Calendar

Sep
9
Wed
2020
Diversity in Radiology & Molecular Imaging: What We Need to Know @ Virtual Event
Diversity in Radiology & Molecular Imaging: What We Need to Know
Sep 9 – Sep 11 all-day Virtual Event
Diversity in Radiology & Molecular Imaging: What We Need to Know @ Virtual Event

Dear WMIS trainees, colleagues and friends,

We welcome you to join our upcoming virtual WMIS – Stanford Diversity conference on September 9-11, 2020. We are coming together to reinforce our commitment to diversity and to provide a forum for our team members to engage in meaningful discussions. The conference will provide keynote lectures, scientific presentations and educational lectures from leaders and pioneers in the field, who will discuss important topics related to racial justice, women in STEM and Global Health. We are also offering breakout sessions whereby carefully selected individuals will facilitate a discussion about how to implement more supportive and inclusive practices into our daily professional and personal life. The breakout sessions are designed to enable active involvement of smaller groups where people feel safe to discuss current challenges in the STEM field and actionable solutions.

This conference is free of charge and will provide 9.5 CME credits. Abstracts of all conference presentations and a summary of discussion points and insights provided by all conference participants will be published in Molecular Imaging & Biology. The organizing committee will provide 10 trainee prizes in the form of free WMIS memberships to conference attendants for the 2021 WMIC in Miami.

Website: https://www.wmislive.org

Sep
16
Wed
2020
IBIIS & AIMI Seminar - Judy Gichoya, MD @ Zoom - See Description for Zoom Link
IBIIS & AIMI Seminar – Judy Gichoya, MD
Sep 16 @ 12:00 pm – 1:00 pm Zoom - See Description for Zoom Link
IBIIS & AIMI Seminar - Judy Gichoya, MD @ Zoom - See Description for Zoom Link

Judy Gichoya, MD
Assistant Professor
Emory University School of Medicine

Measuring Learning Gains in Man-Machine Assemblage When Augmenting Radiology Work with Artificial Intelligence

Abstract
The work setting of the future presents an opportunity for human-technology partnerships, where a harmonious connection between human-technology produces unprecedented productivity gains. A conundrum at this human-technology frontier remains – will humans be augmented by technology or will technology be augmented by humans? We present our work on overcoming the conundrum of human and machine as separate entities and instead, treats them as an assemblage. As groundwork for the harmonious human-technology connection, this assemblage needs to learn to fit synergistically. This learning is called assemblage learning and it will be important for Artificial Intelligence (AI) applications in health care, where diagnostic and treatment decisions augmented by AI will have a direct and significant impact on patient care and outcomes. We describe how learning can be shared between assemblages, such that collective swarms of connected assemblages can be created. Our work is to demonstrate a symbiotic learning assemblage, such that envisioned productivity gains from AI can be achieved without loss of human jobs.

Specifically, we are evaluating the following research questions: Q1: How to develop assemblages, such that human-technology partnerships produce a “good fit” for visually based cognition-oriented tasks in radiology? Q2: What level of training should pre-exist in the individual human (radiologist) and independent machine learning model for human-technology partnerships to thrive? Q3: Which aspects and to what extent does an assemblage learning approach lead to reduced errors, improved accuracy, faster turn-around times, reduced fatigue, improved self-efficacy, and resilience?

Zoom: https://stanford.zoom.us/j/93580829522?pwd=ZVAxTCtEdkEzMWxjSEQwdlp0eThlUT09

Oct
21
Wed
2020
SCIT Quarterly Seminar @ See description for ZOOM link
SCIT Quarterly Seminar
Oct 21 @ 10:00 am – 11:00 am See description for ZOOM link

ZOOM LINK HERE

“High Resolution Breast Diffusion Weighted Imaging”
Jessica McKay, PhD

ABSTRACT: Diffusion-weighted imaging (DWI) is a quantitative MRI method that measures the apparent diffusion coefficient (ADC) of water molecules, which reflects cell density and serves as an indication of malignancy. Unfortunately, however, the clinical value of DWI is severely limited by the undesirable features in images that common clinical methods produce, including large geometric distortions, ghosting and chemical shift artifacts, and insufficient spatial resolution. Thus, in order to exploit information encoded in diffusion characteristics and fully assess the clinical value of ADC measurements, it is first imperative to achieve technical advancements of DWI.

In this talk, I will largely focus on the background of breast DWI, providing the clinical motivation for this work and explaining the current standard in breast DWI and alternatives proposed throughout the literature. I will also present my PhD dissertation work in which a novel strategy for high resolution breast DWI was developed. The purpose of this work is to improve DWI methods for breast imaging at 3 Tesla to robustly provide diffusion-weighted images and ADC maps with anatomical quality and resolution. This project has two major parts: Nyquist ghost correction and the use of simultaneous multislice imaging (SMS) to achieve high resolution. Exploratory work was completed to characterize the Nyquist ghost in breast DWI, showing that, although the ghost is mostly linear, the three-line navigator is unreliable, especially in the presence of fat. A novel referenceless ghost correction, Ghost/Object minimization was developed that reduced the ghost in standard SE-EPI and advanced SMS. An advanced SMS method with axial reformatting (AR) is presented for high resolution breast DWI. In a reader study, AR-SMS was preferred by three breast radiologists compared to the standard SE-EPI and readout-segmented-EPI.


“Machine-learning Approach to Differentiation of Benign and Malignant Peripheral Nerve Sheath Tumors: A Multicenter Study”

Michael Zhang, MD

ABSTRACT: Clinicoradiologic differentiation between benign and malignant peripheral nerve sheath tumors (PNSTs) is a diagnostic challenge with important management implications. We sought to develop a radiomics classifier based on 900 features extracted from gadolinium-enhanced, T1-weighted MRI, using the Quantitative Imaging Feature Pipeline and the PyRadiomics package. Additional patient-specific clinical variables were recorded. A radiomic signature was derived from least absolute shrinkage and selection operator, followed by gradient boost machine learning. A training and test set were selected randomly in a 70:30 ratio. We further evaluated the performance of radiomics-based classifier models against human readers of varying medical-training backgrounds. Following image pre-processing, 95 malignant and 171 benign PNSTs were available. The final classifier included 21 features and achieved a sensitivity 0.676, specificity 0.882, and area under the curve (AUC) 0.845. Collectively, human readers achieved sensitivity 0.684, specificity 0.742, and AUC 0.704. We concluded that radiomics using routine gadolinium enhanced, T1-weighted MRI sequences and clinical features can aid in the evaluation of PNSTs, particularly by increasing specificity for diagnosing malignancy. Further improvement may be achieved with incorporation of additional imaging sequences.

Nov
18
Wed
2020
IBIIS & AIMI Seminar: Deep Tomographic Imaging @ Zoom: https://stanford.zoom.us/j/96731559276?pwd=WG5zcEFwSGlPcDRsOUFkVlRhcEs2Zz09
IBIIS & AIMI Seminar: Deep Tomographic Imaging
Nov 18 @ 12:00 pm – 1:00 pm Zoom: https://stanford.zoom.us/j/96731559276?pwd=WG5zcEFwSGlPcDRsOUFkVlRhcEs2Zz09

Ge Wang, PhD
Clark & Crossan Endowed Chair Professor
Director of the Biomedical Imaging Center
Rensselaer Polytechnic Institute
Troy, New York

Abstract:
AI-based tomography is an important application and a new frontier of machine learning. AI, especially deep learning, has been widely used in computer vision and image analysis, which deal with existing images, improve them, and produce features. Since 2016, deep learning techniques are actively researched for tomography in the context of medicine. Tomographic reconstruction produces images of multi-dimensional structures from externally measured “encoded” data in the form of various transforms (integrals, harmonics, and so on). In this presentation, we provide a general background, highlight representative results, and discuss key issues that need to be addressed in this emerging field.

About:
AI-based X-ray Imaging System (AXIS) lab is led by Dr. Ge Wang, affiliated with the Department of Biomedical Engineering at Rensselaer Polytechnic Institute and the Center for Biotechnology and Interdisciplinary Studies in the Biomedical Imaging Center. AXIS lab focuses on innovation and translation of x-ray computed tomography, optical molecular tomography, multi-scale and multi-modality imaging, and AI/machine learning for image reconstruction and analysis, and has been continuously well funded by federal agencies and leading companies. AXIS group collaborates with Stanford, Harvard, Cornell, MSK, UTSW, Yale, GE, Hologic, and others, to develop theories, methods, software, systems, applications, and workflows.

Jan
15
Fri
2021
Radiology-Wide Research Meeting @ Zoom - See description for more information
Radiology-Wide Research Meeting
Jan 15 @ 12:00 pm – 1:00 pm Zoom - See description for more information
Radiology-Wide Research Meeting @ Zoom - See description for more information

Radiology Department-Wide Research Meeting

Curt Langlotz, MD, PhD: Overview of the AIMI Center
Brian Hargreaves, PhD: Research Details from Town Hall, Q&A, and COVID19 Updates

 

Location: Zoom – Details can be found here: https://radresearch.stanford.edu
Meetings will be the 3rd Friday of each month.

 

Hosted by: Brian Hargreaves, PhD
Sponsored by: the the Department of Radiology

Feb
19
Fri
2021
Radiology-Wide Research Meeting @ Zoom - See description for more information
Radiology-Wide Research Meeting
Feb 19 @ 12:00 pm – 1:00 pm Zoom - See description for more information
Radiology-Wide Research Meeting @ Zoom - See description for more information

Radiology Department-Wide Research Meeting

Location: Zoom – Details can be found here: https://radresearch.stanford.edu
Meetings will be the 3rd Friday of each month.

 

February 19 Speakers: 

Bruce Daniel, MDCenter Overview: IMMERS

Jennifer McNab, PhDEncoding and Decoding Diffusion MRI

 

Hosted by: Brian Hargreaves, PhD
Sponsored by: the the Department of Radiology

Mar
19
Fri
2021
Radiology-Wide Research Meeting
Radiology-Wide Research Meeting
Mar 19 @ 12:00 pm – 1:00 pm
Radiology-Wide Research Meeting

Radiology Department-Wide Research Meeting

• Dominik Fleischmann, MD: 3DQ Lab Overview
• Tom Soh, PhD: Research Updates

 

Location: Zoom – Details can be found here: https://radresearch.stanford.edu
Meetings will be the 3rd Friday of each month.

 

Hosted by: Brian Hargreaves, PhD
Sponsored by: the the Department of Radiology

Apr
16
Fri
2021
Radiology-Wide Research Meeting
Radiology-Wide Research Meeting
Apr 16 @ 12:00 pm – 1:00 pm
Radiology-Wide Research Meeting

Radiology Department-Wide Research Meeting

• Research Announcements
• Michelle James, PhD – Detecting and Tracking Immune Responses in the Brain and Beyond using PET
• Ryan Spitler, PhD – Precision Health and Integrated Diagnostics (PHIND) Center

Location: Zoom – Details can be found here: https://radresearch.stanford.edu
Meetings will be the 3rd Friday of each month.

 

Hosted by: Brian Hargreaves, PhD
Sponsored by: the the Department of Radiology

Apr
30
Fri
2021
Racial Equity Challenge: Race in society @ Zoom
Racial Equity Challenge: Race in society
Apr 30 @ 12:00 pm – 1:00 pm Zoom
Racial Equity Challenge: Race in society @ Zoom

Targeted violence continues against Black Americans, Asian Americans, and all people of color. The department of radiology diversity committee is running a racial equity challenge to raise awareness of systemic racism, implicit bias and related issues. Participants will be provided a list of resources on these topics such as articles, podcasts, videos, etc., from which they can choose, with the “challenge” of engaging with one to three media sources prior to our session (some videos are as short as a few minutes). Participants will meet in small-group breakout sessions to discuss what they’ve learned and share ideas.

Please reach out to Marta Flory, flory@stanford.edu with questions. For details about the session, including recommended resources and the Zoom link, please reach out to Meke Faaoso at mfaaoso@stanford.edu.

May
21
Fri
2021
Radiology-Wide Research Meeting
Radiology-Wide Research Meeting
May 21 @ 12:00 pm – 1:00 pm
Radiology-Wide Research Meeting

Radiology Department-Wide Research Meeting

• Research Announcements
• Koen Nieman, M.D., PhD – Coronary Artery Disease by Computed Tomography
• Martin Willemink, M.D., PhD – Translating Emerging Cardiovascular CT Techniques into the Clinical Setting

Location: Zoom – Details can be found here: https://radresearch.stanford.edu
Meetings will be the 3rd Friday of each month.

 

Hosted by: Daniel Ennis, PhD
Sponsored by: the the Department of Radiology