Calendar

Sep
6
Fri
2019
CCSB Seminar: Identifying and Rationally Modulating Cellular Drivers of Tumor Response @ Clark Center S360
CCSB Seminar: Identifying and Rationally Modulating Cellular Drivers of Tumor Response
Sep 6 @ 11:00 am – 12:00 pm Clark Center S360
CCSB Seminar: Identifying and Rationally Modulating Cellular Drivers of Tumor Response @ Clark Center S360

Alex K. Shalek, PhD
Pfizer-Laubach Career Development Associate Professor
Institute for Medical Engineering & Science
Department of Chemistry and Koch Institute
Massachusetts Institute of Technology

Abstract: While several methods exist for sampling tissues in clinical contexts, without high-fidelity tools for comprehensively profiling them, we are both limited in our capacity to understand how constituent cells and their interactions impact prognosis, and to select and develop precision therapeutics. Recent years have witnessed transformative and intersecting advances in nanofabrication and molecular biology that now enable deep profiling of low-input samples. Collectively, these afford new and exciting opportunities to study cellular heterogeneity, starting from the level of the single cell, and may unlock the diagnostic, prognostic, and discovery potential of clinical isolates. Illustratively, I will introduce how we can leverage single-cell genomic approaches – and, in particular, single-cell RNA-Seq – to explore the extensive functional diversity between cells, uncovering, from the “bottom-up,” distinct cell states and their molecular drivers. Moreover, I will discuss high-throughput experimental strategies and demonstrate, in the context of Acute Lymphoblastic Leukemia, how they can be leveraged to achieve the statistical power necessary to reconstruct intracellular circuits, enumerate and redefine cell states and types, and transform our understanding of cellular decision-making in health and disease on a genomic scale.

Bio: Alex K. Shalek is currently the Pfizer-Laubach Career Development Associate Professor at MIT, as well as a Core Member of the Institute for Medical Engineering and Science (IMES), an Associate Professor of Chemistry, and an Extramural Member of The Koch Institute for Integrative Cancer Research. He is also an Institute Member of the Broad Institute, an Associate Member of the Ragon Institute, an Assistant in Immunology at MGH, and an Instructor in Health Sciences and Technology at HMS. His research is directed towards the development and application of new technologies that facilitate understanding of how cells collectively perform systems-level functions in healthy and diseased states. Dr. Shalek received his bachelor’s degree summa cum laude from Columbia University and his Ph.D. from Harvard University in chemical physics under the guidance of Hongkun Park, and performed postdoctoral training under Hongkun Park and Aviv Regev (Broad/MIT). To date, his interdisciplinary research has focused on realizing and utilizing nanoscale manipulation and measurement technologies to examine how small components (molecules, cells) drive systems of vast complexity (cellular responses, population behaviors).

Jan
29
Wed
2020
SCIT Seminar: Muna Aryal Rizal, PhD and Eduardo Somoza, MD @ Glazer Learning Center (Lucas P083)
SCIT Seminar: Muna Aryal Rizal, PhD and Eduardo Somoza, MD
Jan 29 @ 10:00 am – 11:00 am Glazer Learning Center (Lucas P083)
SCIT Seminar: Muna Aryal Rizal, PhD and Eduardo Somoza, MD @ Glazer Learning Center (Lucas P083)

Muna Aryal Rizal, PhD
Mentor: Jeremy Dahl, PhD and Raag Airan, MD, PhD

Noninvasive Focused Ultrasound Accelerates Glymphatic Transport to Bypass the Blood-Brain Barrier

ABSTRACT

Recent advancement in neuroscience revealed that the Central Nervous System (CNS) comprise glial-cell driven lymphatic system and coined the term called “Glymphatic pathway” by Neuroscientist, Maiden Nedergaard. Furthermore, it has been proven in rodent and non-human primate studies that the glymphatic exchange efficacy can decay in healthy aging, alzheimer’s disease models, traumatic brain injury, cerebral hemorrhage, and stroke. Studies in rodents have also shown that the glymphatic function can accelerate by doing easily-implemented, interventions like physical exercise, changes in body posture during sleep, intake of omega-3 polyunsaturated fatty acids, and low dose alcohol (0.5 g/kg). Here, we proposed for the first time to accelerate the glymphatic function by manipulating the whole-brain ultrasonically using focused ultrasound, an emerging clinical technology that can noninvasively reach virtually throughout the brain. During this SCIT seminar, I will introduce the new ultrasonic approach to accelerates glymphatic transport and will share some preliminary findings.


Eduardo Somoza, MD
Mentor: Sandy Napel, PhD

Prediction of Clinical Outcomes in Diffuse Large B-Cell Lymphoma (DLBCL) Utilizing Radiomic Features Derived from Pretreatment Positron Emission Tomography (PET) Scan

ABSTRACT

Diffuse Large B-Cell lymphoma (DLBCL) is the most common type of lymphoma, accounting for a third of cases worldwide. Despite advancements in treatment, the five-year percent survival for this patient population is around sixty percent. This indicates a clinical need for being able to predict outcomes before the initiation of standard treatment. The approach we will be employing to address this need is the creation of a prognostic model from pretreatment clinical data of DLBCL patients seen at Stanford University Medical Center. In particular, there will be a focus on the derivation of radiomic features from pretreatment positron emission tomography (PET) scans as this has not been thoroughly investigated in similar published research efforts. We will layout the framework for our approach, with an emphasis on the aspects of our design that will allow for the translation of our efforts to multiple clinical settings. More importantly, we will discuss the importance and challenges of assembling a quality clinical database for this type of research. Ultimately, we hope our efforts will lead to the development of a prognostic model that can be utilized to guide treatment in DLBCL patients with refractory disease and/or high risk of relapse after completion of standard treatment.

Apr
22
Wed
2020
SCIT Quarterly Seminar @ Zoom: https://stanford.zoom.us/j/98960758162?pwd=aHJJc3pDS3FONkZIc2FoZ0hqcXU1dz09
SCIT Quarterly Seminar
Apr 22 @ 10:00 am – 11:00 am Zoom: https://stanford.zoom.us/j/98960758162?pwd=aHJJc3pDS3FONkZIc2FoZ0hqcXU1dz09
SCIT Quarterly Seminar @ Zoom: https://stanford.zoom.us/j/98960758162?pwd=aHJJc3pDS3FONkZIc2FoZ0hqcXU1dz09
“Tumor-Immune Interactions in TNBC Brain Metastases”
Maxine Umeh Garcia, PhD

ABSTRACT: It is estimated that metastasis is responsible for 90% of cancer deaths, with 1 in every 2 advanced staged triple-negative breast cancer patients developing brain metastases – surviving as little as 4.9 months after metastatic diagnosis. My project hypothesizes that the spatial architecture of the tumor microenvironment reflects distinct tumor-immune interactions that are driven by receptor-ligand pairing; and that these interactions not only impact tumor progression in the brain, but also prime the immune system (early on) to be tolerant of disseminated cancer cells permitting brain metastases. The main goal of my project is to build a model that recapitulates tumor-immune interactions in brain-metastatic triple-negative breast cancer, and use this model to identify novel druggable targets to improve survival outcomes in patients with devastating brain metastases.

“Classification of Malignant and Benign Peripheral Nerve Sheath Tumors With An Open Source Feature Selection Platform”
Michael Zhang, MD

ABSTRACT: Radiographic differentiation of malignant peripheral nerve sheath tumors (MPNSTs) from benign PNSTs is a diagnostic challenge. The former is associated with a five-year survival rate of 30-50%, and definitive management requires gross total surgical with wide negative margins in areas of sensitive neurologic function. This presentation describes a radiomics approach to pre-operatively identifying a diagnosis, thereby possibly avoiding surgical complexity and debilitating symptoms. Using an open-source, feature extraction platform and machine learning, we produce a radiographic signature for MPNSTs based on routine MRI.

Oct
21
Wed
2020
SCIT Quarterly Seminar @ See description for ZOOM link
SCIT Quarterly Seminar
Oct 21 @ 10:00 am – 11:00 am See description for ZOOM link

ZOOM LINK HERE

“High Resolution Breast Diffusion Weighted Imaging”
Jessica McKay, PhD

ABSTRACT: Diffusion-weighted imaging (DWI) is a quantitative MRI method that measures the apparent diffusion coefficient (ADC) of water molecules, which reflects cell density and serves as an indication of malignancy. Unfortunately, however, the clinical value of DWI is severely limited by the undesirable features in images that common clinical methods produce, including large geometric distortions, ghosting and chemical shift artifacts, and insufficient spatial resolution. Thus, in order to exploit information encoded in diffusion characteristics and fully assess the clinical value of ADC measurements, it is first imperative to achieve technical advancements of DWI.

In this talk, I will largely focus on the background of breast DWI, providing the clinical motivation for this work and explaining the current standard in breast DWI and alternatives proposed throughout the literature. I will also present my PhD dissertation work in which a novel strategy for high resolution breast DWI was developed. The purpose of this work is to improve DWI methods for breast imaging at 3 Tesla to robustly provide diffusion-weighted images and ADC maps with anatomical quality and resolution. This project has two major parts: Nyquist ghost correction and the use of simultaneous multislice imaging (SMS) to achieve high resolution. Exploratory work was completed to characterize the Nyquist ghost in breast DWI, showing that, although the ghost is mostly linear, the three-line navigator is unreliable, especially in the presence of fat. A novel referenceless ghost correction, Ghost/Object minimization was developed that reduced the ghost in standard SE-EPI and advanced SMS. An advanced SMS method with axial reformatting (AR) is presented for high resolution breast DWI. In a reader study, AR-SMS was preferred by three breast radiologists compared to the standard SE-EPI and readout-segmented-EPI.


“Machine-learning Approach to Differentiation of Benign and Malignant Peripheral Nerve Sheath Tumors: A Multicenter Study”

Michael Zhang, MD

ABSTRACT: Clinicoradiologic differentiation between benign and malignant peripheral nerve sheath tumors (PNSTs) is a diagnostic challenge with important management implications. We sought to develop a radiomics classifier based on 900 features extracted from gadolinium-enhanced, T1-weighted MRI, using the Quantitative Imaging Feature Pipeline and the PyRadiomics package. Additional patient-specific clinical variables were recorded. A radiomic signature was derived from least absolute shrinkage and selection operator, followed by gradient boost machine learning. A training and test set were selected randomly in a 70:30 ratio. We further evaluated the performance of radiomics-based classifier models against human readers of varying medical-training backgrounds. Following image pre-processing, 95 malignant and 171 benign PNSTs were available. The final classifier included 21 features and achieved a sensitivity 0.676, specificity 0.882, and area under the curve (AUC) 0.845. Collectively, human readers achieved sensitivity 0.684, specificity 0.742, and AUC 0.704. We concluded that radiomics using routine gadolinium enhanced, T1-weighted MRI sequences and clinical features can aid in the evaluation of PNSTs, particularly by increasing specificity for diagnosing malignancy. Further improvement may be achieved with incorporation of additional imaging sequences.

Sep
10
Fri
2021
CME Grand Rounds Sanjiv Sam Gambhir Lectureship - Simon Cherry, PhD @ LKSC 101/102 & Zoom - See Description for Zoom Link
CME Grand Rounds Sanjiv Sam Gambhir Lectureship – Simon Cherry, PhD
Sep 10 @ 12:00 pm – 1:00 pm LKSC 101/102 & Zoom - See Description for Zoom Link
CME Grand Rounds Sanjiv Sam Gambhir Lectureship - Simon Cherry, PhD @ LKSC 101/102 & Zoom - See Description for Zoom Link

CME Grand Rounds Sanjiv Sam Gambhir Lectureship – “Imaging at the Speed of Light:  Innovations in Positron Emission Tomography”

 

Simon R. Cherry, PhD
Professor
Biomedical Engineering & Radiology
UC Davis

 

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/600003703?pwd=RjcwS2MvOG1qVkxyL3U0RmNtUDVWdz09
Meeting ID: 600 003 703
Password: 566048
Or iPhone one-tap (US Toll): +18333021536,,600003703# or +16507249799,,600003703#
Or Telephone:
Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
International numbers available: https://stanford.zoom.us/u/acuqphnvqT

 

ABSTRACT

Positron emission tomography (PET) allows for sensitive and quantitative measurement of physiology, metabolism and molecular targets noninvasively in the human body.  However, typical clinical PET scanners capture less than 1% of the available signal produced in the body.  PET scanners also are not currently capable of precisely determining the location at which a particular decay occurs. These limitations present opportunities for further innovation that ultimately will impact molecular imaging research and diagnostic imaging with PET.  This presentation focuses on 1) total-body PET imaging which greatly improves signal collection, allowing radiotracer kinetics to be assessed across the entire human body for the first time, and 2) the development of detector technologies that have a timing precision of ~ 30 picoseconds, enabling direct localization of radiotracer decays without tomographic reconstruction.

 

BIO

Simon R. Cherry, Ph.D.  received his B.Sc.(Hons) in Physics with Astronomy from University College London in 1986 and a Ph.D. in Medical Physics from the Institute of Cancer Research, University of London in 1989.  After a postdoctoral fellowship at UCLA, he joined the faculty in the Department of Molecular and Medical Pharmacology, also at UCLA, in 1993. In 2001, Dr. Cherry joined UC Davis and established the Center for Molecular and Genomic Imaging, which he directed from 2004-2016. Currently Dr. Cherry is Distinguished Professor in the Departments of Biomedical Engineering and Radiology at UC Davis.

Dr. Cherry’s research interests center around biomedical imaging and in particular the development and application of in vivo molecular imaging systems.  His major accomplishments have been in developing systems for positron emission tomography (PET), in particular the invention of the microPET technology that was subsequently widely adopted in academia and industry and as co-leader of the EXPLORER consortium which has developed the world’s first total-body PET scanner.  He also has contributed to detector technology innovations for PET, conducted early biomedical studies using Cerenkov luminescence, and developed the first proof-of-concept hybrid PET/MRI (magnetic resonance imaging) systems.

Dr. Cherry is a founding member of the Society of Molecular Imaging and an elected fellow of six professional societies, including the Institute for Electronic and Electrical Engineers (IEEE) and the Biomedical Engineering Society (BMES). He served as Editor-in-Chief of the journal Physics in Medicine and Biology from 2011-2020. Dr. Cherry received the Academy of Molecular Imaging Distinguished Basic Scientist Award (2007), the Society for Molecular Imaging Achievement Award (2011) and the IEEE Marie Sklodowska-Curie Award (2016).   In 2016, he was elected as a member of the National Academy of Engineering and in 2017 he was elected to the National Academy of Inventors.  Dr. Cherry is the author of more than 240 peer-reviewed journal articles, review articles and book chapters in the field of biomedical imaging. He is also lead author of the widely-used textbook “Physics in Nuclear Medicine”.

Sep
24
Fri
2021
CME Grand Rounds Diversity Lectureship - Jennifer L. Eberhardt, PhD @ Zoom - See Description for Zoom Link
CME Grand Rounds Diversity Lectureship – Jennifer L. Eberhardt, PhD
Sep 24 @ 12:00 pm – 1:00 pm Zoom - See Description for Zoom Link
CME Grand Rounds Diversity Lectureship - Jennifer L. Eberhardt, PhD @ Zoom - See Description for Zoom Link

CME Grand Rounds Diversity Lectureship – Topic: TBD

 

Jennifer L. Eberhardt, PhD
Professor
Psychology
Stanford University

 

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/600003703?pwd=RjcwS2MvOG1qVkxyL3U0RmNtUDVWdz09
Meeting ID: 600 003 703
Password: 566048
Or iPhone one-tap (US Toll): +18333021536,,600003703# or +16507249799,,600003703#
Or Telephone:
Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
International numbers available: https://stanford.zoom.us/u/acuqphnvqT

 

ABSTRACT
Coming soon!

 

BIO
Coming soon!

Oct
8
Fri
2021
CME Grand Rounds - Christoph L. Lee, MD, MS, MBA @ Zoom - See Description for Zoom Link
CME Grand Rounds – Christoph L. Lee, MD, MS, MBA
Oct 8 @ 12:00 pm – 1:00 pm Zoom - See Description for Zoom Link
CME Grand Rounds - Christoph L. Lee, MD, MS, MBA @ Zoom - See Description for Zoom Link

CME Grand Rounds – “Community Based Partnered Research:  Revisiting a Critical Concept for Radiology”

 

Christoph L. Lee, MD, MS, MBA
Professor
Radiology
University of Washington

 

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/600003703?pwd=RjcwS2MvOG1qVkxyL3U0RmNtUDVWdz09
Meeting ID: 600 003 703
Password: 566048
Or iPhone one-tap (US Toll): +18333021536,,600003703# or +16507249799,,600003703#
Or Telephone:
Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
International numbers available: https://stanford.zoom.us/u/acuqphnvqT

 

ABSTRACT
Coming soon!

 

BIO
Coming soon!

Oct
22
Fri
2021
CME Grand Rounds - Jocelyn D. Chertoff, MD, MS @ Zoom - See Description for Zoom Link
CME Grand Rounds – Jocelyn D. Chertoff, MD, MS
Oct 22 @ 12:00 pm – 1:00 pm Zoom - See Description for Zoom Link
CME Grand Rounds - Jocelyn D. Chertoff, MD, MS @ Zoom - See Description for Zoom Link

CME Grand Rounds – Topic: TBD

Jocelyn D. Chertoff, MD, MS
Professor
Radiology, Obstetrics & Gynecology
Chair, Radiology
Dartmouth Hitchcock Medical Center

 

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/600003703?pwd=RjcwS2MvOG1qVkxyL3U0RmNtUDVWdz09
Meeting ID: 600 003 703
Password: 566048
Or iPhone one-tap (US Toll): +18333021536,,600003703# or +16507249799,,600003703#
Or Telephone:
Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
International numbers available: https://stanford.zoom.us/u/acuqphnvqT

 

ABSTRACT
Coming soon!

 

BIO
Coming soon!

Nov
4
Thu
2021
CME Grand Rounds Etta K. Moskowitz Lectureship - Elizabeth Krupinski, PhD @ Zoom - See Description for Zoom Link
CME Grand Rounds Etta K. Moskowitz Lectureship – Elizabeth Krupinski, PhD
Nov 4 @ 5:30 pm – 6:30 pm Zoom - See Description for Zoom Link
CME Grand Rounds Etta K. Moskowitz Lectureship - Elizabeth Krupinski, PhD @ Zoom - See Description for Zoom Link

CME Grand Rounds Etta K. Moskowitz Lectureship – Topic: TBD

Elizabeth Krupinski, PhD
Professor & Vice Chair for Research
Radiology & Imaging Sciences
Emory University School of Medicine

 

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/600003703?pwd=RjcwS2MvOG1qVkxyL3U0RmNtUDVWdz09
Meeting ID: 600 003 703
Password: 566048
Or iPhone one-tap (US Toll): +18333021536,,600003703# or +16507249799,,600003703#
Or Telephone:
Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
International numbers available: https://stanford.zoom.us/u/acuqphnvqT

 

ABSTRACT
Coming soon!

 

BIO
Coming soon!

Nov
12
Fri
2021
CME Grand Rounds - Michael Gisondi, MD @ Zoom - See Description for Zoom Link
CME Grand Rounds – Michael Gisondi, MD
Nov 12 @ 12:00 pm – 1:00 pm Zoom - See Description for Zoom Link
CME Grand Rounds - Michael Gisondi, MD @ Zoom - See Description for Zoom Link

CME Grand Rounds – “Promote Your Academic Career Using Social Media”

Michael Gisondi, MD
Associate Professor & Vice Chair of Education
Emergency Medicine
Stanford University

 

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/600003703?pwd=RjcwS2MvOG1qVkxyL3U0RmNtUDVWdz09
Meeting ID: 600 003 703
Password: 566048
Or iPhone one-tap (US Toll): +18333021536,,600003703# or +16507249799,,600003703#
Or Telephone:
Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
International numbers available: https://stanford.zoom.us/u/acuqphnvqT

 

ABSTRACT
Coming soon!

 

BIO
Coming soon!