Calendar

Aug
17
Tue
2021
PHIND Seminar - Orestis Vardoulis, Ph.D. @ Zoom - See Description for Zoom Link
PHIND Seminar – Orestis Vardoulis, Ph.D.
Aug 17 @ 11:00 am – 12:00 pm Zoom - See Description for Zoom Link
PHIND Seminar - Orestis Vardoulis, Ph.D. @ Zoom - See Description for Zoom Link

PHIND Seminar Series: Peace of mind for those affected by stroke

Orestis Vardoulis, Ph.D.
Co-Founder & CEO
ZeitMedical

 

Zoom Webinar Details
Webinar URL: https://stanford.zoom.us/s/94427469356
Dial: US: +1 650 724 9799  or +1 833 302 1536 (Toll Free)
Webinar ID: 944 2746 9356
Passcode: 999031

11:00am – 12:00pm Seminar & Discussion
12:00pm – 12:15pm Reception
RSVP Here

 

ABSTRACT

There is a growing population of over 10 million Americans that live with an elevated risk of having a stroke.

Each year approximately 1 million Americans survive a stroke or a ministroke, often severely affected by its debilitating effects. A more disabling stroke frequently occurs after the seminal events, leaving patients and their families scarred for life.

TIME = BRAIN. Early hospital presentation is the most critical determinant in good stroke outcomes. However, most patients arrive at the hospital often hours after the event, with less than 10% receiving any form of treatment (thrombolysis / thrombectomy).

As a result, at risk individuals struggle daily with the fear, a stroke might happen during night-time or when they are alone. Unfortunately a stroke that goes unnoticed for hours, is most often not treatable due to the lack of salvageable tissue.

To alleviate that fear, we are creating an AI-powered, smart-headband that analyzes brain waves to detect the onset of an event immediately, and alert the patient, caregivers and 911.

Our stroke detection AI has already been shown to detect ischemia during high-risk surgeries with 90% sensitivity and no false positives.

We have received FDA breakthrough designation for our solution and are currently running a pilot human factors and signal quality study.

Our vision is to provide peace of mind and optimal brain health for everyone.

 

ABOUT
Orestis is the CEO and Co-founder of Zeit Medical, a telehealth company that offers at home monitoring and alert solutions for patients at risk for stroke. Prior to starting Zeit, Orestis was a Stanford Biodesign Innovation Fellow where his team developed the initial idea about at-home stroke detection. Orestis trained as a Mechanical Engineer, at Aristotle University, Greece, earned his PhD in Biotechnology and Bioengineering at EPFL, Switzerland and conducted cutting edge research in flexible wearable electronics with the Bao Group at Stanford Chemical Engineering. He has authored more than twenty publications in prestigious journals and has filed for a variety of patents at the intersection of materials technology and medical devices. Orestis currently lives in San Francisco, where he also contributes to the UCSF-Stanford pediatric device consortium as a technology advisor.  He also maintains close ties with the med-tech and health-tech communities in Switzerland and Greece, contributing to regional Biodesign educational workshops.

 

Hosted by: Garry Gold, M.D.
Sponsored by the PHIND Center and the Department of Radiology

Sep
10
Fri
2021
CME Grand Rounds Sanjiv Sam Gambhir Lectureship - Simon Cherry, PhD @ LKSC 101/102 & Zoom - See Description for Zoom Link
CME Grand Rounds Sanjiv Sam Gambhir Lectureship – Simon Cherry, PhD
Sep 10 @ 12:00 pm – 1:00 pm LKSC 101/102 & Zoom - See Description for Zoom Link
CME Grand Rounds Sanjiv Sam Gambhir Lectureship - Simon Cherry, PhD @ LKSC 101/102 & Zoom - See Description for Zoom Link

CME Grand Rounds Sanjiv Sam Gambhir Lectureship – “Imaging at the Speed of Light:  Innovations in Positron Emission Tomography”

 

Simon R. Cherry, PhD
Professor
Biomedical Engineering & Radiology
UC Davis

 

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/600003703?pwd=RjcwS2MvOG1qVkxyL3U0RmNtUDVWdz09
Meeting ID: 600 003 703
Password: 566048
Or iPhone one-tap (US Toll): +18333021536,,600003703# or +16507249799,,600003703#
Or Telephone:
Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
International numbers available: https://stanford.zoom.us/u/acuqphnvqT

 

ABSTRACT

Positron emission tomography (PET) allows for sensitive and quantitative measurement of physiology, metabolism and molecular targets noninvasively in the human body.  However, typical clinical PET scanners capture less than 1% of the available signal produced in the body.  PET scanners also are not currently capable of precisely determining the location at which a particular decay occurs. These limitations present opportunities for further innovation that ultimately will impact molecular imaging research and diagnostic imaging with PET.  This presentation focuses on 1) total-body PET imaging which greatly improves signal collection, allowing radiotracer kinetics to be assessed across the entire human body for the first time, and 2) the development of detector technologies that have a timing precision of ~ 30 picoseconds, enabling direct localization of radiotracer decays without tomographic reconstruction.

 

BIO

Simon R. Cherry, Ph.D.  received his B.Sc.(Hons) in Physics with Astronomy from University College London in 1986 and a Ph.D. in Medical Physics from the Institute of Cancer Research, University of London in 1989.  After a postdoctoral fellowship at UCLA, he joined the faculty in the Department of Molecular and Medical Pharmacology, also at UCLA, in 1993. In 2001, Dr. Cherry joined UC Davis and established the Center for Molecular and Genomic Imaging, which he directed from 2004-2016. Currently Dr. Cherry is Distinguished Professor in the Departments of Biomedical Engineering and Radiology at UC Davis.

Dr. Cherry’s research interests center around biomedical imaging and in particular the development and application of in vivo molecular imaging systems.  His major accomplishments have been in developing systems for positron emission tomography (PET), in particular the invention of the microPET technology that was subsequently widely adopted in academia and industry and as co-leader of the EXPLORER consortium which has developed the world’s first total-body PET scanner.  He also has contributed to detector technology innovations for PET, conducted early biomedical studies using Cerenkov luminescence, and developed the first proof-of-concept hybrid PET/MRI (magnetic resonance imaging) systems.

Dr. Cherry is a founding member of the Society of Molecular Imaging and an elected fellow of six professional societies, including the Institute for Electronic and Electrical Engineers (IEEE) and the Biomedical Engineering Society (BMES). He served as Editor-in-Chief of the journal Physics in Medicine and Biology from 2011-2020. Dr. Cherry received the Academy of Molecular Imaging Distinguished Basic Scientist Award (2007), the Society for Molecular Imaging Achievement Award (2011) and the IEEE Marie Sklodowska-Curie Award (2016).   In 2016, he was elected as a member of the National Academy of Engineering and in 2017 he was elected to the National Academy of Inventors.  Dr. Cherry is the author of more than 240 peer-reviewed journal articles, review articles and book chapters in the field of biomedical imaging. He is also lead author of the widely-used textbook “Physics in Nuclear Medicine”.

Sep
21
Tue
2021
PHIND Seminar - Sindy KY Tang, Ph.D. @ Zoom - See Description for Zoom Link
PHIND Seminar – Sindy KY Tang, Ph.D.
Sep 21 @ 11:00 am – 12:00 pm Zoom - See Description for Zoom Link
PHIND Seminar - Sindy KY Tang, Ph.D. @ Zoom - See Description for Zoom Link

PHIND Seminar Series: Towards precision diagnostic and prediction of food allergy

Sindy KY Tang, Ph.D.
Associate Professor of Mechanical Engineering, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Radiology – PHIND Center
Stanford University

 

Location: Zoom
Webinar URL: https://stanford.zoom.us/s/91932966334
Dial: US: +1 650 724 9799  or +1 833 302 1536 (Toll Free)
Webinar ID: 919 3296 6334
Passcode: 383071

11:00am – 12:00pm Seminar & Discussion
RSVP Here

 

ABSTRACT
Food allergy has reached epidemic proportions. Accurate in vitro methods that are efficient and easy to use to identify offending food allergens are lacking. Oral food challenge, the gold standard for food allergy assessment, is often not performed as it places the patient at risk of anaphylaxis. As such, food allergy is often identified only after an adverse reaction that could be life-threatening. Our long-term goal is to develop a food allergy diagnostic test that is accurate, safe, rapid, and accessible, so that food allergy can be easily identified prior to the occurrence of an adverse reaction, and that the efficacy of immunotherapy for food allergy can be tracked more effectively. This talk will discuss our recent work on developing such a test. Our approach is based on the Basophil Activation Test (BAT), which measures the activation of basophils in whole blood after stimulation with specific food allergens ex vivo. The BAT has been shown to be highly predictive of allergic reactions. However, the need for flow cytometry has limited its broader use. We are developing a miniaturized, standalone version of the BAT. We envision that the test can be used at the point of care, such as the doctor’s office or at a local pharmacy.

 

ABOUT
Prof. Sindy KY Tang is the Kenneth and Barbara Oshman Faculty Scholar and Associate Professor of Mechanical Engineering and by courtesy of Radiology (Precision Health and Integrated Diagnostics) at Stanford University. She received her Ph.D. from Harvard University in Engineering Sciences under the supervision of Prof. George Whitesides. Her lab at Stanford works on the fundamental understanding of fluid mechanics and mass transport in micro-nano systems, and the application of this knowledge towards problems in biology, rapid diagnostics for health and environmental sustainability. The current areas of focus include the flow physics of confined micro-droplets using experimental and machine learning methods, interfacial mass transport and self-assembly, and ultrahigh throughput opto-microfluidic systems for disease diagnostics, water and energy sustainability, and single-cell wound healing studies. She was a Stanford Biodesign Faculty Fellow in 2018. Dr. Tang’s work has been recognized by multiple awards including the NSF CAREER Award, 3M Nontenured Faculty Award, the ACS Petroleum Fund New Investigator Award, and invited lecture at the Nobel Symposium on Microfluidics in Sweden. Website: http://web.stanford.edu/group/tanglab/

 

Hosted by: Garry Gold, M.D.
Sponsored by the PHIND Center and the Department of Radiology

Sep
22
Wed
2021
IBIIS & AIMI Seminar: Seeing the Future from Images: ML-Based Models for Cancer Risk Assessment @ Zoom: https://stanford.zoom.us/j/99474772502?pwd=NEQrQUQ0MzdtRjFiYU42TCs2bFZsUT09
IBIIS & AIMI Seminar: Seeing the Future from Images: ML-Based Models for Cancer Risk Assessment
Sep 22 @ 11:00 am – 12:00 pm Zoom: https://stanford.zoom.us/j/99474772502?pwd=NEQrQUQ0MzdtRjFiYU42TCs2bFZsUT09

 

Regina Barzilay, PhD
School of Engineering Distinguished Professor for AI and Health
Electrical Engineering and Computer Science Department
AI Faculty Lead at Jameel Clinic for Machine Learning in Health
Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology

Abstract:
In this talk, I will present methods for future cancer risk from medical images. The discussion will explore alternative ways to formulate the risk assessment task and focus on algorithmic issues in developing such models. I will also discuss our experience in translating these algorithms into clinical practice in hospitals around the world.

Sep
23
Thu
2021
MIPS Seminar - David K. Stevenson, MD @ Zoom - See Description for Zoom Link
MIPS Seminar – David K. Stevenson, MD
Sep 23 @ 12:00 pm – 12:45 pm Zoom - See Description for Zoom Link
MIPS Seminar - David K. Stevenson, MD @ Zoom - See Description for Zoom Link

MIPS Seminar Series: Predicting and Preventing Fetal and Neonatal Pathology: Looking Back and Looking Forward

David K. Stevenson, MD
The Harold K. Faber Professor of Pediatrics, Senior Associate Dean, Maternal and Child Health and Professor, by courtesy, of Obstetrics and Gynecology
Lucile Packard Children’s Hospital

 

Zoom Webinar Details
Webinar URL: https://stanford.zoom.us/s/94584828060
Dial: +1 650 724 9799 or +1 833 302 1536
Webinar ID: 945 8482 8060
Passcode: 481874

12:00pm – 12:45pm Seminar & Discussion
RSVP Here

 

ABSTRACT
The importance of minimally invasive technologies for interrogating the fetus and newborn, as well as of knowing where a biologic system is headed, not just where it has been, when trying to predict and prevent acquired diseases, will be discussed.  Examples of such technologies, such as trace gas analysis and optical reporting of biologic phenomena, and their application to model systems and the human newborn will be presented.  The role of advanced computational approaches for the integration and interpretation of large amounts of data derived from these new measurement tools will be emphasized.

 

ABOUT
Dr. David K. Stevenson is the Harold K. Faber Professor of Pediatrics and has made many impactful contributions to the field of neonatology and pediatrics, including his seminal studies on neonatal jaundice, bilirubin production and heme oxygenase biology.  As a neonatologist, his research has focused primarily on neonatal jaundice and more recently on the causes of preterm birth and its prevention.  He has held numerous leadership roles at Stanford University School of Medicine, including Vice Dean and Senior Associate Dean for Academic Affairs. He is currently the Senior Associate Dean for Maternal & Child Health, the Co-Director of the Stanford Maternal & Child Health Research Institute, and the Principal Investigator for the March of Dimes Prematurity Research Center at Stanford University.  Dr. Stevenson has received many awards, including the Virginia Apgar Award, which is the highest award in Perinatal Pediatrics, the Joseph W. St. Geme, Jr. Leadership Award from the Federation of Pediatric Organizations, the Jonas Salk Award for Leadership in Prematurity Prevention from the March of Dimes Foundation, and the John Howland Medal and Award, the highest award in academic pediatrics.  He has served as the President of the American Pediatric Society. In recognition of his achievements, Dr. Stevenson is a member of the National Academy of Medicine.

 

Hosted by: Katherine Ferrara, PhD
Sponsored by: Molecular Imaging Program at Stanford & the Department of Radiology

Sep
24
Fri
2021
CME Grand Rounds Diversity Lectureship - Jennifer L. Eberhardt, PhD @ Zoom - See Description for Zoom Link
CME Grand Rounds Diversity Lectureship – Jennifer L. Eberhardt, PhD
Sep 24 @ 12:00 pm – 1:00 pm Zoom - See Description for Zoom Link
CME Grand Rounds Diversity Lectureship - Jennifer L. Eberhardt, PhD @ Zoom - See Description for Zoom Link

CME Grand Rounds Diversity Lectureship – Topic: TBD

 

Jennifer L. Eberhardt, PhD
Professor
Psychology
Stanford University

 

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/600003703?pwd=RjcwS2MvOG1qVkxyL3U0RmNtUDVWdz09
Meeting ID: 600 003 703
Password: 566048
Or iPhone one-tap (US Toll): +18333021536,,600003703# or +16507249799,,600003703#
Or Telephone:
Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
International numbers available: https://stanford.zoom.us/u/acuqphnvqT

 

ABSTRACT
Coming soon!

 

BIO
Coming soon!

Sep
27
Mon
2021
2021 IBIIS & AIMI Virtual Retreat
Sep 27 @ 1:00 pm – 4:30 pm https://ibiis.stanford.edu/events/retreat/2021Hybrid.html

Keynote:

Self-Supervision for Learning from the Bottom Up

Why do self-supervised learning? A common answer is: “because data labeling is expensive.” In this talk, I will argue that there are other, perhaps more fundamental reasons for working on self-supervision. First, it should allow us to get away from the tyranny of top-down semantic categorization and force meaningful associations to emerge naturally from the raw sensor data in a bottom-up fashion. Second, it should allow us to ditch fixed datasets and enable continuous, online learning, which is a much more natural setting for real-world agents. Third, and most intriguingly, there is hope that it might be possible to force a self-supervised task curriculum to emerge from first principles, even in the absence of a pre-defined downstream task or goal, similar to evolution. In this talk, I will touch upon these themes to argue that, far from running its course, research in self-supervised learning is only just beginning.

Oct
6
Wed
2021
Early Detection of Cancer Conference @ Virtual Event
Early Detection of Cancer Conference
Oct 6 – Oct 8 all-day Virtual Event
Early Detection of Cancer Conference @ Virtual Event

Cancer Research UK, OHSU Knight Cancer Institute and the Canary Center at Stanford, present the Early Detection of Cancer Conference series. The annual Conference brings together experts in early detection from multiple disciplines to share ground breaking research and progress in the field.

The Conference is part of a long-term commitment to invest in early detection research, to understand the biology behind early stage cancers, find new detection and screening methods, and enhance uptake and accuracy of screening.

The 2021 conference will take place October 6-8 virtuallyFor more information visit the website: http://earlydetectionresearch.com/

Oct
8
Fri
2021
CME Grand Rounds - Christoph L. Lee, MD, MS, MBA @ Zoom - See Description for Zoom Link
CME Grand Rounds – Christoph L. Lee, MD, MS, MBA
Oct 8 @ 12:00 pm – 1:00 pm Zoom - See Description for Zoom Link
CME Grand Rounds - Christoph L. Lee, MD, MS, MBA @ Zoom - See Description for Zoom Link

CME Grand Rounds – “Community Based Partnered Research:  Revisiting a Critical Concept for Radiology”

 

Christoph L. Lee, MD, MS, MBA
Professor
Radiology
University of Washington

 

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/600003703?pwd=RjcwS2MvOG1qVkxyL3U0RmNtUDVWdz09
Meeting ID: 600 003 703
Password: 566048
Or iPhone one-tap (US Toll): +18333021536,,600003703# or +16507249799,,600003703#
Or Telephone:
Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
International numbers available: https://stanford.zoom.us/u/acuqphnvqT

 

ABSTRACT
Coming soon!

 

BIO
Coming soon!

Oct
12
Tue
2021
Cancer Early Detection Seminar Series - Azra Raza, MD @ Venue coming soon!
Cancer Early Detection Seminar Series – Azra Raza, MD
Oct 12 @ 11:00 am – 12:00 pm Venue coming soon!
Cancer Early Detection Seminar Series - Azra Raza, MD @ Venue coming soon!

CEDSS: The First Cell: A new model for cancer research and treatment

Azra Raza, M.D.
Chan Soon-Shiong Professor of Medicine
Director, Myelodysplastic Syndrome Center
Columbia University Medical Center

 

Location: Zoom
Meeting URL: https://stanford.zoom.us/s/99340345860
Dial: US: +1 650 724 9799  or +1 833 302 1536 (Toll Free)
Meeting ID: 993 4034 5860
Passcode: 711508

RSVP Here

 

ABSTRACT

Cancer research continues to be predicated on a 1970’s model of research and treatment. Despite half a century of intense research, we are failing spectacularly to improve the outcome for patients with advanced disease. Those who are cured continue to be treated mostly with the older strategies (surgery-chemo-radiation). Our contention is that the real solution to the cancer problem is to diagnose cancer early, at the stage of The First Cell. The rapidly evolving technologies are doing much in this area but need to be expanded. We study a pre-leukemic condition called myelodysplastic syndrome (MDS) with the hope that we can detect the first leukemia cells as the disease transforms to acute myeloid leukemia (AML). Towards this end, we have collected blood and bone marrow samples on MDS and AML patients since 1984. Today, our Tissue Repository has more than 60,000 samples. We propose novel methods to identify surrogate markers that can identify the First Cell through studying the serial samples of patients who evolve from MDS to AML.

 

ABOUT

Dr. Raza is a Professor of Medicine and Director of the MDS Center at Columbia University in New York, NY.She started her research in Myelodisplastic Syndromes (MDS) in 1982 and moved to Rush University, Chicago, Illinois in 1992, where she was the Charles Arthur Weaver Professor in Oncology and Director, Division of Myeloid Diseases. The MDS Program, along with a Tissue Repository containing more than 50,000 samples from MDS and acute leukemia patients was successfully relocated to the University of Massachusetts in 2004 and to Columbia University in 2010.

Before moving to New York, Dr. Raza was the Chief of Hematology Oncology and the Gladys Smith Martin Professor of Oncology at the University of Massachussetts in Worcester. She has published the results of her laboratory research and clinical trials in prestigious, peer reviewed journals such as The New England Journal of Medicine, Nature, Blood, Cancer, Cancer Research, British Journal of Hematology, Leukemia, and Leukemia Research. Dr. Raza serves on numerous national and international panels as a reviewer, consultant and advisor and is the recipient of a number of awards.

 

Hosted by: Utkan Demirci, Ph.D.
Spon
sored by: The Canary Center & the Department of Radiology 
Stanford University – School of Medicine