Calendar

Apr
20
Mon
2020
Mini-Grand Rounds - Colin Kahl, PhD @ Zoom
Mini-Grand Rounds – Colin Kahl, PhD
Apr 20 @ 7:00 am – 7:30 am Zoom
Mini-Grand Rounds - Colin Kahl, PhD @ Zoom

Mini-Grand Rounds: Aftershocks: The Coronavirus Pandemic and The New World Disorder

Colin H. Kahl
Senior Fellow at the Freeman Spogli Institute for International Studies
Steven C. Házy Senior Fellow at the Center for International Security and Cooperation
Professor, by courtesy, of Political Science
Co-director of the Center for International Security and Cooperation

7:00am – 7:30am, Zoom

The Stanford Radiology Mini-Grand Round live session events are by invitation only. Invites with link to Zoom video will be sent via email to Department faculty and staff only. Recordings will be made available to the public shortly after the event.

Apr
22
Wed
2020
Mini-Grand Rounds - Nicholas Bloom, PhD @ Zoom
Mini-Grand Rounds – Nicholas Bloom, PhD
Apr 22 @ 7:00 am – 7:30 am Zoom
Mini-Grand Rounds - Nicholas Bloom, PhD @ Zoom

Mini-Grand Rounds: The short-run challenges and long-run opportunities of working from home

Nicholas Bloom, PhD
Professor (by courtesy), Economics
Senior Fellow, Stanford Institute for Economic Policy Research

7:00am – 7:30am, Zoom

The Stanford Radiology Mini-Grand Round live session events are by invitation only. Invites with link to Zoom video will be sent via email to Department faculty and staff only. Recordings will be made available to the public shortly after the event.

SCIT Quarterly Seminar @ Zoom: https://stanford.zoom.us/j/98960758162?pwd=aHJJc3pDS3FONkZIc2FoZ0hqcXU1dz09
SCIT Quarterly Seminar
Apr 22 @ 10:00 am – 11:00 am Zoom: https://stanford.zoom.us/j/98960758162?pwd=aHJJc3pDS3FONkZIc2FoZ0hqcXU1dz09
SCIT Quarterly Seminar @ Zoom: https://stanford.zoom.us/j/98960758162?pwd=aHJJc3pDS3FONkZIc2FoZ0hqcXU1dz09
“Tumor-Immune Interactions in TNBC Brain Metastases”
Maxine Umeh Garcia, PhD

ABSTRACT: It is estimated that metastasis is responsible for 90% of cancer deaths, with 1 in every 2 advanced staged triple-negative breast cancer patients developing brain metastases – surviving as little as 4.9 months after metastatic diagnosis. My project hypothesizes that the spatial architecture of the tumor microenvironment reflects distinct tumor-immune interactions that are driven by receptor-ligand pairing; and that these interactions not only impact tumor progression in the brain, but also prime the immune system (early on) to be tolerant of disseminated cancer cells permitting brain metastases. The main goal of my project is to build a model that recapitulates tumor-immune interactions in brain-metastatic triple-negative breast cancer, and use this model to identify novel druggable targets to improve survival outcomes in patients with devastating brain metastases.

“Classification of Malignant and Benign Peripheral Nerve Sheath Tumors With An Open Source Feature Selection Platform”
Michael Zhang, MD

ABSTRACT: Radiographic differentiation of malignant peripheral nerve sheath tumors (MPNSTs) from benign PNSTs is a diagnostic challenge. The former is associated with a five-year survival rate of 30-50%, and definitive management requires gross total surgical with wide negative margins in areas of sensitive neurologic function. This presentation describes a radiomics approach to pre-operatively identifying a diagnosis, thereby possibly avoiding surgical complexity and debilitating symptoms. Using an open-source, feature extraction platform and machine learning, we produce a radiographic signature for MPNSTs based on routine MRI.

Apr
24
Fri
2020
Mini-Grand Rounds - Ann Leung, MD @ Zoom
Mini-Grand Rounds – Ann Leung, MD
Apr 24 @ 7:00 am – 7:30 am Zoom
Mini-Grand Rounds - Ann Leung, MD @ Zoom

Mini-Grand Rounds: Stanford University Medical Center and COVID-19: A Chest Radiologist’s Perspective

Ann Leung, MD
Associate Chair, Clinical Affairs
Professor, Radiology

7:00am – 7:30am, Zoom

The Stanford Radiology Mini-Grand Round live session events are by invitation only. Invites with link to Zoom video will be sent via email to Department faculty and staff only. Recordings will be made available to the public shortly after the event.

Apr
27
Mon
2020
Mini-Grand Rounds - David Larson, MD, MBA @ Zoom
Mini-Grand Rounds – David Larson, MD, MBA
Apr 27 @ 7:00 am – 7:30 am Zoom
Mini-Grand Rounds - David Larson, MD, MBA @ Zoom

Mini-Grand Rounds: The Outlook for Radiology in the Next Phases of the Pandemic and Beyond

David Larson, MD, MBA
Vice Chair, Education and Clinical Operations
Associate Professor, Radiology

7:00am – 7:30am, Zoom

The Stanford Radiology Mini-Grand Round live session events are by invitation only. Invites with link to Zoom video will be sent via email to Department faculty and staff only. Recordings will be made available to the public shortly after the event.

Oct
21
Wed
2020
SCIT Quarterly Seminar @ See description for ZOOM link
SCIT Quarterly Seminar
Oct 21 @ 10:00 am – 11:00 am See description for ZOOM link

ZOOM LINK HERE

“High Resolution Breast Diffusion Weighted Imaging”
Jessica McKay, PhD

ABSTRACT: Diffusion-weighted imaging (DWI) is a quantitative MRI method that measures the apparent diffusion coefficient (ADC) of water molecules, which reflects cell density and serves as an indication of malignancy. Unfortunately, however, the clinical value of DWI is severely limited by the undesirable features in images that common clinical methods produce, including large geometric distortions, ghosting and chemical shift artifacts, and insufficient spatial resolution. Thus, in order to exploit information encoded in diffusion characteristics and fully assess the clinical value of ADC measurements, it is first imperative to achieve technical advancements of DWI.

In this talk, I will largely focus on the background of breast DWI, providing the clinical motivation for this work and explaining the current standard in breast DWI and alternatives proposed throughout the literature. I will also present my PhD dissertation work in which a novel strategy for high resolution breast DWI was developed. The purpose of this work is to improve DWI methods for breast imaging at 3 Tesla to robustly provide diffusion-weighted images and ADC maps with anatomical quality and resolution. This project has two major parts: Nyquist ghost correction and the use of simultaneous multislice imaging (SMS) to achieve high resolution. Exploratory work was completed to characterize the Nyquist ghost in breast DWI, showing that, although the ghost is mostly linear, the three-line navigator is unreliable, especially in the presence of fat. A novel referenceless ghost correction, Ghost/Object minimization was developed that reduced the ghost in standard SE-EPI and advanced SMS. An advanced SMS method with axial reformatting (AR) is presented for high resolution breast DWI. In a reader study, AR-SMS was preferred by three breast radiologists compared to the standard SE-EPI and readout-segmented-EPI.


“Machine-learning Approach to Differentiation of Benign and Malignant Peripheral Nerve Sheath Tumors: A Multicenter Study”

Michael Zhang, MD

ABSTRACT: Clinicoradiologic differentiation between benign and malignant peripheral nerve sheath tumors (PNSTs) is a diagnostic challenge with important management implications. We sought to develop a radiomics classifier based on 900 features extracted from gadolinium-enhanced, T1-weighted MRI, using the Quantitative Imaging Feature Pipeline and the PyRadiomics package. Additional patient-specific clinical variables were recorded. A radiomic signature was derived from least absolute shrinkage and selection operator, followed by gradient boost machine learning. A training and test set were selected randomly in a 70:30 ratio. We further evaluated the performance of radiomics-based classifier models against human readers of varying medical-training backgrounds. Following image pre-processing, 95 malignant and 171 benign PNSTs were available. The final classifier included 21 features and achieved a sensitivity 0.676, specificity 0.882, and area under the curve (AUC) 0.845. Collectively, human readers achieved sensitivity 0.684, specificity 0.742, and AUC 0.704. We concluded that radiomics using routine gadolinium enhanced, T1-weighted MRI sequences and clinical features can aid in the evaluation of PNSTs, particularly by increasing specificity for diagnosing malignancy. Further improvement may be achieved with incorporation of additional imaging sequences.

Apr
30
Fri
2021
Racial Equity Challenge: Race in society @ Zoom
Racial Equity Challenge: Race in society
Apr 30 @ 12:00 pm – 1:00 pm Zoom
Racial Equity Challenge: Race in society @ Zoom

Targeted violence continues against Black Americans, Asian Americans, and all people of color. The department of radiology diversity committee is running a racial equity challenge to raise awareness of systemic racism, implicit bias and related issues. Participants will be provided a list of resources on these topics such as articles, podcasts, videos, etc., from which they can choose, with the “challenge” of engaging with one to three media sources prior to our session (some videos are as short as a few minutes). Participants will meet in small-group breakout sessions to discuss what they’ve learned and share ideas.

Please reach out to Marta Flory, flory@stanford.edu with questions. For details about the session, including recommended resources and the Zoom link, please reach out to Meke Faaoso at mfaaoso@stanford.edu.

Jul
16
Fri
2021
Radiology-Wide Research Conference @ Zoom – Details can be found here: https://radresearch.stanford.edu
Radiology-Wide Research Conference
Jul 16 @ 12:00 pm – 1:00 pm Zoom – Details can be found here: https://radresearch.stanford.edu
Radiology-Wide Research Conference @ Zoom – Details can be found here: https://radresearch.stanford.edu

Radiology Department-Wide Research Meeting

• Research Announcements
• Mirabela Rusu, PhD – Learning MRI Signatures of Aggressive Prostate Cancer: Bridging the Gap between Digital Pathologists and Digital Radiologists
• Akshay Chaudhari, PhD – Data-Efficient Machine Learning for Medical Imaging

Location: Zoom – Details can be found here: https://radresearch.stanford.edu
Meetings will be the 3rd Friday of each month.

 

Hosted by: Kawin Setsompop, PhD
Sponsored by: the the Department of Radiology

Sep
10
Fri
2021
CME Grand Rounds Sanjiv Sam Gambhir Lectureship - Simon Cherry, PhD @ LKSC 101/102 & Zoom - See Description for Zoom Link
CME Grand Rounds Sanjiv Sam Gambhir Lectureship – Simon Cherry, PhD
Sep 10 @ 12:00 pm – 1:00 pm LKSC 101/102 & Zoom - See Description for Zoom Link
CME Grand Rounds Sanjiv Sam Gambhir Lectureship - Simon Cherry, PhD @ LKSC 101/102 & Zoom - See Description for Zoom Link

CME Grand Rounds Sanjiv Sam Gambhir Lectureship – “Imaging at the Speed of Light:  Innovations in Positron Emission Tomography”

 

Simon R. Cherry, PhD
Professor
Biomedical Engineering & Radiology
UC Davis

 

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/600003703?pwd=RjcwS2MvOG1qVkxyL3U0RmNtUDVWdz09
Meeting ID: 600 003 703
Password: 566048
Or iPhone one-tap (US Toll): +18333021536,,600003703# or +16507249799,,600003703#
Or Telephone:
Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
International numbers available: https://stanford.zoom.us/u/acuqphnvqT

 

ABSTRACT

Positron emission tomography (PET) allows for sensitive and quantitative measurement of physiology, metabolism and molecular targets noninvasively in the human body.  However, typical clinical PET scanners capture less than 1% of the available signal produced in the body.  PET scanners also are not currently capable of precisely determining the location at which a particular decay occurs. These limitations present opportunities for further innovation that ultimately will impact molecular imaging research and diagnostic imaging with PET.  This presentation focuses on 1) total-body PET imaging which greatly improves signal collection, allowing radiotracer kinetics to be assessed across the entire human body for the first time, and 2) the development of detector technologies that have a timing precision of ~ 30 picoseconds, enabling direct localization of radiotracer decays without tomographic reconstruction.

 

BIO

Simon R. Cherry, Ph.D.  received his B.Sc.(Hons) in Physics with Astronomy from University College London in 1986 and a Ph.D. in Medical Physics from the Institute of Cancer Research, University of London in 1989.  After a postdoctoral fellowship at UCLA, he joined the faculty in the Department of Molecular and Medical Pharmacology, also at UCLA, in 1993. In 2001, Dr. Cherry joined UC Davis and established the Center for Molecular and Genomic Imaging, which he directed from 2004-2016. Currently Dr. Cherry is Distinguished Professor in the Departments of Biomedical Engineering and Radiology at UC Davis.

Dr. Cherry’s research interests center around biomedical imaging and in particular the development and application of in vivo molecular imaging systems.  His major accomplishments have been in developing systems for positron emission tomography (PET), in particular the invention of the microPET technology that was subsequently widely adopted in academia and industry and as co-leader of the EXPLORER consortium which has developed the world’s first total-body PET scanner.  He also has contributed to detector technology innovations for PET, conducted early biomedical studies using Cerenkov luminescence, and developed the first proof-of-concept hybrid PET/MRI (magnetic resonance imaging) systems.

Dr. Cherry is a founding member of the Society of Molecular Imaging and an elected fellow of six professional societies, including the Institute for Electronic and Electrical Engineers (IEEE) and the Biomedical Engineering Society (BMES). He served as Editor-in-Chief of the journal Physics in Medicine and Biology from 2011-2020. Dr. Cherry received the Academy of Molecular Imaging Distinguished Basic Scientist Award (2007), the Society for Molecular Imaging Achievement Award (2011) and the IEEE Marie Sklodowska-Curie Award (2016).   In 2016, he was elected as a member of the National Academy of Engineering and in 2017 he was elected to the National Academy of Inventors.  Dr. Cherry is the author of more than 240 peer-reviewed journal articles, review articles and book chapters in the field of biomedical imaging. He is also lead author of the widely-used textbook “Physics in Nuclear Medicine”.

Sep
24
Fri
2021
CME Grand Rounds Diversity Lectureship - Jennifer L. Eberhardt, PhD @ Zoom - See Description for Zoom Link
CME Grand Rounds Diversity Lectureship – Jennifer L. Eberhardt, PhD
Sep 24 @ 12:00 pm – 1:00 pm Zoom - See Description for Zoom Link
CME Grand Rounds Diversity Lectureship - Jennifer L. Eberhardt, PhD @ Zoom - See Description for Zoom Link

CME Grand Rounds Diversity Lectureship – Topic: TBD

 

Jennifer L. Eberhardt, PhD
Professor
Psychology
Stanford University

 

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/600003703?pwd=RjcwS2MvOG1qVkxyL3U0RmNtUDVWdz09
Meeting ID: 600 003 703
Password: 566048
Or iPhone one-tap (US Toll): +18333021536,,600003703# or +16507249799,,600003703#
Or Telephone:
Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
International numbers available: https://stanford.zoom.us/u/acuqphnvqT

 

ABSTRACT
Coming soon!

 

BIO
Coming soon!