Calendar

Mar
23
Tue
2021
PHIND Symposium @ Virtual Livestream
PHIND Symposium
Mar 23 @ 9:30 am – 4:05 pm Virtual Livestream
PHIND Symposium @ Virtual Livestream

Join us for the annual Precision Health & Integrated Diagnostics Symposium. This all-day virtual event will showcase the exciting PHIND work that is going on campus wide. The featured presentations will be from current PHIND investigators and Precision Health experts. We hope you can join us and look forward to building the PHIND community together.

Register Here

The agenda and speaker information are available on the PHIND website. The event is fully virtual and the livestream link will be posted on the PHIND website closer to the event.
Mar
25
Thu
2021
MIPS Seminar - Shan X. Wang, PhD @ Zoom - See Description for Zoom Link
MIPS Seminar – Shan X. Wang, PhD
Mar 25 @ 12:00 pm – 12:45 pm Zoom - See Description for Zoom Link
MIPS Seminar - Shan X. Wang, PhD @ Zoom - See Description for Zoom Link

MIPS Seminar Series: “Circulating Tumor DNA Biomarkers for Therapy Monitoring and Early Detection”

Shan X. Wang, PhD
Leland T. Edwards Professor in the School of Engineering
Professor of Materials Science & Engineering, jointly of Electrical Engineering, and by courtesy of Radiology (Stanford School of Medicine)
Director, Stanford Center for Magnetic Nanotechnology
Stanford University

 

Location: Zoom
Webinar URL: https://stanford.zoom.us/s/93202777468
Dial: +1 650 724 9799 or +1 833 302 1536
Webinar ID: 932 0277 7468
Passcode: 851144

12:00pm – 12:45pm Seminar & Discussion
RSVP Here

 

ABSTRACT
Inspired by Dr Sam Gambhir, MIPS, Canary Center, and Stanford CCNE have pursued in vivo imaging and in vitro diagnostic tests for cancer therapeutic response or early detection, respectively, over the last 15+ years. Here I present two successful examples based on circulating tumor DNA (ctDNA) targets in plasma, complementary to imaging modalities such as CT and Ultrasound.

We have developed a simple yet highly sensitive assay for the detection of actionable mutational targets such as Epidermal Growth Factor Receptor (EGFR) and Kirsten rat sarcoma oncogene (KRAS) mutations in the plasma ctDNA from non-small cell lung cancer (NSCLC) patients using giant magnetoresistive (GMR) nanosensors. Our assay achieves lower limits of detection compared to standard fluorescent PCR based assays, and comparable performance to digital PCR methods. In 30 patients with metastatic disease and known EGFR mutation status at diagnosis, our assay achieved 87.5% sensitivity for Exon19 deletion and 90% sensitivity for L858R mutation while retaining 100% specificity; additionally, our assay detected secondary T790M mutation resistance with 96.3% specificity while retaining 100% sensitivity. We re-sampled 13 patients undergoing tyrosine kinase inhibitor (TKI) therapy 2 weeks after initiation to assess response, our GMR assay was 100% accurate in correlation with longitudinal clinical outcome, and the responders identified by the GMR assay had significantly improved progression free survival (PFS) compared to the non-responders. The GMR assay is low cost, rapid, and portable, making it ideal for detecting actionable mutations at diagnosis and non-invasively monitoring treatment response in the clinic.

On another front, we have also developed a highly sensitive and multiplexed assay for the detection of methylated ctDNA targets in plasma samples. Current diagnostic tests for liver cancer in at-risk patients are cumbersome, costly and inaccurate, resulting in a need for accurate blood-based tests. By devising a Layered Analysis of Methylated Biomarkers (LAMB) from the relevant big data, we have discovered a set of DNA targets in the blood that accurately detects liver cancer in these at-risk patients. This set of methylated targets was found by analyzing the genetic information of 3411 liver cancer patients and 1722 healthy people. Our results could lead to clinical adoption of liquid biopsy tests for liver cancer surveillance in high-risk populations and the development of blood tests for other cancers.

 

ABOUT
Prof. Wang directs the Center for Magnetic Nanotechnology and is a leading expert in biosensors, information storage and spintronics. His research and inventions span across a variety of areas including magnetic biochips, in vitro diagnostics, cancer biomarkers, magnetic nanoparticles, magnetic sensors, magnetoresistive random access memory, and magnetic integrated inductors. He has over 300 publications, and holds 65 issued or pending patents in these and interdisciplinary areas. He was named an inaugural Fred Terman Fellow, and was elected a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) and a Fellow of American Physical Society (APS) for his seminal contributions to magnetic materials and nanosensors. His team won the Grand Challenge Exploration Award from Gates Foundation (2010), the XCHALLENGE Distinguished Award (2014), and the Bold Epic Innovator Award from the XPRIZE Foundation (2017).

Dr. Wang cofounded three high-tech startups in Silicon Valley, including MagArray, Inc. and Flux Biosciences, Inc. In 2018 MagArray launched a first of its kind lung cancer early diagnostic assay based on protein cancer biomarkers and support vector machine (SVM). In 2019, Flux Biosciences launched a human trial to offer at-home testing of fertility based on hormones and magneto-nanosensors. Through his participation in the Center for Cancer Nanotechnology Excellence (as co-PI of the CCNE) and the Joint University Microelectronics Program (JUMP), he is actively engaged in the transformative research of healthcare and is developing emerging memories for energy efficient computing.

 

 

Hosted by: Katherine Ferrara, PhD
Sponsored by: Molecular Imaging Program at Stanford & the Department of Radiology

Apr
20
Tue
2021
PHIND Seminar - Manuel Garcia-Toca, M.D. & Oliver O. Aalami, M.D. @ Zoom - See Description for Zoom Link
PHIND Seminar – Manuel Garcia-Toca, M.D. & Oliver O. Aalami, M.D.
Apr 20 @ 11:00 am – 12:00 pm Zoom - See Description for Zoom Link
PHIND Seminar - Manuel Garcia-Toca, M.D. & Oliver O. Aalami, M.D. @ Zoom - See Description for Zoom Link

PHIND Seminar Series: Impact of the Veterans Affairs National Abdominal Aortic Screening Program

Manuel Garcia-Toca, M.D.
Clinical Professor of Surgery
Chief, Division of  Vascular Surgery
Santa Clara Valley Medical Center (SCVMC)

 

Oliver O. Aalami, M.D.
Clinical Associate Professor of Surgery, Vascular Surgery
Lucile Packard Children’s Hospital

 

Location: Zoom
Webinar URL: https://stanford.zoom.us/s/98417624095
Dial: US: +1 650 724 9799  or +1 833 302 1536 (Toll Free)
Webinar ID: 984 1762 4095
Passcode: 111283

11:00am – 12:00pm Seminar & Discussion
RSVP Here

 

ABSTRACT

Background: The U.S. Federal Government enacted the Screen for Abdominal Aortic Aneurysms Very Efficiently Act in January 2007. Simultaneously, the Department of Veterans Affairs (VA) implemented a more inclusive AAA screening policy for veteran beneficiaries shortly afterwards.

 

Our study aimed to evaluate the impact of the VA program on AAA detection rate and all-cause mortality compared to a cohort of patients whose aneurysms were identified by other abdominal imaging.

 

Methods: We identified veterans with an AAA screening study using the two existing Current Procedural Terminology (CPT) codes (G0389 and 76706).  In the comparison group, eligible abdominal imaging studies included ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) queried according to CPT codes between 2001 and 2018.

 

We used a difference-in-differences regression model to evaluate the change in aneurysm detection rate and all-cause mortality five years before and eleven years after the VA implemented the screening policy in 2007.

 

We calculated survival estimates after AAA screening or non-screening imaging of patients with or without AAA diagnosis and used multivariate Cox regression model to evaluate mortality in patients with a positive AAA diagnosis adjusting for patient characteristics and comorbidities.

 

Results: We identified 3.9 million veterans with abdominal imaging, a total of 303,664 of whom were coded has having an AAA US screening between 2007 and 2018. An AAA diagnosis was made in 4.84% of the screening group vs. 1.3% in the non-screening imaging group P<0.001, yet more aneurysms were found with general imaging studies (50,730 vs.15,449) (Fig 1).

 

On Kaplan-Meier survival analysis, patients with an AAA diagnosis had higher overall mortality than patients who screened normal; patients with aneurysms found with non-screening imaging had the highest mortality, log-rank P<0.001 (Fig 2).

 

The difference in differences regression analysis, showed that the absolute AAA detection rate was 1.55% higher (95% CI 1.2- 1.8), and the mortality was 13.89 % lower (95% CI 10.18 %-16.66 %) after the introduction of the screening program in 2007.

 

Multivariate Cox regression analysis in patients with AAA diagnosis (65-74-year-old) demonstrated a significantly lower 5-year mortality [HR 0.45 (95% CI 0.43-0.48)] for patients in the US Screening group P<0.001.

 

Conclusions: In a nationwide analysis of VA patients, implementation of AAA screening was associated with improved survival and a higher rate of AAA diagnosis. These findings provide further support for this program’s continuation versus defaulting to incidental recognition following other abdominal imaging.

 

ABOUT MANUEL GARCIA-TOCA
Dr. Garcia-Toca earned his medical degree at the Universidad Anahuac in Mexico 1999. He has a master’s degree in Health Policy from Stanford University.

 

He received his general surgery training at the Massachusetts General Hospital and Brown University in 2008. He then completed a Vascular Surgery fellowship at Northwestern University in 2010. Dr. Garcia-Toca is board certified in both surgery and vascular surgery.

 

Dr. Garcia-Toca joined Stanford Vascular Surgery in 2015. He is currently Clinical Professor of Surgery in the Division of Vascular Surgery. Dr. Garcia-Toca had previously served as an Assistant Professor of Surgery at Brown University.  Dr. Garcia Toca is a Staff Surgeon at Santa Clara Valley Medical Center in San Jose.

 

His research interests include new therapeutic strategies and outcomes for the management of vascular trauma, cerebrovascular diseases, dialysis access, aortic dissection and aneurysms.

 

ABOUT OLIVER O. AALAMI
Dr. Aalami is a Clinical Associate Professor of Vascular & Endovascular Surgery at Stanford University and the Palo Alto VA and serves as the Lead Director of Stanford’s Biodesign for Digital Health. He is the course director for Biodesign for Digital Health,  Building for Digital Health and co-founder of the open source project,  CardinalKit, developed to support sensor-based mobile research projects.  His primary research focuses on clinically validating the sensors in smartphones and smartwatches in patients with cardiovascular disease to further precision health implementation.

 

Hosted by: Garry Gold, M.D.
Sponsored by the PHIND Center and the Department of Radiology

Apr
22
Thu
2021
MIPS Seminar - Jennifer Dionne, PhD @ Zoom - See Description for Zoom Link
MIPS Seminar – Jennifer Dionne, PhD
Apr 22 @ 12:00 pm – 12:45 pm Zoom - See Description for Zoom Link
MIPS Seminar - Jennifer Dionne, PhD @ Zoom - See Description for Zoom Link

MIPS Seminar Series: Emerging nanophotonic platforms for infectious disease diagnostics: Re-imagining the conventional microbiology toolkit

Jennifer Dionne, PhD
Senior Associate Vice Provost for Research Platforms/Shared Facilities
Associate Professor of Material Science and Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)
Stanford University

 

Location: Zoom
Webinar URL: https://stanford.zoom.us/j/95883654314
Dial: +1 650 724 9799 or +1 833 302 1536
Webinar ID: 958 8365 4314
Passcode: 105586

12:00pm – 12:45pm Seminar & Discussion
RSVP Here

 

ABSTRACT
We present our research controlling light at the nanoscale for infectious disease diagnostics, including detecting bacteria at low concentration, sensing COVID gene sequences, and visualizing in-vivo inter-cellular forces. First, we combine Raman spectroscopy and deep learning to accurately classify bacteria by both species and antibiotic resistance in a single step. We design a convolutional neural network (CNN) for spectral data and train it to identify 30 of the most common bacterial strains from single-cell Raman spectra, achieving antibiotic treatment identification accuracies exceeding 99% and species identification accuracies similar to leading mass spectrometry identification techniques. Our combined Raman-CNN system represents a proof-of-concept for rapid, culture-free identification of bacterial isolates and antibiotic resistance.  Second, we describe resonant nanophotonic surfaces, known as “metasurfaces” that enable multiplexed detection of SARS-CoV-2 gene sequences. Our metasurfaces utilize guided mode resonances excited in high refractive index nanostructures. The high quality factor modes produce a large amplification of the electromagnetic field near the nanostructures that increase the response to targeted binding of nucleic acids; simultaneously, the optical signal is beam-steered for multiplexed detection. We describe how this platform can be manufactured at scale for portable, low-cost assays. Finally, we introduce a new class of in vivo optical probes to monitor biological forces with high spatial resolution. Our design is based on upconverting nanoparticles that, when excited in the near-infrared, emit light of a different color and intensity in response to nano-to-microNewton forces. The nanoparticles are sub-30nm in size, do not bleach or photoblink, and can enable deep tissue imaging with minimal tissue autofluorescence. We present the design, synthesis, and characterization of these nanoparticles both in vitro and in vivo, focusing on the forces generated by the roundworm C. elegans as it feeds and digests its bacterial food.

 

ABOUT
Jennifer Dionne is the Senior Associate Vice Provost of Research Platforms/Shared Facilities and an associate professor of Materials Science and Engineering and, by courtesy, of Radiology at Stanford. She is also an Associate Editor of Nano Letters, director of the DOE-funded Photonics at Thermodynamic Limits Energy Frontier Research Center, and an affiliate faculty of the Wu Tsai Neurosciences Institute, the Institute for Immunity, Transplantation, and Infection, and Bio-X. Jen received her B.S. degrees in Physics and Systems Science and Mathematics from Washington University in St. Louis, her Ph. D. in Applied Physics at the California Institute of Technology in 2009, and her postdoctoral training in Chemistry at Berkeley.  Her research develops nanophotonic methods to observe and control chemical and biological processes as they unfold with nanometer scale resolution, emphasizing critical challenges in global health and sustainability. Her work has been recognized with the Alan T. Waterman Award, a NIH Director’s New Innovator Award, a Moore Inventor Fellowship, the Materials Research Society Young Investigator Award, and the Presidential Early Career Award for Scientists and Engineers, and was featured on Oprah’s list of “50 Things that will make you say ‘Wow’!”.  Beyond the lab, Jen enjoys exploring the intersection of art and science, long-distance cycling, and reliving her childhood with her two young sons.

 

Hosted by: Katherine Ferrara, PhD
Sponsored by: Molecular Imaging Program at Stanford & the Department of Radiology

Apr
30
Fri
2021
Racial Equity Challenge: Race in society @ Zoom
Racial Equity Challenge: Race in society
Apr 30 @ 12:00 pm – 1:00 pm Zoom
Racial Equity Challenge: Race in society @ Zoom

Targeted violence continues against Black Americans, Asian Americans, and all people of color. The department of radiology diversity committee is running a racial equity challenge to raise awareness of systemic racism, implicit bias and related issues. Participants will be provided a list of resources on these topics such as articles, podcasts, videos, etc., from which they can choose, with the “challenge” of engaging with one to three media sources prior to our session (some videos are as short as a few minutes). Participants will meet in small-group breakout sessions to discuss what they’ve learned and share ideas.

Please reach out to Marta Flory, flory@stanford.edu with questions. For details about the session, including recommended resources and the Zoom link, please reach out to Meke Faaoso at mfaaoso@stanford.edu.

May
12
Wed
2021
MIPS Special Seminar - Jubilant Biosys @ Zoom - See Description for Zoom Link
MIPS Special Seminar – Jubilant Biosys
May 12 @ 9:00 am – 10:00 am Zoom - See Description for Zoom Link
MIPS Special Seminar - Jubilant Biosys @ Zoom - See Description for Zoom Link

MIPS Special Seminar: Jubilant Biosys: Drug discovery and contract research services, from target discovery to candidate selection

 

Thomas Haywood, PhD
Head of International Radiochemistry Collaborations
Stanford University

 

Saurabh Kapure, MBA
Vice President, Business Development (USA & APAC)
Jubilant Biosys Limited

 

Jay Sheth, MBA
Manager Business Development, Drug Discovery Services, and CDMO
Jubilant Biosys Limited

 

LOCATION: Zoom
Meeting URL: https://stanford.zoom.us/j/98108346345
Dial: +1 650 724 9799 or +1 833 302 1536
Meeting ID: 981 0834 6345
Passcode: 397741

SCHEDULE
9:00-9:15  AM, PT Thomas Haywood – Stanford Radiology projects
9:15-9:30 AM, PT – Saurabh Kapure – Introduction to Jubilant Biosys, Scale-up and GMP manufacturing
9:30-9:40 AM, PT Jay Sheth – How Jubilant Biosys works with academic partners: examples and case-studies
9:40-10:00 AM, PT – Moderated by Jason Thanh Lee  – Discussion

 

ABOUT
Jubilant Biosys, an integrated contract research organization in India with business offices in Asia and North America, is a leading collaborator for biotechnology and pharmaceutical companies, with in-depth expertise in discovery informatics, medicinal chemistry, structural biology, and in vitro pharmacology services. Jubilant Biosys provides comprehensive drug discovery services and contract research services, from target discovery to candidate selection and with flexible business models (FFS, FTE and risk shared). This seminar will showcase case studies from recent Stanford projects and a discussion of future opportunities.

 

Sponsored by: Molecular Imaging Program at Stanford, Department of Radiology

May
18
Tue
2021
PHIND Seminar - Patricia A. Deverka, MD, MS, MBE & Kathryn A. Phillips, PhD @ Zoom - See Description for Zoom Link
PHIND Seminar – Patricia A. Deverka, MD, MS, MBE & Kathryn A. Phillips, PhD
May 18 @ 11:00 am – 12:00 pm Zoom - See Description for Zoom Link
PHIND Seminar - Patricia A. Deverka, MD, MS, MBE & Kathryn A. Phillips, PhD @ Zoom - See Description for Zoom Link

PHIND Seminar Series: Multi-Cancer Early Detection Screening Tests – “Liquid Biopsy Tests” – Are Here – But Will Payers Provide Insurance Coverage?

 

Patricia A. Deverka, MD, MS, MBE
Executive Director
Deverka Consulting, LLC

 

Kathryn A. Phillips, PhD
Professor of Health Economics and Health Services Research
Founding Director, UCSF Center for Translational and Policy Research on Personalized Medicine (TRANSPERS)

 

Location: Zoom
Webinar URL: https://stanford.zoom.us/s/99194110894
Dial: US: +1 650 724 9799  or +1 833 302 1536 (Toll Free)
Webinar ID: 991 9411 0894
Passcode: 044958

11:00am – 12:00pm Seminar & Discussion
RSVP Here

 

ABSTRACT
The emergence of Multi-Cancer Early Detection Screening Tests (MCED) – “liquid biopsy screening tests” – has generated enormous interest because they could fundamentally shift how cancer screening is done. One company is already offering an MCED test for clinical use as a “lab developed test” (LDT) – and thus addressing the question of “who will pay” has become urgent. These tests offer potentially transformative screening and clinical benefits, but their characteristics present unique challenges to payer coverage decision-making and generate concerns about the potentially high cost of widespread adoption.

We will present our ongoing work on examining the unique challenges that MCED present for payer coverage decision-making, drawing on our extensive experience with coverage and reimbursement for new technologies. We will focus on identifying the evidence generation strategies that could be pursued now to inform payer decision-making so that coverage policies can be developed that are appropriate and equitable for this ground-breaking technology.

 

ABOUT PATRICIA A. DEVERKA
Dr. Deverka is the Executive Director at Deverka Consulting, LLC where she focuses on helping biotechnology companies and start-ups develop evidence to support payer coverage and clinical adoption of innovative technologies.  Her most recent projects have focused on breakthrough tests and drugs focused on population genomic screening, cancer, and ultra-rare disorders.  Prior to starting her consulting practice, Dr. Deverka has worked in the fields of health economics and outcomes research in both non-profit and for-profit settings as a researcher, educator, and department head. She has extensive experience with patient-centered outcomes research, drug and diagnostic reimbursement planning, cost- effectiveness analysis, and bioethical issues surrounding the use of new technologies. While working in academia and several non-profit firms, she has participated in numerous NIH-funded studies to evaluate policy barriers to clinical integration of new genomic technologies and has published extensively on strategies to promote evidence generation and data sharing. She is a member of the National Human Genome Research Institute (NHGRI)’s Genomic Medicine Work Group and serves as a member of NHGRI’s Advisory Council. Deverka has a medical degree from the University of Pittsburgh and is board certified in General Preventive Medicine and Public Health.  She also has a master’s degree in bioethics from the University of Pennsylvania and completed a policy fellowship at Duke University’s Institute for Genome Sciences and Policy.

 

ABOUT KATHRYN A. PHILLIPS
Kathryn A. Phillips founded and leads the UCSF Center for Translational and Policy Research on Personalized Medicine (TRANSPERS), which focuses on developing objective evidence on how to effectively, efficiently, and equitably implement precision/personalized medicine into health care. Kathryn has published over 150 peer-reviewed articles in major journals including JAMA, New England Journal of Medicine, Science, and Health Affairs. She has had continuous funding from NIH as a PI for over 25 years and was recently awarded a 5-year NIH grant to examine payer coverage and economic value for emerging genomic technologies (cell-free DNA tests and tests based on polygenic risk scores). Kathryn serves on the editorial boards for Health Affairs, Value in Health, JAMA Internal Medicine, Genetics in Medicine; is a member of the National Academy of Medicine Roundtable on Genomics and Precision Health; and has served on the governing Board of Directors for GenomeCanada and as an advisor to the FDA, CDC, and the President’s Council of Advisors on Science and Technology. She has also served as an advisor to many diagnostics, sequencing, and pharmaceutical companies. Kathryn is Chair of the Global Economics and Evaluation of Clinical Sequencing Working Group, and a member of an evidence review committee for the Institute for Clinical and Economic Review (ICER). 

 

 

Hosted by: Garry Gold, M.D.
Sponsored by the PHIND Center and the Department of Radiology

May
27
Thu
2021
MIPS Seminar - Geoffrey Sonn, MD @ Zoom - See Description for Zoom Link
MIPS Seminar – Geoffrey Sonn, MD
May 27 @ 12:00 pm – 12:45 pm Zoom - See Description for Zoom Link
MIPS Seminar - Geoffrey Sonn, MD @ Zoom - See Description for Zoom Link

MIPS Seminar Series: Image-guided focal therapy for prostate cancer

Geoffrey Sonn, MD
Assistant Professor of Urology and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)
Stanford University Medical Center

 

Location: Zoom
Webinar URL: https://stanford.zoom.us/s/96126703618
Dial: +1 650 724 9799 or +1 833 302 1536
Webinar ID: 961 2670 3618
Passcode: 186059

12:00pm – 12:45pm Seminar & Discussion
RSVP Here

 

ABSTRACT

In recent years, prostate cancer treatment has increasingly focused on selecting patients who are most likely to benefit and reducing harms from treatment. This has been seen both in adoption of active surveillance for men with low-risk prostate cancer and emergence of image-guided focal ablative therapy. While focal therapy causes fewer sexual and urinary side effects than conventional prostate cancer treatments, many questions remain about proper patient selection, treatment planning, and follow up care.

 

Improvements in prostate MRI performance and interpretation have paved the way for adoption of focal therapy. However, clinical challenges remain in prostate cancer imaging. This talk will describe prostate cancer focal therapy, discuss patient selection, and highlight the research efforts of my group to improve MRI interpretation to guide biopsy and improve focal therapy performance.

 

ABOUT
Geoffrey Sonn, MD is a urologic oncologist who specializes in treating patients with prostate and kidney cancer. He has a particular interest in cancer imaging, MRI-Ultrasound fusion targeted prostate biopsy, prostate cancer focal therapy, and robotic surgery for prostate and kidney cancer. He is the principal investigator of the first clinical trial in Northern California to use MRI-guided focused ultrasound to treat prostate cancer. The goal of this trial is to treat prostate cancer with fewer side effects than surgery or radiation.

Dr. Sonn was born in Washington State and lived there until leaving for college at Georgetown. After graduating magna cum laude at Georgetown he returned to the West Coast for medical school at UCLA. Following medical school, Dr. Sonn completed a 6-year urology residency at Stanford where he developed particular interests in the clinical care of patients with urologic cancers and research in cancer imaging. Dr. Sonn completed a 2-year urologic oncology fellowship at UCLA. Since completing his fellowship, Dr. Sonn has been at Stanford as an assistant professor in urology. Dr. Sonn’s research is devoted to developing new cancer imaging techniques, applying artificial intelligence to find cancers on medical images, and applying new methods to treat prostate cancer with fewer side effects.

 

Hosted by: Katherine Ferrara, PhD
Sponsored by: Molecular Imaging Program at Stanford & the Department of Radiology

Jun
15
Tue
2021
PHIND Seminar - Pablo E. Paredes, Ph.D. @ Zoom - See description for more information
PHIND Seminar – Pablo E. Paredes, Ph.D.
Jun 15 @ 11:00 am – 12:00 pm Zoom - See description for more information
PHIND Seminar - Pablo E. Paredes, Ph.D. @ Zoom - See description for more information

PHIND Seminar Series: Pervasive Computing With Everyday Devices To Build & Sustain Resilience & Wellbeing

Pablo E. Paredes, PhD
Clinical Assistant Professor, Psychiatry and Behavioral Sciences and, by courtesy, Epidemiology and Population Health
Stanford University

 

Zoom Webinar Details
Webinar URL: https://stanford.zoom.us/s/99098874758
Dial: US: +1 650 724 9799  or +1 833 302 1536 (Toll Free)
Webinar ID: 990 9887 4758
Passcode: 784858

11:00am – 12:00pm Seminar & Discussion
12:00pm – 12:15pm Reception
RSVP Here

 

ABSTRACT
As society progresses towards increasing pervasive computing levels, I design and build technology-enabled solutions to repurpose everyday devices to help people build resilience and grow wellbeing. I leverage biological and behavioral knowledge to design systems that balance user needs and health outcomes while mitigating surveillance and agency risks. In this talk, I present my research on efficacious and engaging sensors and interventions necessary in the population and public health domains. I share a series of research projects exploring and validating novel ideas on passive sensors – less dependent on subjective surveys or wearables –  and subtle interventions that minimize workflow disruption. I show the promise of repurposing existing signals from computing peripherals (i.e., mouse and trackpad) or cars (steering wheel) into “sensorless” sensors and repurposing existing media as just-in-time micro-interventions that can work across multiple scenarios and populations. I discuss how these data could be used in collaboration with domain experts to study topics as varied as the interaction between stress and productivity in office workers, burnout prevention among clinical practitioners, or the prevention of depression among rural health workers. Finally, grounded in theories from neuroscience and behavioral economics, I propose the evolution of everyday “mundane” devices, such as chairs, desks, cars, or even urban lights, into adaptive and autonomous wellbeing-optimizing interventions. I close with a discussion of the research needed to systematically study ethics in pervasive technology for resilience, and wellbeing.

 

ABOUT
Pablo Paredes earned his Ph.D. in Computer Science from the University of California, Berkeley, in 2015 with Prof. John Canny. He is currently a Clinical Assistant Professor in the Psychiatry and Behavioral Sciences Department and the Epidemiology and Population Health Department (by courtesy) at the Stanford University School of Medicine. He leads the Pervasive Wellbeing Technology Lab, which houses a diverse group of students from multiple departments such as computer science, electrical engineering, mechanical engineering, anthropology, neuroscience, and linguistics. Before joining the School of Medicine, Dr. Paredes was a Postdoctoral Researcher in the Computer Science Department at Stanford University with Prof. James Landay. During his Ph.D. career, he held internships on behavior change and affective computing at Microsoft Research and Google. He has been an active associate editor for the Interactive, Mobile, Wireless, and Ubiquitous Technology Journal (IMWUT) and a reviewer and editor for multiple top CS and medical journals. Before 2010, he was a senior strategic manager with Intel in Sao Paulo, Brazil, a lead product manager with Telefonica in Quito, Ecuador, and an entrepreneur in his native Ecuador and, more recently, in the US. In these roles, he has had the opportunity to hire and closely evaluate designers, engineers, business people, and researchers in telecommunications and product development. During his academic career, Dr. Paredes has advised close to 40 mentees, including postdocs, Ph.D., master’s, and undergraduate students, collaborated with colleagues from multiple departments across engineering, medicine, and the humanities, and raised funding from NSF, NIH, and large multidisciplinary intramural research projects.

 

Hosted by: Garry Gold, M.D.
Sponsored by the PHIND Center and the Department of Radiology

Jun
23
Wed
2021
"The Invisible Future of Health Monitoring" - PHIND & CDH Seminar @ Zoom - See Description for Zoom Link
“The Invisible Future of Health Monitoring” – PHIND & CDH Seminar
Jun 23 @ 3:15 pm – 4:15 pm Zoom - See Description for Zoom Link
"The Invisible Future of Health Monitoring" - PHIND & CDH Seminar @ Zoom - See Description for Zoom Link

PHIND & CDH Seminar: “The Invisible Future of Health Monitoring”

Join Stanford CDH and PHIND on Wednesday, June 23rd at 3:15 PM PDT to hear some of the industry’s leading experts talk about embedded sensors, longitudinal data collection, the future of remote monitoring, and real-world applications of precision health technologies. The panel will feature: Nicolas Genain, MS, WithingsJohn O Moore MD, PhD, Fitbit Health Solutions at GooglePablo Paredes, PhD, MBA, MS, Stanford University; and Michael Synder, PhD, Stanford University. The discussion will be moderated by Jun (Alex) Gao, MS, Samsung America.

 

Zoom Webinar Details
Webinar URL: https://stanford.zoom.us/s/96984014176
Dial: US: +1 650 724 9799  or +1 833 302 1536 (Toll Free)
Webinar ID: 969 8401 4176
Passcode: 375941

3:15pm – 4:15pm: Panel Discussion
RSVP Here

 

 

Sponsored by the PHIND Center and Center for Digital Health