Calendar

May
22
Wed
2024
IBIIS & AIMI Seminar: Facilitating Patient and Clinician Value Considerations into AI for Precision Medicine @ Clark Center S360 - Zoom Details on IBIIS website
May 22 @ 11:00 am – 12:00 pm

Mildred Cho, PhD
Professor of Pediatrics, Center of Biomedical Ethics
Professor of Medicine, Primary Care and Population Health
Stanford University

Title: Facilitating Patient and Clinician Value Considerations into AI for Precision Medicine

Abstract:
For the development of ethical machine learning (ML) for precision medicine, it is essential to understand how values play into the decision-making process of developers. We conducted five group design exercises with four developer participants each (N=20) who were asked to discuss and record their design considerations in a series of three hypothetical scenarios involving the design of a tool to predict progression to diabetes. In each group, the scenario was first presented as a research project, then as development of a clinical tool for a health care system, and finally as development of a clinical tool for their own health care system. Throughout, developers documented their process considerations using a virtual collaborative whiteboard platform. Our results suggest that developers more often considered client or user perspectives after changing the context of the scenario from research to a tool for a large healthcare setting. Furthermore, developers were more likely to express concerns arising from the patient perspective and societal and ethical issues such as protection of privacy after imagining themselves as patients in the health care system. Qualitative and quantitative data analysis also revealed that developers made reflective/reflexive statements more often in the third round of the design activity (44 times) than in the first (2) or second (6) rounds. These statements included statements on how the activity connected to their real-life work, what they could take away from the exercises and integrate into actual practice, and commentary on being patients within a health care system using AI. These findings suggest that ML developers can be encouraged to link the consequences of their actions to design choices by encouraging “empathy work” that directs them to take perspectives of specific stakeholder groups. This research could inform the creation of educational resources and exercises for developers to better align daily practices with stakeholder values and ethical ML design.

Jun
24
Mon
2024
IBIIS & AIMI Seminar: Deepening Collaboration with Stanford & Pennsylvania, Toward Developing Joint Strategies to Close the ‘Cancer Care’ & ‘Clinical Trial Volume’ Gap in LMICs @ Clark Center S360 - Zoom Details on IBIIS website
Jun 24 @ 12:30 pm – 1:30 pm

Ifeoma Okoye MBBS, FWACS, FMCR 
Professor of Radiology and Director
University of Nigeria Centre for Clinical Trials
College of Medicine, University of Nigeria

Title: Deepening Collaboration with Stanford & Pennsylvania, Toward Developing Joint Strategies to Close the ‘Cancer Care’ & ‘Clinical Trial Volume’ Gap in LMICs

Abstract
In this seminar I will be addressing the dire cancer survival outcomes in low- and middle-income countries (LMICs), with a particular focus on Sub-Saharan Africa. Cancer survival rates in Sub-Saharan Africa are alarmingly low. According to the World Health Organization, cancer deaths in LMICs account for approximately 70% of global cancer fatalities. In Nigeria, the five-year survival rate for breast cancer, one of the most common cancers, stands at a disheartening 10-30%, compared to over 80% in high-income countries. This stark disparity highlights the urgent need for sustained comprehensive cancer interventions in our region.

Here, I will discuss the pivotal role in the cancer control sphere, of a new software, ONCOSEEK, capable of early detecting 11 types of Cancers! It’s particular emphasis on the Patient Perspective, which aligns with our ethos of need for holistic patient care. In addition I will discuss recent developments on collaborative effort with the Gevaert lab at Stanford University and the University of Pennsylvania.