Calendar

Dec
15
Wed
2021
IBIIS & AIMI Seminar: Indrani Bhattacharya, PhD & Rogier van der Sluijs, PhD @ Zoom: https://stanford.zoom.us/j/95371438521?pwd=Y3BheHpUanpESnh6VUkycVhlUWtodz09
IBIIS & AIMI Seminar: Indrani Bhattacharya, PhD & Rogier van der Sluijs, PhD
Dec 15 @ 12:00 pm – 1:00 pm Zoom: https://stanford.zoom.us/j/95371438521?pwd=Y3BheHpUanpESnh6VUkycVhlUWtodz09

Indrani Bhattacharya, PhD
Postdoctoral Research Fellow
Department of Radiology
Stanford University

Title: Multimodal Data Fusion for Selective Identification of Aggressive and Indolent Prostate Cancer on Magnetic Resonance Imaging

Abstract: Automated methods for detecting prostate cancer and distinguishing indolent from aggressive disease on Magnetic Resonance Imaging (MRI) could assist in early diagnosis and treatment planning. Existing automated methods of prostate cancer detection mostly rely on ground truth labels with limited accuracy, ignore disease pathology characteristics observed on resected tissue, and cannot selectively identify aggressive (Gleason Pattern≥4) and indolent (Gleason Pattern=3) cancers when they co-exist in mixed lesions. This talk will cover multimodal and multi-scale fusion approaches to integrate radiology images, pathology images, and clinical domain knowledge about prostate cancer distribution to selectively identify and localize aggressive and indolent cancers on prostate MRI.

Rogier van der Sluijs, PhD
Postdoctoral Research Fellow
Department of Radiology
Stanford University

Title: Pretraining Neural Networks for Medical AI

Abstract: Transfer learning has quickly become standard practice for deep learning on medical images. Typically, practitioners repurpose existing neural networks and their corresponding weights to bootstrap model development. This talk will cover several methods to pretrain neural networks for medical tasks. The current challenges for pretraining neural networks in Radiology will be discussed and recent advancements that address these bottlenecks will be highlighted.

Jan
19
Wed
2022
IBIIS & AIMI Seminar: AI In Clinical Use – Lessons Learned @ Zoom: https://stanford.zoom.us/j/92632628279?pwd=S3RFdXdEUmEweTNKelhrcmVxQUExdz09
IBIIS & AIMI Seminar: AI In Clinical Use – Lessons Learned
Jan 19 @ 12:00 pm – 1:00 pm Zoom: https://stanford.zoom.us/j/92632628279?pwd=S3RFdXdEUmEweTNKelhrcmVxQUExdz09

Nina Kottler, MD, MS
Associate Chief Medical Officer, Clinical AI
VP Clinical Operations
Radiology Partners

Abstract:
We have a call to action in healthcare – we need to drive value.  Artificial intelligence (AI), if deployed correctly, can help accomplish this lofty mission.  In this discussion we will review the following lessons learned in deploying radiology AI at scale:  4 unexpected benefits of implementing AI emergent finding triage; the importance of investing in AI radiologist education; how “most” AI needs to be incorporated into the radiologist workflow; why a platform is required to deploy AI at scale and what a modern platform looks like; how to use AI to add value to your data; and, as Dr. Curt Langlotz famously said, why rads (practices) who use AI will replace those who don’t (a depiction of what the role of the radiologist might look like in a tech enabled future).

Bio:
Dr. Kottler has been a practicing radiologist specializing in emergency imaging for over 16 years.  Combining her clinical experience with a graduate degree in applied mathematics, she has been using technological innovation to drive value in radiology.  As the first radiologist to join Radiology Partners, Dr. Kottler has held multiple leadership positions within her practice and is currently the associate Chief Medical Officer for Clinical AI.  Externally Dr. Kottler serves on multiple committees for the ACR, RSNA, and SIIM.  Dr. Kottler is also passionate about promoting diversity and creating a culture of belonging.  As such she is a member of the AAWR, is a member of the diversity and inclusion committee at SIIM, serves on the steering committee for RAD=, and leads the education and development division of the Belonging Committee within Radiology Partners.