamped) linear theory gives the following [de Pater and Lissauer , 2001; Shu,

1984],

λw =
4π2Gσρ

m2
θ[ωf − n(r)]− µ2(r)

(A.48)

For density waves, we have a similar expression,

λw =
4π2Gσρ

m2
θ[ωf − n(r)]− κ2(r)

(A.49)

where G= 6.67428 × 10−11 m3kg−1s−2 is the universal gravitational constant, σρ is

the surface mass density of the rings, ωf is the forcing frequency of the wave, mθ

is the azimuthal symmetry number, µ(r) is the natural vertical oscillation frequency

of a ring particle, κ(r) is the natural epicyclic (radial) oscillation frequency of a ring

particle, and n(r) is the orbital angular frequency of a local ring particle. The quantity

µ(r) (κ(r)) is the frequency at which the Saturnian moon responsible for the local

resonance is tugging ring particles in a direction perpendicular to (radially within) the

ring plane, to excite the bending (density) wave. In reality, these waves are damped,
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since collisions between particles remove energy from the wave. The damping rate

can be used to estimate the thickness of the rings [de Pater and Lissauer , 2001].

If we have measurements of λw and we know which moon is responsible for the

wave, then eqs. (A.48) and (A.49) can be rearranged and solved to yield estimates

of σρ (e.g., Gresh et al. [1986]; Rosen [1989]; Rosen et al. [1991a, b]). Surface mass

density estimates can also be obtained from the number density estimates described

in Section A.2, subject to estimates or assumptions of the bulk density of the ring

particles [Marouf et al., 1983; Zebker et al., 1985; Rosen, 1989].

A.3 Summary

Radio occultation can provide rich information about the structure and physical prop-

erties of planetary rings. The information includes:

1. Reconstructed ring optical depth profiles. Theoretically, the diffraction-corrected

profiles can approach resolutions of approximately a few hundred meters for

Saturn’s rings, and few tens of meters for Uranus’ rings.

2. Identification of bending and density waves in the rings, and of their associated

forcing resonances.

3. Characterization of time-evolution and azimuthal asymmetry effects by process-

ing data from multiple occultations.

4. Supra-meter particle size distribution estimates derived from processing the

scattered signal.

5. Sub-meter particle size distribution estimates derived from differential optical

depth measurements.

6. Surface mass densities estimated from waves, and from number density (particle

size distribution) estimates.

7. Statistical characterization of fine-scale (length scales of tens to hundreds of

meters) microstructure, such a gravitational wakes and periodic microstructure,

by analysis of diffracted signals.
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�



Appendix B

Cassini 2005 Radio Occultation

Timelines

In this appendix we present the predicted timeline of the Cassini REV 7, 8, 10, and 12

experiments [Marouf , 2006–2010]. We also show plots of the local elevation angle of

Cassini at the Goldstone (G), Canberra (C), and Madrid (M) DSN complexes during

REVs 7, 8, 10, and 12. In the plots, the term BOT stands for beginning of track,

which is the time that a DSN complex begins to track Cassini. Similarly, EOT stands

for end of track. The radio occultation observation time is shown in light blue at the

top of the elevation angle plots, for reference.

219
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Appendix C

Historically Important Articles on

Saturn’s Rings

The translated text contained in this appendix is courtesy of Dr. John O’Connor,

Mathematical Institute, University of St. Andrews (Scotland). I am very grateful to

him for making this material available to me.

C.1 Christiaan Huygens’ article on Saturn’s Ring

In 1659, Christiaan Huygens published an article on Saturn’s Ring in Systema Sat-

urnium. The text below is based on a translation from the original latin, completed

by J. H. Walden in 1928.

Excerpt from Systema Saturnium

When Galileo made use of the telescope, noblest invention of nation of Belgium, for

observation of the heavenly bodies, and, before all other men, disclosed to mortals

those very celebrated phenomena of the planets, the most wonderful of his discoveries,

it would seem, were those relating to the star of Saturn. For all the other phenomena,

though justly calling for our wonder and admiration, were still not of a kind to

make it necessary to question strongly the causes of their existence. But Saturn’s

231
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changing forms showed a new and strange device of nature, the principle of which

neither Galileo himself nor, in all the time since, any of the astronomers (with their

permission be it said) has succeeded in divining. Galileo had first seen this star

shining, not as a single disk, but in what seemed to be a triple form, as two smaller

stars in close proximity to, and on opposite sides of, a larger star, in line with its

centre. And seeing this form continue for nearly three years with no change, he had

become firmly convinced that, just as Jupiter was provided with four satellites, so

Saturn was provided with two, which, however, had no motion, and so would always

cling to the sides of Saturn in the same position. But when Saturn came forth alone,

quite destitute of his former retinue of satellites, Galileo was obliged to change his

opinion. Astonished by what he saw, he tried to reach by conjecture the cause of the

appearance, and made a few predictions as to the time when the former phase was

due to recur. But, it was shown by the event, these predictions were not then fulfilled

according to his expectation, nor, it appeared, was Saturn satisfied with having only

two aspects. For a succession of other strange and marvellous forms was revealed,

which I find first described by Josephus Blancanus and Franciscus Fontana - forms

of such unusual appearance that they were considered by many as a mockery of the

eyes, shapes adhering to the lenses rather than existing in the heavens; but after the

same forms had been seen by more, it became clear that it was no false evidence that

revealed them.

And so I was also drawn by an urgent longing to behold these wonders of the

heaven. But I had only the ordinary form of telescope, which measured five or six

feet in length. I, therefore, set myself to work with all the earnestness and seriousness

I could command to learn the art by which glasses are fashioned for these uses,

and I did not regret having put my own hand to the task. After overcoming great

difficulties (for this art has in reserve more difficulties than it seems to bear on its

face), I at last succeeded in making the lenses which have provided me with the

material for writing this account. For upon immediately directing my telescope at

Saturn, I found that things there had quite a different appearance from that which

they had previously been thought by most men to have. For it appeared that the two

neighbouring appendages clinging to Saturn were by no means two planets, but rather
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something different, while, distinct from these, there was a single planet, at a greater

distance from Saturn and revolving around him in sixteen days; and the existence of

this planet had been unknown through all the centuries up to that time. Following

the wise advice of a distinguished man, one equally conspicuous for his ability and

his character, Johannes Capellanus, I three years ago informed astronomers of my

new observation. For while I was sojourning at Paris, I told Capellanus, as well as

Gassendi and others, of the satellite of Saturn which I had seen, and Capellanus gave

me many reasons for believing that I ought not to withhold an announcement that

would be so pleasing to all men until I should finish the work on the complete System

of Saturn, which I was then engaged upon. And so, on the 5th day of March [later in

the article Huygens says it was the twenty-fifth of March, so one of these is a misprint],

I in the year 1656, I put forth the result of my observation on the Moon of Saturn (for

so I have quite properly named the, new star), and, together with it, an hypothesis

containing an explanation of the other phenomena of Saturn; in the case of the latter,

however, I confused the order of the letters in which it was written, that it might

witness to the fact simply that I was not unacquainted with it at that time, and also

that others might be induced in this way to publish the results of their speculations

and might not complain that the glory of the discovery had been snatched from them.

Afterwards, however, in response to the request of the same distinguished man, I also

solved this literary riddle, and set before him in outline the entire hypothesis; whence

perhaps my theory about the phases of Saturn has already found its way to the ears

of others. But, in any case, the wonderful and unusual creation of nature shown in

connection with this planet demands a fuller treatment, and I ought not to expect

that either my account of the phenomena or the assumptions I make for explaining

them will gain general support unless it is seen that the latter, rest on the principles of

reasoning, and the former is backed by the evidence of observation. Therefore, I now

propose to fulfil both of these requirements. And, in the first place, I will determine

as accurately as possible from my observations the facts which have to do with the

motion and the period of revolution of the planet’s satellite, and I will construct

tables of its motion. Then I will assign the various phases of Saturn himself to their

separate causes, that thus we may have a ready means of determining beforehand
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what the future phases will be ...

That neither you [Hodierna] nor those distinguished men whose opinions I have

previously reviewed have reached the truth of the matter, is not at all to be wondered

at or to be imputed to you as a fault, since for the most part false phenomena were

reported to you as true, and other phenomena which were observed in connection

with Saturn, free from the deception of sight, did not come to your notice at all. If

you had been so fortunate as to observe these phenomena with me, it is reasonable to

suppose that you would have drawn from them the same conclusions with regard to

the real form of the planet that I have. Now I was greatly helped in this matter not

only by those more genuine phases, but also by the motion of Saturn’s Moon, which

I observed from the beginning; indeed it was the revolution of this Moon around

Saturn that first caused to dawn upon me the hope of constructing the hypothesis.

The nature of this hypothesis I will proceed to explain in what follows.

When, then, I had discovered that the new planet revolved around Saturn in a

period of sixteen days, I thought that without any doubt Saturn rotated on his own

axis in even less time. For even before this I had always believed that the other

primary planets were like our Earth in this respect that each rotated on its own axis,

and so the entire surface rejoiced in the light of the Sun, a part at a time; and,

more than this, I believe that in general the arrangement with the large bodies of the

world was such that those around which smaller bodies revolved, having themselves

a central position, had also a shorter period of rotation. Thus the Sun, its spots

declare, rotates on its own axis in about twenty-six days; but around the Sun the

various planets, among which the Earth is also to be reckoned, complete their courses

in times varying as their distances. Again, this Earth rotates in daily course, and

around the Earth the Moon circles with monthly motion. Around the planet Jupiter

four smaller planets, that is to say Moons, revolve, subject to this same law, under

which the velocities increase as the distances diminish. Whence, indeed, we must

conclude perhaps that Jupiter rotates in a shorter time than 24 hours, since his

nearest Moon requires less than two days. Now having long since learned all these

facts, I concluded even then that Saturn must have a similar motion. But it was my

observation in regard to his satellite that gave me the information about the velocity
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of his motion of rotation. The fact that the satellite completes its orbit in sixteen

days leads to the conclusion that Saturn, being in the centre of the satellite’s orbit,

rotates in much less time. Furthermore, the following conclusion seemed reasonable:

that all the celestial matter that lies between Saturn and his satellite is subject to

the same motion, in this way that the nearer it is to Saturn, the nearer it approaches

Saturn’s velocity. Whence, finally, the following resulted: the appendages also, or

arms, of Saturn are either joined and attached to the globular body at its middle and

go around with it, or, if they are separated by a certain distance, still revolve at a

rate not much inferior to that of Saturn.

Furthermore, while I was considering these facts in connection with the motion of

the arms, these arms appeared under the aspect which was exhibited at the time of

my previous observations of the year 1655. The body of Saturn at its middle was quite

round, while the arms extended on either side along the same straight line, as though

the planet were pierced through the middle by a kind of axis; although, as indicated

in the first figure of all, these arms, as seen through the twelve-foot telescope that

I was then using, appeared a little thicker and brighter toward the ends on either

side of the planet than they did where they joined the middle of the sphere. When,

therefore, the planet continued day after day to present this same aspect, I came to

understand that, inasmuch as the circuit of Saturn and the adhering bodies was so

short, this could happen under no other condition than that the globe of Saturn were

assumed to be surrounded equally on all sides by another body, and that thus a kind

of ring encircled it about the middle; for so, with whatever velocity it revolved, it

would always present the same aspect to us, if, of course, its axis were perpendicular

to the plane of the ring.

And so was established the reason for the phase which continued through that

period. Therefore, after that, I began to consider whether the other phases that

Saturn was said to have could be accounted for by the same ring. I was not long

in coming to a conclusion on this point through noting in frequent observations the

obliquity of Saturn’s arms to the ecliptic. For when I had discovered that the straight

line along which on. either side these arms projected did not follow the line of the

ecliptic, but cut it at an angle of more than 20 degrees, I concluded that in the same
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way the plane of the ring which I had imagined was inclined at about the same angle

to the plane of the ecliptic - with a permanent and unchanging inclination, be it

understood, as is known to be the case on this Earth of ours with the plane of the

equator. From this inclination it necessarily followed that in its different aspects the

same ring showed to us at one time a rather broad ellipse, at another time a narrower

ellipse, and sometimes even a straight line. As regards the handle-like formations, I

understand that this phenomenon was due to the fact that the ring was not attached

to the globe of Saturn, but was separated from it the same distance all around. These

facts, accordingly, being thus brought into line, and the above-mentioned inclination

of the ring being also assumed, all the wonderful appearance of Saturn, I found,

could be referred to this source, as will presently be shown. And this is that very

hypothesis which, in the year 1656, on the 25th day of March [earlier Huygens says

the fifth of March, so one is a misprint], I put forth in confused letters, together with

my observation on the Saturnian Moon.

Now the letters were: a a a a a a a c c c c c d e e e e e g h i i i i i i i I I l l m

m n n n n n n n n n o o o o p p q r r s t t t t t u u u u u, which, being restored

to their proper places, signify the following: Annulo cingitur, tenui, plano, nusquam

cobaerente, ad eclipticam inclinato. [“It is encircled by a ring, thin, plane, nowhere

attached, inclined to the ecliptic.”] That the width of the space intervening between

the ring and the globe of Saturn is equal to the width of the ring itself or even exceeds

it, is shown by the figure of Saturn as observed by others. and then more definitely

by its figure as seen by myself; that, likewise, the ratio of the greatest diameter of the

ring to the diameter of Saturn is about 9 to 4. Thus the true appearance is such as I

have indicated in the appended scheme.

I believe that I should digress here to meet the objection of those who will find

it exceedingly strange and possibly unreasonable that I should assign to one of the

celestial bodies a figure the like of which has up to this time not been found in any one

of them, although, on the other hand, it has been believed as certain, and considered

as established by natural law, that the spherical form is the only one adapted to

them; and that I should place this solid and permanent ring (for such I consider it)

about Saturn, without attaching it by any joints or ties, although imagining that
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it preserves a uniform distance on every side and revolves in company with Saturn

at a very high rate of speed. These men should consider that I do not construct

this hypothesis from pure invention and out of my own fancy, as the astronomers do

their epicycles, which nowhere appear in the heavens, but that I perceive this ring

very plainly with the eyes; with which, obviously, we discern the figures of all other

things. And there is, after all, no reason why it should not be possible for some

heavenly body to exist having this form, which, if not spherical, is at least round, and

is quite as well adapted to the possession of circumcentral motion as the spherical

form itself. For it certainly is less surprising that such a body should have assigned

to it a shape of this kind than that it should have some absurd and quite unbeautiful

shape. Furthermore, since, owing to the great similarity and relationship that exists

between Saturn and our Earth, it seems possible to conclude quite conclusively that

the former, like the latter, is situated in the middle of its own vortex, and that its

centre has a natural tendency to reach toward all that is considered to have weight

there, it must also result that the ring in question, pressing with all its parts and

with equal force toward the centre, comes by this very fact to a permanent position

in such a way that it is equally distant on all sides from that centre. Exactly so some

people have imagined that, if it were possible to construct a continuous arch all the

way around the Earth, it would sustain itself without any support. Therefore, let

them not consider it absurd if a similar thing has happened of itself in the case of

Saturn; let them rather regard with awe the power and majesty of Nature, which, by

repeatedly bringing to light new specimens of its works, admonishes us that yet more

remain.

C.2 Cassini’s Paper on his Eponymous Division

In 1730, a paper written by Giovanni Domenico Cassini was posthumously published

as The Discovery of the Division in Saturn’s Ring in Volume X of the Mémoires de

I’Académie Royale des Sciences. The paper has been translated from its original

French.
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The Discovery of the Division in Saturn’s Ring

After the discoveries which have been made at different times concerning the globe

of Saturn, its ring and its satellites, in part by Huygens who discovered one of the

satellites which revolves around Saturn in 16 days less 47 minutes, and in part by

Cassini who discovered two others of which we will give the history at an early date,

it seemed that there was nothing more to discover concerning the planet; however,

the latest observations that Cassini has made concerning the body of Saturn and its

ring, show that in the Heavens as well as on the Earth, something new to observe

always appears.

After the emergence of Saturn from the rays of the Sun as a morning star in the

year 1675, the globe of the planet appeared with a dark band, similar to those of

Jupiter, extending the length of the ring from East to West, as it is nearly always

shown by the 34-foot telescope, and the breadth of the ring was divided by a dark line

into two equal parts, of which the interior and nearer one to the globe was very bright,

and the exterior part slightly dark. There was about the same difference between the

colours of these two parts that there is between dull silver and burnished silver, which

had never before been observed but which has since been seen in the same telescope,

more clearly at twilight and in moonlight than on a darker night.

This appearance gave an impression of a double ring, of which the inferior ring,

being larger and darker, had superposed upon it another that is narrower and brighter,

and reminds one that in the year 1671, when the extensions of Saturn were on the

verge of disappearing they contracted beforehand, perhaps because the outer part of

the ring, which was single and dark, disappeared before the inner part, which was

double and brighter.

In the same year, 1671, the shorter diameter of the ring was still less than the

diameter of the globe which extended outside the ring on the North and South sides,

and this phase lasted until the immersion of Saturn in the rays of the Sun in the year

1676. But after its emersion, which took place last summer, the shorter diameter

of the ring exceeded that of the globe. There is an observation by Hevelius in the

English Journal, which corresponds to the first of these two phases; but as he has
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noted neither the band of Saturn, nor the distinction which can he seen in the ring,

one has reason to judge that the telescopes which he uses are much inferior to those

of the Royal Observatory.
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Appendix D

Limitations on the Use of the

Power-Law form of Sy(f ) to

Compute Allan Variance

An edited version of this appendix was published in the Institute of Electrical and

Electronics Engineers (IEEE) journal Transactions on Ultrasonics, Ferroelectrics, and

Frequency Control [Thomson et al., 2005]. Note that in this appendix only, we abbre-

viate the term ’phase modulation’ as PM. In every other section of this dissertation,

PM denotes periodic microstructure.

D.1 Abstract

An exact solution to the well-known integral transform that relates the spectral den-

sity of the instantaneous fractional frequency deviation, Sy(f), to the Allan variance,

σ2
y(τ), is presented for the case of a power-law representation of Sy(f). The approx-

imate solution to this integral transform, which is found throughout the literature,

is also derived. A graphical convergence analysis is presented, showing the range

of applicability of the approximate solution. The results reinforce the utility of the

approximate solution, which converges quickly to the exact solution under virtually

all reasonable measurement conditions.
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D.2 Introduction

The preferred measures of frequency and phase stability are Allan deviation σy(τ)

(in the time domain) and the one-sided power spectral density measures Sφ(f) and

Sy(f) (in the frequency domain) [Barnes et al., 1971; Rutman, 1978]. In frequency

standards, frequency and phase deviations from the oscillator center frequency νo

are commonly attributed to five separate noise processes, each exhibiting unique

frequency-dependent behavior as depicted in Figure D.1. Accordingly, Sφ(f) and

Sy(f) are often modeled as power-law series of these five processes. The time and

frequency domain measures of stability are related, and Allan variance—the square of

Allan deviation—can be computed directly from either Sφ(f) or Sy(f) via an integral

transform. This integral transform is well-known and documented extensively in the

literature [Barnes et al., 1971; Rutman, 1978; Sullivan et al., 1990; IEEE , 1999].

A model of Allan variance σ2
y(τ), given in terms of the integral transform of a

power-law Sy(f), is also well-known and widely documented, as is an approximate

solution to this integral transform [Barnes et al., 1971; Rutman, 1978; Sullivan et al.,

1990; IEEE , 1999]. However an exact solution of the integral transform for the

power-law model has not been published to date. Also absent from the literature is a

quantitative analysis that characterizes the range of applicability of the approximate

power-law solution.

In order to better understand the origin and applicability of the approximate

solution, we have solved the integral transform exactly—term-by-term, for each noise

process in the power-law expression of Sy(f). The approximate solution has also been

derived, and a graphical convergence analysis between the approximate and exact

solutions of the power-law model has been performed in terms of the sampling rate of

the measurement system. Our analysis quantifies the differences between the exact

and approximate expression of σ2
y(τ) in terms of a power-law Sy(f), and reinforces

the wide-ranging utility of the approximate solution.
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D.3 Exact and Approximate Solutions for σ2
y(τ )

The Allan variance σ2
y(τ) in terms of a power-law form of Sy(f) is expressed as follows

[Barnes et al., 1971],

σ2
y(τ) =

2

(πτ)2

+2∑
n=−2

[
hn

∫ fm

0

sin4(πτf)

f 2−n
df

]
(D.1)

where τ is the integration time, hn is a constant associated with the nth term in the

power-law model [Barnes et al., 1971; Rutman, 1978; Sullivan et al., 1990], and fm is

taken to be the one-sided bandwidth of the frequency source. We proceed with a term-

by-term evaluation of (D.1) to determine both the exact and approximate solutions

for each term1, followed by a graphical presentation of the convergence behavior.

D.3.1 Evaluation of the f−2-term

2h−2

(πτ)2

∫ fm

0

sin4(πτf)

f 4
df = − h−2

12(πτ)2f 3
m

(
3 + 1F2

[
−1.5

−0.5, 0.5
;−4(πτfm)

2

]

−4 1F2

[
−1.5

−0.5, 0.5
;−(πτfm)

2

])

ROC ∈ {�m{τ} = 0, fm > 0}

(D.2)

where ROC specifies the region of convergence of the integral, and

pFq

[
a1, a2, ..., ap

b1, b2, ..., bq
; z

]
(D.3)

is the generalized hypergeometric function, which is in turn given by a hypergeometric

series,

1Throughout this paper, the authors make use of the terms “exact” and “approximate” to describe
solutions of (D.1). Since (D.1) is itself an approximation based upon a bandlimited power-law model
of Sy(f), the reader should bear in mind that an exact solution of (D.1) is still only an approximation
of σ2

y(τ).
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pFq

[
a1, a2, ..., ap

b1, b2, ..., bq
; z

]
=

∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

zk

k!
(D.4)

where (a)k is the Pochhammer symbol or rising factorial. If we assume that fm is

large, then we can approximate (D.2) by taking the limit as fm → ∞, yielding the

following,

lim
fm→∞

[
2h−2

(πτ)2

∫ fm

0

sin4(πτf)

f 4
df

]
=

2

3
h−2π

2τ

ROC ∈ {�m{τ} = 0}

(D.5)

The result given in (D.5) is consistent with corresponding approximate formulations

given in the literature (eg. Barnes et al. [1971]).

Figure D.2 shows the correspondence between the exact solution (D.2) and the

approximate solution (D.5) for the f−2 component of the solution of the integral in

(D.1). The ratio of the exact solution to the approximate solution is plotted as a

function of τ/τo, the ratio of the integration time τ to the sampling rate τo. For this

analysis, we have assumed a Nyquist sampling rate, or τo = (2fm)
−1. The dashed lines

in Figure D.2 indicate the region within which the ratio of the exact to approximate

solution is within 1%.

D.3.2 Evaluation of the f−1-term

2h−1

(πτ)2

∫ fm

0

sin4(πτf)

f 3
df = 2h−1 (Ci[2πτ fm]− Ci[4πτ fm]

+ ln(2)− sin3(πτfm)
4πτfm cos(πτfm) + sin(πτfm)

2(πτfm)2

)

ROC ∈ {everywhere}

(D.6)

where Ci[z] is the cosine integral function. Adopting the same approach as in Section
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D.3.1, we take the limit of (D.6) as fm → ∞, yielding the following result,

lim
fm→∞

[
2h−1

(πτ)2

∫ fm

0

sin4(πτf)

f 3
df

]
= 2h−1 ln(2)

ROC ∈ {�m{τ} = 0}

(D.7)

Figure D.3 shows the ratio of the exact solution (D.6) to the approximate solution

(D.7) of the f−1 term in (D.1) as a function of τ/τo.

D.3.3 Evaluation of the f 0-term

2h0

(πτ)2

∫ fm

0

sin4(πτf)

f 2
df = − h0

4fm(πτ)2

(
3 + 1F2

[
−0.5

0.5, 0.5
;−4(πτfm)

2

]

−4 1F2

[
−0.5

0.5, 0.5
;−(πτfm)

2

])

ROC ∈ {�m{τ} = 0, fm > 0}

(D.8)

Again, taking the limit as fm → ∞ simplifies the expression,

lim
fm→∞

[
2h0

(πτ)2

∫ fm

0

sin4(πτf)

f 2
df

]
=

h0

2τ

ROC ∈ {�m{τ} = 0}

(D.9)

Figure D.4 shows the ratio of the exact solution (D.8) to the approximate solution

(D.9) of the f 0 term in (D.1) as a function of τ/τo.
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D.3.4 Evaluation of the f 1-term

2h1

(πτ)2

∫ fm

0

sin4(πτf)

f
df =

h1

4(πτ)2
[(3γ + 2 ln(2) + 3 ln(π))

+3 ln(τfm)− 4Ci[2πτ fm] + Ci[4πτ fm]]

ROC ∈ {�m{τ} = 0, fm > 0}

(D.10)

where γ is the Euler-Mascheroni constant. Evaluation of the constant terms on the

right-hand side of (D.10) affords the following simplification,

2h1

(πτ)2

∫ fm

0

sin4(πτf)

f
df

=
h1

(2πτ)2
[6.55213 + 3 ln(τfm)− 4Ci[2πτ fm] + Ci[4πτ fm]]

ROC ∈ {�m{τ} = 0, fm > 0}

(D.11)

This differs somewhat from the form of the f 1-term most commonly found in the

literature [Barnes et al., 1971; Rutman, 1978; Sullivan et al., 1990],

f 1 term as given in [1]-[3] =
h1

(2πτ)2
[1.038 + 3 ln(2πτfm)] (D.12)

A comparison of (D.11) and (D.12) shows that the two converge to within 1% for

τ/τo > 11.5. Figure D.5 shows the ratio of the exact solution as presented in (D.11)

to the solution (D.12) of the f 1 term as given in the literature [Barnes et al., 1971;

Rutman, 1978; Sullivan et al., 1990].



D.4. RESULTS AND CONCLUSIONS 247

D.3.5 Evaluation of the f 2-term

2h2

(πτ)2

∫ fm

0

sin4(πτf)df =
h2

16(πτ)3
[12πτfm − 8 sin(2πτfm) + sin(4πτfm)]

ROC ∈ {everywhere}

(D.13)

The first term in (D.13) is proportional to fmτ
−2, while the second and third terms

are of fixed envelope, attenuated proportionally to τ−3. Evaluating the integration of

(D.13) in the limit as fm → ∞ yields the approximate solution,

lim
fm→∞

[
2h2

(πτ)2

∫ fm

0

sin4(πτf)df

]
=

3h2fm
(2πτ)2

(D.14)

which is consistent with what is published in the literature. Figure D.6 shows the

ratio of the exact solution (D.13) to the approximate solution (D.14) of the f 2 term

in (D.1) as a function of τ/τo.

D.4 Results and Conclusions

It is possible to approximate the frequency response Sy(f) of a frequency source with

a 5-term power-law model of Sy(f) that is bandlimited to fm. The Allan variance

of such a modeled frequency source is then given by (D.1). We have shown that the

approximate solution of (D.1), which is commonly found in the literature [Barnes

et al., 1971; Rutman, 1978; Sullivan et al., 1990; IEEE , 1999], results from allowing

fm → ∞ in the limit of the integration.2 The exact and approximate solutions of

each term in (D.1), as well as the conditions under which these two solutions converge

to within 1% (for the case of a Nyquist-sampled frequency source) are summarized

in Table D.1. The convergence behavior is shown graphically in Figures D.2–D.6.

The results show that the white FM (f 0) and white PM (f 2) noise terms in the

power-law representation of Sy(f) impose the strictest limitations on the minimum

ratio τ/τo required for convergence, while the random walk FM (f−2) noise term

imposes the least stringent convergence conditions. The worst-case integration time

2Except in the case of the f1 term, as discussed in Section D.3.4.
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τ must be at least 45 times the sampling rate τo to ensure 1% convergence of all

exact and approximate terms in the solution of (D.1). Typically, Allan variance

is not computed (or specified) for integration times shorter than τ = 0.1 seconds.

Taking that as a “worst case” example, a measurement bandwidth of 450 Hz would

be required for convergence—a bandwidth easily achieved by modern test equipment,

and which is likely much less than the sampling bandwidth that would be chosen in

order to satisfy the Nyquist criterion for the frequency source model (bandlimited by

fm, sampled at 2fm in our analysis).

While the results show that convergence is not guaranteed for all values of τ , they

nevertheless show fast convergence behavior under reasonable measurement condi-

tions. These results serve to underscore the utility of the approximate solution of

(D.1), as presented in the literature [Barnes et al., 1971; Rutman, 1978; Sullivan

et al., 1990].
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Figure D.1: Characteristic physical noise processes in frequency standards. Frequency

dependency is shown with respect to Sφ(f) (Note: Sy(f) =
(

f
νo

)2
Sφ(f)).
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Figure D.2: Ratio of the exact solution (D.2) to the approximate solution (D.5) of
the f−2 term in (D.1) as a function of the ratio of integration time to sampling rate,
τ/τo. Convergence to within 1% is achieved for τ/τo > 1.3.
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Figure D.3: Ratio of the exact solution (D.6) to the approximate solution (D.7) of
the f−1 term in (D.1) as a function of the ratio of integration time to sampling rate,
τ/τo. Convergence to within 1% is achieved for τ/τo > 3.
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Figure D.4: Ratio of the exact solution (D.8) to the approximate solution (D.9) of
the f 0 or DC-term in (D.1) as a function of the ratio of integration time to sampling
rate, τ/τo. Convergence to within 1% is achieved for τ/τo > 31.
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Figure D.5: Ratio of the exact solution (D.11) of the f 1 term in (D.1) to the solution
(D.12) commonly given in the literature [1]-[3]. The ratio is given as a function of
the ratio of integration time to sampling rate, τ/τo. Convergence to within 1% is
achieved for τ/τo > 11.5.
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Figure D.6: Ratio of the exact solution (D.13) to the approximate solution (D.14) of
the f 2 term in (D.1) as a function of the ratio of integration time to sampling rate,
τ/τo. Convergence to within 1% is achieved for τ/τo > 45.



Appendix E

Radon and Abel Transform

Equivalence in Atmospheric Radio

Occultation

An edited version of this appendix was published in the American Geophysical Union

(AGU) journal Radio Science [Thomson and Tyler , 2007].

E.1 Abstract

The Radon Transform plays a central role in the image reconstruction technique

known as computed tomography, used commonly in radio astronomy and medical

imaging. Although usually formulated as a projection of a spatial density function

along straight ray paths, the Radon Transform kernel also permits curved path pro-

jections, providing the path can be defined. Reformulation of the Radon Transform

as a path integral for the case of a radio ray refracting in a spherically symmet-

ric atmosphere leads directly to the Abel Transform formulation commonly used in

atmospheric radio occultation.
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E.2 Introduction

Radio occultation is a technique which, among other applications, is employed to

probe planetary atmospheres in search of their physical properties. Considering, for

convenience, only the neutral atmosphere, radio waves propagating within the gas are

refracted and simultaneously retarded in phase. The degree of bending that occurs

depends on the gas refractivity, which is controlled by gas composition and density,

and reflects the atmospheric structure that the wave encounters along the propagation

path. The refractivity profile ν(r) of the atmosphere under study is retrieved by

processing of radio occultation data, subject to the assumption of local conformance

to spherical symmetry. For a known or assumed composition, plus the additional

strong assumption of hydrostatic equilibrium, atmospheric pressure and temperature

profiles local to the experimental ray path are deduced from the refractivity data. The

refractivity profile normally is retrieved from pre-processed occultation data through

the use of the Abel Transform. The details of this procedure may be found in Fjeldbo

et al. [1971]; Eshleman [1973]; Tyler [1987]; Karayel and Hinson [1997]; Ahmad and

Tyler [1998].

The Radon Transform (RT), broadly employed in computed tomography (CT), is

a more general reduction tool than the Abel Transform (AT) since spherical symmetry

is not required. The RT is formulated for straight ray paths. In radio occultation,

however, the functional argument to the AT is modified to accommodate curved ray

paths. When the RT is re-formulated for curved ray paths in a spherically symmetric

system, it reduces to the form of the AT familiar in radio occultation studies.

E.3 Atmospheric Radio Occultation

The geometry of an atmospheric radio occultation measurement is shown in Figure

E.1. Radio waves from the transmitter, T, which is moving in the frame of the planet

with a velocity
⇀
v T(t), propagate along an initial path defined by ûT. The waves arrive

along unit vector −ûR at the receiver, R, moving with velocity
⇀
v R(t). Refraction by

the neutral atmosphere perturbs the path of radio rays, bending them towards the
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center of the refractivity field, as shown in Figure E.1. In actual atmospheres, both

positive and negative refractivity can occur, corresponding to the neutral atmospheric

gas and the ionosphere, respectively, but the same analysis applies to both. In the

ionosphere, the refractivity gradient can be either positive or negative.

The basic observable of radio occultation is the perturbation of signal frequency

associated with the Doppler shift that occurs as a result of the refractive bending of a

ray linking a moving transmitter and receiver as the ray passes through an intervening

atmosphere. Doppler shift fD(t) is induced in the received signal by the combination

of the relative motion of T and R with respect to the center of the planet O, and by

the bending of the rays in the planet’s atmosphere [Ahmad and Tyler , 1999]. For the

classical result,

fD =
fT
c
[	vT · ûT + 	vR · ûR − (	vT · û− 	vR · û)] (E.1)

where the time dependence of the quantities in (E.1) is omitted to simplify the no-

tation. The geometric solution of this system is unique under the assumption of

spherical symmetry, which constrains the ray to lie in the plane defined by the po-

sitions of the transmitter, receiver, and the center of refractive symmetry, which is

notionally the center of the planet. With this assumption and knowledge of the po-

sitions and velocities of the transmitter and receiver, observation of fD is sufficient

to determine the vectors ûT and ûR uniquely, and the total bending angle α and ray

asymptote closest approach distance a, or impact parameter, found.

An occultation experiment proceeds by measuring the ray parameters α and a

at many points throughout the planet or moon’s atmosphere—from the top of the

sensible atmosphere, where the first bending of the ray is detected, to the point where

the ray path intersects the surface of the occulting planet/moon, or is otherwise

undetectable due to atmospheric refraction, absorption, or defocusing. A sequence of

such measurements yields a profile of the bending angle α(a) spanning the measurable

limits of the atmosphere. Temperature and pressure profiles are derived from the

measurement of α(a) according to (e.g. Fjeldbo et al. [1971]),

T (r) = T (ro)
ν(ro)

ν(r)
+

m̄

kν(r)

∫ r′=ro

r′=r

g(r′)ν(r′)dr′ (E.2)
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p(r) = knt(r)T (r) (E.3)

where T (r) is temperature, p(r) is atmospheric pressure, m̄ is the mean molecular

mass, k is Boltzmann’s constant, g(r) is the acceleration due to gravity, nt(r) is

the total number density of neutral atoms and molecules, ν(r) is the refractivity of

the atmosphere, and ro is the closest approach of the ray to the planet’s surface, as

shown in Figures E.1 and E.2. The refractivity is related to the refractive index µ(r)

according to ν(r) = µ(r) − 1. The refractive index is retrieved directly from the

measured bending angle α via Abelian transformation, as discussed below.

E.4 Applicability of the Abel Transform to the Ra-

dio Occultation Technique

Fjeldbo et al. [1971] showed that determination of the refractive index profile µ(r)

from α(a) is a special case of Abelian inversion. Consider the geometry of a radio

ray, refracting as it propagates, as depicted in Figure E.2, where the view is in the

plane of the ray. The center of the coordinate system is located at the center of the

planet under study, which is taken to be the center of symmetry.

Section E.8 shows that the relationship of the bending angle α as a function of

the ray asymptote a is given by,

α(a) = 2

∫ π
2

0

dψ = −2a

∫ ∞

r=ro

dµ

µdr

dr√
(µr)2 − a2

(E.4)

The integral equation (E.4) is equivalent to a standard form of the Abel Transform

[Bracewell , 2000],

f(a) = 2

∫ ∞

a

x g(x)√
x2 − a2

dx (E.5)

Defining x = µr, and replacing the function g(x) with

g(x) = −a

x

dµ

µdx
(E.6)
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yields an alternative form of (E.4),

α(a) = −2a

∫ ∞

x=a

dµ

µdx

dx√
x2 − a2

(E.7)

Fjeldbo et al. [1971] showed that since d ln(µ)
dx

= dµ
µdx

, (E.7) can be solved by Abel inver-

sion to find a solution for the refractive index as a function of the impact parameter,

ln(µ(a)) =
1

π

∫ ∞

a

α(x)√
x2 − a2

dx (E.8)

E.5 The Radon Transform

The Radon Transform can be thought of as a generalization of the Abel Transform,

in instances where the requirement of spherical symmetry is removed. The Radon

Transform, f(R, θ), is defined as the set of all straight line integrals through a spatial

function h(x, y) at some perpendicular distance R from the origin of the coordinate

system [Bracewell , 2000],

f(R, θ) =

∫ ∞

−∞

∫ ∞

−∞
h(x, y)δ (R− x · cos θ − y · sin θ) dxdy (E.9)

The argument of the Dirac delta function in the integrand defines a line as illustrated

in Figure E.3. The distance from the origin to the intercept P is calculated using the

Pythagorean theorem,

R2 = x2 + y2 (E.10)

The variables x and y can also be expressed in terms of sines and cosines,

cos(θ) =
x

R
sin(θ) =

y

R
(E.11)

With a slight modification:

x · cos(θ) = x2

R
y · sin(θ) = y2

R
(E.12)
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we can substitute (E.12) into (E.10) to obtain the equation of the line,

R = x · cos(θ) + y · sin(θ) (E.13)

A zero of the argument to δ(·) in (E.9) occurs when a point (x, y) lies on the line,

R− x · cos(θ)− y · sin(θ) = 0 (E.14)

For fixed values of θ and R (θ1 and R1, say), then the integral f(R1, θ1) represents

the projection of the density function h(x, y) along the line L = Lθ1 . The equation

of the scan line Lθ1 is sometimes expressed in a more standard y = mx+ b form,

f(m, b) =

∫ ∞

−∞

∫ ∞

−∞
h(x, y)δ (y − (mx+ b)) dxdy (E.15)

Note that in Figure E.3, the line L has been drawn with a negative slope (i.e. m →
−m).

E.6 Radon and Abel Transform Equivalence for

Radio Occultation

In the RT, (E.9) and (E.15) above, the argument of the Dirac delta defines a straight

line. Physically, a straight line scan is a mathematical approximation to a thin pencil

beam in the CT technique used in imaging, and used by Bracewell to image radio

galaxies [Bracewell , 1956].

In medical CT, individual pencil beams are arranged to form a fan of beams that

sweeps around a patient. Detectors are placed opposite the fan such that each pencil

beam is aligned with an individual detector. The function h(x, y) is a measure of the

spatial absorption and/or scattering of the pencil beam energy at the frequency of

transmission. Images are reconstructed by applying an inverse RT—most commonly

one of several approximations to this inverse—to recover h(x, y) from the data, yield-

ing f(R, θ).
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For the case of ray propagation through a refractive atmosphere, there is some

deviation between the actual ray path and a straight line path. In this instance, the

argument of the Dirac delta must be reformulated to define the curved path of a ray

refracting as it propagates in the atmosphere.

Let us modify the Radon Transform (E.9)—using imprecise language for the

moment—to allow for a curved path,

f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
h(x, y)δ(p(x, y))dxdy (E.16)

where the argument p of the Dirac delta defines a curved path in (x, y). The variable

R is a ray path-related parameter that remains undefined for the moment. Re-

formulation in polar coordinates gives,

f(R, θ) =

∫ ∞

0

∫ 2π

0

h(r, θ)δ(p(r, θ))rdθdr (E.17)

Assuming that the field h(r, θ) is spherically symmetric, h(r, θ) → h(r). With this,

f(R) =

∫ ∞

0

∫ 2π

0

h(r)δ(p(r, θ)) rdθdr (E.18)

The projection operation performed by the Dirac delta in the integral (E.18) is equiv-

alent to integration along the path defined by p(r, θ). Thus, in instances for which a

differential ray path element dl can be defined, we can re-write (E.18) as follows,

f(R) =

∫ ∞

0

∫ 2π

0

h(r)δ(p(r, θ)) rdθdr =

∫
path

h(r)dl (E.19)

where dl is a small element along the path.

An element dl along a curved radio ray path in a refracting atmosphere can be

calculated by analysis similar to that of Section E.4. Referring to Figure E.2, the

path element dl for the case of a spherically-symmetric refracting medium is given

by,

dl2 = (rdθ)2 + (dr)2 (E.20)
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Substituting dθ as previously defined in (E.34) into (E.20) and simplifying yields,

dl =
µr√

(µr)2 − a2
dr (E.21)

Thus, the θ-dependance of the ray path is removed from the path integral. Incorpo-

rating the assumption of a symmetric ray path and the result (E.21) allows (E.19) to

be re-written,

f(R) = 2

∫ ∞

ro

h(r)
µr√

(µr)2 − a2
dr (E.22)

In Section E.4, the specific form of g(x) defined in (E.6), combined with the

substitution x = µr transforms the general form of the AT, (E.5), into specific forms

used in atmospheric radio occultation, (E.4), (E.7). Using (E.6) in (E.22) by applying

the substitution h(r) = µ−1g(r), and simplifying yields the following,

f(a) = −2a

∫ ∞

ro

dµ

µdr

dr√
(µr)2 − a2

(E.23)

A comparison of Figures E.1 and E.3 shows that the variable R, which has been

defined to this point as a ray-path parameter, is actually the impact parameter. Ac-

cordingly, R has been replaced by a in (E.23). Equation (E.23), found by exchanging

the Dirac delta kernel of the Radon Transform for the path integral of a refracting

ray, is identical to the Abel integral (E.4) which resulted from first principles analysis

of refraction in a spherically symmetric medium, where f(a) = α(a).

E.7 Discussion and Conclusion

Ahmad and Tyler [1998] identified the substitution x = µr as a transformation be-

tween straight and curved ray paths, for the purpose of computing α, µ, and a.

Fjeldbo et al. [1971] employed this substitution to invert (E.4) via standard Abelian

inversion, yielding a closed-form expression for refractive index as a function of im-

pact parameter, (E.8). No approximations are introduced into the procedure as a

result of these substitutions. For both the AT and the path integral derived from the

RT, a connection to the bending angle formula (E.4) exists via the functions g(r) and
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µ−1g(r), respectively, which transform the Abel and Radon Transform kernels from

straight ray to curved ray path formulations.

Normally, the ray path in the RT kernel is a straight line, but use of a refractive

path is not precluded by the mathematics. The Dirac delta kernel of the RT performs

a sampling operation on the spatial density function h(r, θ), effectively projecting

h(r, θ) along a path for which the argument of the Dirac delta is zero. In computed

tomography, this is the path of a ray propagating through the medium under study.

Formulating the RT as a path integral defines a curved ray path in the Radon kernel,

with the path element dl prescribed by the geometry of a radio ray propagating in a

spherically symmetric refractive medium. The resulting equation, (E.23), is the same

as the specific form of the AT, (E.4), commonly used in atmospheric radio occultation.

E.8 Derivation of Eq. (E.4)

Following Fjeldbo et al., suppose that the distance r to a ray changes by the distance

dr as the position vector to the ray sweeps through the angle dθ. The local inclination

of the ray, ξ, can be expressed in terms of,

tan ξ =
rdθ

dr
(E.24)

The relationship between a, µ, and r is obtained from Bouguer’s Rule [Born and

Wolf , 1999],

a = µr · sin ξ (E.25)

where a is the impact parameter discussed above, and depicted in Figure E.1. It is

implicit in (E.25) that µ = µ(r) and ξ = ξ(r). By inspection, the three angles θ, ξ,

and ψ sum to π
2
,

θ + ξ − ψ =
π

2
(E.26)

therefore taking the derivative yields,

dθ + dξ − dψ = 0 (E.27)
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or,

dψ = dθ + dξ (E.28)

We would like to develop expressions for dθ and dξ to use in (E.28), thus deriving an

expression for dψ that we can integrate to yield the total bending angle α. We begin

this task by differentiating Bouguer’s Rule (E.25) with respect to r and solving for

dξ,

0 =
dµ

dr
r · sin ξ + µ · sin ξ + µr · cos ξ dξ

dr
(E.29)

dξ =
− (dµ

dr
r · sin ξ + µ · sin ξ)
µr · cos ξ dr (E.30)

With the trigonometric substitutions,

sin ξ =
a

µr
cos ξ =

√
1− sin2 ξ =

√
(µr)2 − a2

µr
(E.31)

equation (E.30) for dξ becomes,

dξ = − a
(
µ+ dµ

dr
r
)
dr

µr
√

(µr)2 − a2
(E.32)

We now turn to the expression (E.24) for tan ξ and solve for dθ,

r
dθ

dr
= tan ξ =

sin ξ

cos ξ
=

a
µr√

(µr)2−a2

µr

(E.33)

Simplifying (E.33) yields,

dθ =
dr

r

a√
(µr)2 − a2

(E.34)

Armed with expressions for dθ and dξ, we combine (E.32) and (E.34) in (E.28) to

obtain an expression for dψ,

dψ =
dr

r

a√
(µr)2 − a2

− a
(
µ+ dµ

dr
r
)
dr

µr
√

(µr)2 − a2
(E.35)
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A final simplification of terms gives an expression for dψ in terms of a, µ, and r,

dψ =
−a√

(µr)2 − a2

(
dµ

dr

)
dr

µ
(E.36)

Integration of the quantity dψ along the entire ray path yields the total bending angle

α as shown in (E.4). α is conventionally defined as positive for bending towards the

center of the planet/moon, as shown in Figure E.1. The impact parameter a is related

to the closest approach distance ro by Bouguer’s Rule, (E.25), with ξ = π/2, thus

a = µro (also see Figure E.2).
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uR

vR

O
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Figure E.1: Geometry of radio occultation measurements. Refraction in a spherically
symmetric atmosphere results in a radio ray path that is a mirror image about the
radius of closest approach ro. Note impact parameter a, and bending angle α. The
bending angle α is exaggerated, relative to typical cases, for clarity.
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P
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dθ
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ξ

ψ

Figure E.2: Geometry for derivation of differential bending angle dψ and path inte-
gral element dl. The actual bending of the ray path depends on the nature of the
atmosphere, and can vary greatly.
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y

x
x1

y1

θ

P

L

R

h(x1,y1)

slope = 1/m

slope = -m

b/m

Figure E.3: Radon Transform Geometry. Spatial function h(x, y) in the plane of the
figure is integrated along a line L, generating projections of h(x, y) along L. The line L
is defined in polar coordinates for a given R and θ as satisfying R−x·cos θ−y·sin θ = 0.
In cartesian coordinates, line L satisfies y +mx− b = 0. After Bracewell [2000].
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Phys., 25, 377–452, 1908.

Morishima, R., and H. Salo, Simulations of dense planetary rings. IV. Spinning self-

gravitating particles with size distribution, Icarus, 181, 272–291, doi:10.1016/j.

icarus.2005.10.023, 2006.

Nicholson, J. W., The scattering of light by a large conducting sphere, Proc. Math.

Soc. (London), 9, 67–80, 1910.

Nicholson, J. W., The scattering of light by a large conducting sphere (2nd paper),

Proc. Math. Soc. (London), 11, 277–284, 1912.

Nicholson, P. D., M. L. Cooke, K. Matthews, J. H. Elias, and G. Gilmore, Five stellar

occultations by Neptune - Further observations of ring arcs, Icarus, 87, 1–39, doi:

10.1016/0019-1035(90)90020-A, 1990.



274 BIBLIOGRAPHY

Nicholson, P. D., R. G. French, E. Tollestrup, J. N. Cuzzi, J. Harrington,

K. Matthews, O. Perkovic, and R. J. Stover, Saturn’s rings I. Optical depth pro-

files from the 28 Sgr occultation, Icarus, 145, 474–501, doi:10.1006/icar.2000.6356,

2000.

Nicholson, P. D., M. M. Hedman, B. D. Wallis, and Cassini-VIMS Team, Cassini-

VIMS Observations of Stellar Occultations by Saturn’s Rings, in AAS/Division of

Dynamical Astronomy Meeting, AAS/Division of Dynamical Astronomy Meeting,

vol. 38, 2007.

Porco, C. C., et al., Cassini Imaging Science: Initial Results on Saturn’s Rings and

Small Satellites, Science, 307, 1226–1236, doi:10.1126/science.1108056, 2005.

Rappaport, N., P. Longaretti, E. A. Marouf, R. G. French, and C. A. McGhee,

Analysis of Nonlinear Density Waves in Saturn’s Rings in the Light of Cassini

Radio-science Data, in Bulletin of the American Astronomical Society, Bulletin of

the American Astronomical Society, vol. 38, p. 553, 2006.

Rappaport, N., P. Longaretti, E. A. Marouf, R. G. French, and C. A. McGhee, Analy-

ses of RSS Optical Depth Occultation Profiles for Several Occultations, in Bulletin

of the American Astronomical Society, Bulletin of the American Astronomical So-

ciety, vol. 40, p. 445, 2008.

Reitsema, H. J., W. B. Hubbard, L. A. Lebofsky, and D. J. Tholen, Occultation by

a Possible Third Satellite of Neptune, Science, 215 (4530), 289–291, doi:10.1126/

science.215.4530.289, 1982.

Rosen, P. A., Processing with the Fresnel Transform: Applications to Inverting

Diffraction-Limited Data from the Voyager 1 Radio Occultation Experiment, Tech-

nical Report No. D840-1985-1. Center for Radar Astronomy, Stanford University,

1985.

Rosen, P. A., Waves in Saturn’s rings probed by radio occultation, Ph.D. thesis,

Stanford University, CA, 1989.



BIBLIOGRAPHY 275

Rosen, P. A., and J. J. Lissauer, The Titan-1:0 nodal bending wave in Saturn’s Ring

C, Science, 241, 690–694, 1988.

Rosen, P. A., G. L. Tyler, and E. A. Marouf, Resonance structures in Saturn’s rings

probed by radio occultation. I - Methods and examples, Icarus, 93, 3–24, doi:

10.1016/0019-1035(91)90160-U, 1991a.

Rosen, P. A., G. L. Tyler, E. A. Marouf, and J. J. Lissauer, Resonance structures in

Saturn’s rings probed by radio occultation. II - Results and interpretation, Icarus,

93, 25–44, doi:10.1016/0019-1035(91)90161-L, 1991b.

Rutman, J., Characterization of phase and frequency instabilities in precision fre-

quency sources: fifteen years of progress., IEEE Proceedings, 66, 1048–1075, 1978.

Sadiku, M. N. O., Refractive index of snow at microwave frequencies, Applied Optics,

24, 572–575, 1985.

Salo, H., Gravitational wakes in Saturn’s rings, Nature, 359, 619–621, doi:10.1038/

359619a0, 1992.

Salo, H., Simulations of dense planetary rings. III. Self-gravitating identical particles.,

Icarus, 117, 287–312, doi:10.1006/icar.1995.1157, 1995.

Salo, H., Personal communication, 2006.

Salo, H., and J. Schmidt, N-body simulations of viscous instability of planetary rings,

Icarus, doi:10.1016/j.icarus.2009.07.038, 2009.

Salo, H., J. Schmidt, and F. Spahn, Viscous Overstability in Saturn’s B Ring. I.

Direct Simulations and Measurement of Transport Coefficients, Icarus, 153, 295–

315, doi:10.1006/icar.2001.6680, 2001.

Salo, H., R. Karjalainen, and R. G. French, Photometric modeling of Saturn’s rings.

II. Azimuthal asymmetry in reflected and transmitted light, Icarus, 170, 70–90,

doi:10.1016/j.icarus.2004.03.012, 2004.



276 BIBLIOGRAPHY

Sandel, B. R., et al., Extreme ultraviolet observations from the Voyager 2 encounter

with Saturn, Science, 215, 548–553, 1982.

Schmidt, J., H. Salo, F. Spahn, and O. Petzschmann, Viscous Overstability in Saturn’s

B-Ring. II. Hydrodynamic Theory and Comparison to Simulations, Icarus, 153,

316–331, doi:10.1006/icar.2001.6679, 2001.

Schmidt, J., K. Ohtsuki, N. Rappaport, H. Salo, and F. Spahn, Dynamics of saturn’s

dense rings, in Saturn from Cassini-Huygens, edited by M. K. Dougherty, L. W.

Esposito, and S. M. Krimigis, pp. 413–458, Cambridge University Press, 2009.

Schmit, U., and W. M. Tscharnuter, A fluid dynamical treatment of the common

action of self-gravitation, collisions, and rotation in Saturn’s B-ring., Icarus, 115,

304–319, doi:10.1006/icar.1995.1099, 1995.

Schmit, U., and W. M. Tscharnuter, On the Formation of the Fine-Scale Structure

in Saturn’s B Ring, Icarus, 138, 173–187, doi:10.1006/icar.1999.6078, 1999.

Shu, F. H., Waves in planetary rings, in IAU Colloq. 75: Planetary Rings, edited by

R. Greenberg and A. Brahic, pp. 513–561, 1984.

Smith, B. A., et al., The Jupiter System Through the Eyes of Voyager 1, Science,

204 (4396), 951–972, doi:10.1126/science.204.4396.951, 1979.

Spilker, L. J., S. Pilorz, A. L. Lane, R. M. Nelson, B. Pollard, and C. T. Russell,

Saturn A ring surface mass densities from spiral density wave dispersion behavior,

Icarus, 171, 372–390, doi:10.1016/j.icarus.2004.05.016, 2004.

Sremcevic, M., G. R. Stewart, N. Albers, J. E. Colwell, and L. W. Esposito, Density

Waves in Saturn’s Rings: Non-linear Dispersion and Moon Libration Effects, in

Bulletin of the American Astronomical Society, Bulletin of the American Astro-

nomical Society, vol. 40, p. 430, 2008.

Sremcevic, M., J. E. Colwell, and L. W. Esposito, Small-scale ring structure observed

in Cassini UVIS occultations, AGU Fall Meeting Abstracts, p. A5, 2009.



BIBLIOGRAPHY 277

Stratton, J. A., Electromagnetic Theory, McGraw-Hill, Inc., 1941.

Sullivan, D. B., D. W. Allan, D. A. Howe, and F. L. Walls, Characterization of clocks

and oscillators, 352 pp., U.S. Government Printing Office, Washington, D.C., 1990.

Theimer, O., G. D. Wassermann, and E. Wolf, On the Foundation of the Scalar

Diffraction Theory of Optical Imaging, in Proceedings of the Royal Society of Lon-

don. Series A, Mathematical and Physical Sciences, vol. 212, pp. 426–437, 1952.

Thomson, F., S. Asmar, and K. Oudrhiri, Limitations on the Use of the Power-Law

Form of Sy(f) to Compute Allan Variance, IEEE Trans. on Ultrasonics, Ferro-

electrics, and Freq. Control, 52, 1468–1472, 2005.

Thomson, F., E. Marouf, R. French, N. Rappoport, H. Salo, L. Tyler, and A. An-

abtawi, Statistical Modeling and Characterization of Microstructure in Saturn’s

Rings, AGU Fall Meeting Abstracts, 2006a.

Thomson, F. S., and E. A. Marouf, Diffraction theory modeling of near-forward radio

wave scattering from particle clusters, Icarus, 204, 290–302, doi:10.1016/j.icarus.

2009.06.015, 2009.

Thomson, F. S., and G. L. Tyler, Radon and Abel Transform equivalence in atmo-

spheric radio occultation, Radio Science, 42, 2007.

Thomson, F. S., E. A. Marouf, and G. L. Tyler, Near-Forward Radio Wave Scattering

from Particle Aggregate Ring Models, in AAS/Division for Planetary Sciences

Meeting Abstracts, 2006b.

Thomson, F. S., E. A. Marouf, G. L. Tyler, R. G. French, and N. J. Rappoport,

Periodic microstructure in Saturn’s rings A and B, Geophysical Research Letters,

34, 2007.

Tiscareno, M. S., J. A. Burns, M. M. Hedman, and C. C. Porco, The Population of

Propellers in Saturn’s A Ring, Astronomical Journal, 135, 1083–1091, doi:10.1088/

0004-6256/135/3/1083, 2008.



278 BIBLIOGRAPHY

Tiscareno, M. S., R. P. Perrine, D. C. Richardson, M. M. Hedman, J. W. Weiss,

C. C. Porco, and J. A. Burns, An analytic parameterization of self-gravity wakes

in Saturn’s rings, with application to occultations and propellers, ArXiv e-prints,

2009.

Trinks, W., Zur Vielfachstreuung an kleinen Kugeln, Annalen der Physik, 414, 561–

590, doi:10.1002/andp.19354140605, 1935.

Tyler, G. L., Radio propagation experiments in the outer solar system with Voyager,

IEEE Proceedings, 75, 1404–1431, 1987.

Tyler, G. L., E. A. Marouf, and G. E. Wood, Radio occultation of Jupiter’s ring

- Bounds on optical depth and particle size and a comparison with infrared and

optical results, Journal of Geophysical Research, 86, 8699–8703, 1981.

Tyler, G. L., E. A. Marouf, R. A. Simpson, H. A. Zebker, and V. R. Eshleman, The

microwave opacity of Saturn’s rings at wavelengths of 3.6 and 13 CM from Voyager

1 radio occultation, Icarus, 54, 160–188, doi:10.1016/0019-1035(83)90191-4, 1983.

Tyler, G. L., et al., Voyager 2 radio science observations of the Uranian system Atmo-

sphere, rings, and satellites, Science, 233, 79–84, doi:10.1126/science.233.4759.79,

1986.

Vallado, D. A., Fundamentals of Astrodynamics and Applications, 2nd ed., Microcosm

Press, 2001.

van de Hulst, H. C., Light scattering by small particles, Dover Publishing, 1981.

van Helden, A., Saturn and his Anses, Journal for the History of Astronomy, 5,

105–121, 1974.

van Helden, A., Planetary Rings, chap. Rings in astronomy and cosmology, 1600-1900,

pp. 12–22, University of Arizona Press, 1984.

Verbiscer, A. J., M. F. Skrutskie, and D. P. Hamilton, Saturn’s largest ring, Nature,

461, 1098–1100, doi:10.1038/nature08515, 2009.



BIBLIOGRAPHY 279

Wiscombe, W. J., Improved Mie scattering algorithms, Applied Optics, 19, 1505–1509,

1980.

Xu, Y., Calculation of the Addition Coefficients in Electromagnetic Multisphere-

Scattering Theory, Journal of Computational Physics, 127, 285–298, doi:10.1006/

jcph.1996.0175, 1996.

Xu, Y.-L., Electromagnetic scattering by an aggregate of spheres, Applied Optics, 34,

4573–4588, 1995.

Xu, Y.-L., Electromagnetic scattering by an aggregate of spheres: far field, Applied

Optics, 36, 9496–9508, 1997.
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