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Abstract
Rooted binary galled trees generalize rooted binary trees to allow a restricted class of
cycles, known as galls. We build upon the Wedderburn-Etherington enumeration of
rooted binary unlabeled treeswith n leaves to enumerate rooted binary unlabeled galled
trees with n leaves, also enumerating rooted binary unlabeled galled trees with n leaves
and g galls, 0 ≤ g ≤ � n−1

2 �. The enumerations rely on a recursive decomposition that
considers subtrees descended from the nodes of a gall, adopting a restriction on galls
that amounts to considering only the rooted binary normal unlabeled galled trees in our
enumeration.We write an implicit expression for the generating function encoding the
numbers of trees for all n. We show that the number of rooted binary unlabeled galled

trees grows with 0.0779(4.8230n)n− 3
2 , exceeding the growth 0.3188(2.4833n)n− 3

2

of the number of rooted binary unlabeled trees without galls. However, the growth
of the number of galled trees with only one gall has the same exponential order
2.4833 as the number with no galls, exceeding it only in the subexponential term,

0.3910n
1
2 compared to 0.3188n− 3

2 . For a fixed number of leaves n, the number of
galls g that produces the largest number of rooted binary unlabeled galled trees lies
intermediate between the minimum of g = 0 and the maximum of g = � n−1

2 �. We
discuss implications in mathematical phylogenetics.

Keywords Galled trees · Phylogenetics · Unlabeled trees

1 Introduction

Evolutionary histories of genes, populations, and species are often described by phy-
logenetic trees that seek to represent their descent relationships. Owing in part to the
centrality of phylogenetic trees in evolutionary biology, mathematical studies have
characterized numerous classes of phylogenetic trees, investigating their combinato-
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rial properties (Semple and Steel 2003; Felsenstein 2004; Gascuel 2005; Steel 2016;
Warnow 2018).

The use of tree structures—typically treated as binary—is often appropriate for
representing standard phenomena of evolutionary descent, by which biological enti-
ties sequentially bifurcate, in a manner in which diverged entities do not merge
back together. Processes such as genetic admixture, horizontal gene transfer, and
hybridization, however, produce evolutionary relationships that are not tree-like. These
processes involve themerging of separate lineages that had previously descended from
shared ancestors. With increasing interest in merging mechanisms during evolution-
ary descent, much recent attention in mathematical phylogenetics has been devoted to
phylogenetic networks (Huson et al. 2010; Gusfield 2014; Kong et al. 2022), in which
graphs describing relationships of biological entities permit certain types of cycles.

Among the simplest phylogenetic networks are the galled trees, named for the
growths that can appear in plant tissues to produce distinctively shaped structures (Gus-
field et al. 2003, 2004b). First introduced in studies of ancestral recombination
graphs (Wang et al. 2001; Gusfield et al. 2003, 2004a, b; Gusfield 2005, 2014; Song
2006), galled trees allow diverged lineages to merge forward in time, but only in cir-
cumscribed ways. Each merging event creates a gall corresponding to a cycle in the
associated network.

From a standpoint that considers galled trees as mathematical objects separately
from the processes that could produce them biologically, the defining feature of a
galled tree is that cycles in a graph structure are disjoint, so that in a galled tree, a
vertex or edge is contained in at most one cycle (Semple and Steel 2006). With this
graph-theoretic sense for the meaning of galled trees, the enumerative combinatorics
of galled trees has been investigated, both for unrooted and for rooted binary galled
trees, focusing on galled trees that are leaf-labeled (Semple and Steel 2006; Bouvel
et al. 2020; Cardona and Zhang 2020).

Chang et al. (2018) and Mathur and Rosenberg (2023) have posed the problem of
enumerating rooted binary galled trees in which the leaves are not labeled. In a study
focused on introducing encodings for galled trees, Chang et al. (2018) argued that
the number of rooted binary unlabeled galled trees with n leaves is bounded above
by a sequence with a certain generating function. In an enumerative study of labeled
histories for rooted binary leaf-labeled galled trees, Mathur and Rosenberg (2023)
enumerated a class of rooted binary unlabeled galled trees for n from 1 to 6, obtaining
1, 1, 2, 6, 20, 72. These values are indeed bounded above by the corresponding upper
bounds of Chang et al. (2018)—1, 1, 4, 28, 245, 2402 for n = 1 to 6—though Chang
et al. (2018) used a more expansive definition of rooted binary unlabeled galled trees.
They are also bounded above by the enumeration in Theorem 8 of Cardona and Zhang
(2020) of the corresponding set of rooted binary labeled galled trees, which gives 1,
1, 6, 69, 960, 24,750 for n = 1 to 6.

How many rooted binary unlabeled galled trees possess a given number of leaves n
and a given number of galls g? Here, we perform this general enumeration, counting
the rooted binary unlabeled galled trees of Mathur and Rosenberg (2023) for n ≥ 1
leaves and g ≥ 0 galls.We first recursively enumerate all such rooted binary unlabeled
galled trees with a specified number of leaves n, considering all possible numbers of

123



Enumeration of Rooted Binary Unlabeled Galled Trees Page 3 of 35    45 

Fig. 1 Rooted galled trees. A A rooted galled tree. In our definition of rooted galled trees, this example is
the smallest network that possesses a gall. The gall is a root gall; node 1 is r , the top node; node 2 is the
left hybridizing side node; node 4 is the right hybridizing side node; finally, node 3 is ar , the hybrid node.
We depict the hybridizing side nodes and the hybrid node in a horizontal line, representing simultaneity of
these nodes in the embedding of the rooted galled tree in time, proceeding from the top to the bottom of
the diagram. B A network that does not satisfy our definition of a rooted galled tree, but that does qualify
according to some definitions. This network is missing a hybrid node; each gall in our definition possesses
at least four nodes. C A more complex rooted galled tree by our definition. D A more complex network
that is not a rooted galled tree by our definition, because the red triangle lacks a hybrid node

galls.We then refine this enumeration by subdividing it according to specified numbers
of leaves n and galls g, considering all possible values of g for a fixed n.

2 Background

2.1 Definitions

We follow Mathur and Rosenberg (2023) in describing key concepts, assuming that
all networks and trees are binary (and henceforth dropping the term binary). A rooted
phylogenetic network is a directed acyclic graph with four properties: (i) there exists a
unique root node with in-degree 0 and out-degree 2; (ii) all leaf nodes have in-degree
1 and out-degree 0; (iii) all non-leaf, non-root nodes have in-degree 2 and out-degree
1 or in-degree 1 and out-degree 2; and (iv) all edges are directed away from the root.
Nodes with in-degree 2 and out-degree 1 are termed reticulation nodes, and nodes
with in-degree 1 and out-degree 2 are tree nodes.

A rooted galled tree is a rooted (binary) phylogenetic network in which two proper-
ties hold (Fig. 1). First, (i) each reticulation node ar has a unique ancestor node r such
that exactly two non-overlapping paths of edges exist from r to ar ; if the direction of
edges is ignored, then the two paths connecting r and ar form a cycle Cr , known as a
gall. Following Mathur and Rosenberg (2023), the ancestor node r must be separated
from ar by at least two edges. This requirement that cycles contain at least four nodes
is required by the perspective of Mathur and Rosenberg (2023) that views galled trees
as evolving temporally by a biological process such as hybridization. It is equivalent
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Table 1 The number of
palindromic compositions of a
into b parts, 1 ≤ b ≤ a, and the
corresponding number of
non-palindromic compositions

Parity of a Parity of b |Cp(a, b)| |Cnp(a, b)|

Even Even
( a
2 −1
b
2−1

) (a−1
b−1

) − ( a
2 −1
b
2−1

)

Even Odd
( a
2 −1
b−1
2

) (a−1
b−1

) − ( a
2 −1
b−1
2

)

Odd Even 0
(a−1
b−1

)

Odd Odd
( a−1

2
b−1
2

) (a−1
b−1

) − ( a−1
2

b−1
2

)

to the requirement that a galled tree be a normal network and is not imposed in a more
expansive galled tree definition that permits 3-node galls (Kong et al. 2022).

The second criterion is: (ii) the set of nodes in the gall Cr , associated with reticu-
lation node ar , and the set of nodes in the gall Cs , associated with reticulation node
as �= ar , are disjoint.

We term the ancestor node r of a gall with reticulation node ar and cycle Cr the
top node. Other nodes in a gall, excluding the top node and reticulation node, are
called side nodes. We term the reticulation node a hybrid node, and the two immediate
parents of a hybrid node hybridizing side nodes, or just hybridizing nodes. The side
nodes to the left and right of the hybrid node are the left side nodes and right side
nodes, respectively; the distinction between “left” and “right” is only for convenience,
and a gall is invariant with respect to exchange of its left and right side nodes. If the
root node of a rooted galled tree is part of a gall, then we call this gall the root gall.
The root node is always a top node if it is part of a gall.

Although a rooted galled tree is only strictly a tree if it contains no galls, it is
convenient to continue to refer to galled trees as trees; similarly, we allow “subtrees”
to possess galls. All networks and trees that we consider are rooted, and we henceforth
drop the term rooted. Mathur and Rosenberg (2023) focused on labeled galled trees,
in which each leaf is associated with a distinct leaf label; here we consider unlabeled
galled trees, and we often drop the term unlabeled. Unlike Mathur and Rosenberg
(2023), we have no need to assign a temporal embedding to nodes, with the exception
that ancestor nodes can be no more recent than their descendants; the galled trees that
we consider are understood to be unordered.

2.2 Compositions

We will have occasion to consider the sums of ordered b-tuples of positive integers
that equal a positive integer a: the compositions C(a, b) of a into b parts, 1 ≤ b ≤ a.
The set C(a, b) has cardinality |C(a, b)| = (a−1

b−1

)
. This result is obtained by noting

that a list of a copies of the number 1 has a − 1 “breakpoints” between consecutive
1’s, and, summing 1’s between neighboring breakpoints, the compositions into b parts
are produced by the distinct sets of b − 1 among the a − 1 breakpoint locations. For
b > a, we define C(a, b) = ∅, with |C(a, b)| = 0.

We distinguish between palindromic and non-palindromic compositions. Palin-
dromic compositions are unchanged when the order of the parts is reversed;
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non-palindromic compositions do change when the order is reversed. For example, in
C(9, 5), (1, 2, 3, 2, 1) is a palindromic composition; (1, 2, 2, 3, 1) is non-palindromic.
We denote the palindromic compositions of a into b parts by Cp(a, b) and the
non-palindromic compositions of a into b parts by Cnp(a, b), such that Cp(a, b) ∪
Cnp(a, b) = C(a, b) and Cp(a, b) ∩ Cnp(a, b) = ∅.

The numbers of palindromic and non-palindromic compositions, |Cp(a, b)| and
|Cnp(a, b)|, appear in Table 1. Palindromic compositions are counted by counting
the ways to place breakpoints on the “left” half of a list of 1’s; breakpoints are then
palindromically placed on the “right” half. Distinct cases exist depending on the parity
of a and b. For non-palindromic compositions, we obtain |Cnp(a, b)| from |C(a, b)|−
|Cp(a, b)|.

2.3 Unlabeled Trees with n Leaves

Our approach to enumerating unlabeled galled trees extends the Wedderburn-
Etherington enumeration of unlabeled trees with no galls. For unlabeled trees with
no galls, the root of a tree with n ≥ 2 leaves possesses two immediate subtrees.
Assume without loss of generality that the number of leaves in the “left” subtree is
greater than or equal to the number of leaves in the “right” subtree. If n ≥ 3 is odd, then
Un , the number of unlabeled trees with n leaves, is obtained by considering the n−1

2
possible numbers of leaves k for the right subtree, for each k pairing all Uk unlabeled
trees with k leaves for the right subtree with allUn−k unlabeled trees with n−k leaves
for the left subtree. If n is even, then the enumeration is similar for k �= n

2 ; if k = n
2 ,

however, then we have
(Un/2

2

)
ways choosing two distinct subtrees for the left and right

subtrees and Un/2 ways of choosing two copies of the same subtree.
The recursion for Un is [e.g. Harding (1971), Felsenstein (2004)]:

Un =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, n = 1,
∑ n−1

2
k=1UkUn−k, odd n ≥ 3,(
∑ n

2−1
k=1 UkUn−k

)
+ Un

2
(Un

2
+1)

2 , even n.

(1)

WithUn = 0, the generating functionU(t) = ∑
n≥0Untn for theUn satisfies ( Comtet

1974, p. 55):

U(t) = t + 1

2
U2(t) + 1

2
U(t2). (2)

Thenumber of treeswith nogalls has exponential growthwithd0ρ−nn− 3
2 , for constants

d0 ≈ 0.3188 and 1/ρ ≈ 2.4833 (Harding 1971; Landau 1977; Flajolet and Sedgewick
2009, p. 65).
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2.4 TheMaximumNumber of Galls for Galled Trees with n Leaves

For a fixed number of leaves n, the number of galls that a galled tree can possess
is constrained as a function of n. Because a gall contains at least three descendant
subtrees—those descended from the two hybridizing nodes and the hybrid node—a
minimum of n = 3 leaves is required before a tree can possess a gall. Each successive
addition of a gall then replaces one subtree with a minimum of three subtrees—those
descended from the two hybridizing nodes and the hybrid node of the new gall—so
that each gall adds at least two leaves. It follows that a galled tree with n leaves can
have at most � n−1

2 � galls (Mathur and Rosenberg 2023).

3 Unlabeled Galled Trees with n Leaves

We are now ready to enumerate unlabeled galled trees. We denote by An the number
of unlabeled galled trees with n leaves. Trees with n = 1 or n = 2 leaves have no galls:
A1 = U1 = 1 and A2 = U2 = 1. To recursively evaluate An for n ≥ 3 leaves, we sum
counts from two cases: (1) the root is not the top node of a gall; (2) the root is the top
node of a gall. We count galled trees in the former case in Bn , with B1 = B2 = 1, and
we count galled trees in the latter case in Dn , with D1 = D2 = 0. The goal is to evaluate

An = Bn + Dn . (3)

3.1 Root is not a Top Node of a Gall

If the root is not the top node of a gall, then an unlabeled galled tree possesses two
immediate subtrees of the root, each ofwhich is itself an unlabeled galled tree (Fig. 2A).
The number of unlabeled galled trees then follows a recursion analogous to Eq. 1:

Bn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, n = 1,
∑ n−1

2
m=1 Am An−m, odd n ≥ 3,(
∑ n

2−1
m=1 Am An−m

)
+ A n

2
(A n

2
+1)

2 , even n.

(4)

It is convenient to express Bn in a form that considers compositions c of n into 2
parts. For odd n ≥ 3,

Bn = 1

2

n−1∑

m=1

Am An−m = 1

2

∑

c∈C(n,2)

Ac1 Ac2 . (5)

For even n,

Bn = 1

2
A n

2
+ 1

2

n−1∑

m=1

Am An−m = 1

2
A n

2
+ 1

2

∑

c∈C(n,2)

Ac1 Ac2 . (6)
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Fig. 2 Recursive enumeration of rooted galled trees. Triangles indicate unspecified subtrees with at least
one leaf. A The root is not a top node of a gall (Eq. 4). B, C The root is a top node of a gall with an
even number of subtrees (Eq. 9). The two trees show the two cases with k = 6: (�, r) = (4, 1) (B) and
(�, r) = (3, 2) (C). D The root is a top node of a gall with an odd number of subtrees and r < � (Eq. 10).
In this case, k = 5 and (�, r) = (3, 1). E The root is a top node of a gall with an odd number of subtrees,
r = �, and the composition of n leaves descended from the root gall into k = � + r + 1 parts representing
k subtrees is non-palindromic (Eq. 11). In this case, k = 5 and (�, r) = (2, 2). Different outline colors for
triangles indicate different numbers of leaves in associated subtrees. F, G The root is a top node of a gall
with an odd number of subtrees, r = �, and the composition of n leaves into k parts is palindromic (Eq. 12).
In both trees, k = 5 and (�, r) = (2, 2); trees with distinct (F) and identical (G) lists of galled subtrees
for left and right subtrees are depicted. Different outline colors for triangles indicate different numbers of
leaves in subtrees, and different patterns in the same color indicate different topologies with equally many
leaves (Color figure online)

3.2 Root is a Top Node of a Gall

If the root is a top node of a gall, then the recursion is more complex. We first count
subtrees of the root gall, equal to the count of all side nodes plus the hybrid node.
Suppose the root gall contains k subtrees. We have the constraint 3 ≤ k ≤ n, as a gall
has at least 3 subtrees (of the left hybridizing node, hybrid node, and right hybridizing
node), and the root gall can have as many as n subtrees, each ancestral to a single leaf.

Without loss of generality, we can assume that the number of right side nodes in
the root gall, r , is less than or equal to the number of left side nodes �; owing to the
existence of the hybrid node, � + 1 + r = k. We divide the case further based on the
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parity of k, writing

Dn = D(e)
n + D(o)

n , (7)

where D(e)
n and D(o)

n count unlabeled trees with n leaves in which the root is a top node
and the number of descendant subtrees of the root gall is even and odd, respectively.

3.2.1 Even Number of Subtrees of the Root Gall

We consider each even value of k, k = 2a for a = 2, 3, . . . , � n
2 �. Given k, because

r ≤ �, r ranges from 1 to k
2 − 1 = a − 1. Because � + 1 + r = k and k is even, we

have the strict inequality r < �.
Consider the k subtrees in an order that proceeds from the most ancestral left side

node descending through subsequent left side nodes to the left hybridizing node, then
to the hybrid node, then the right hybridizing node, and then through ancestors to the
most ancestral right side node (Fig. 2B, C). Once k and r have been specified, we
consider all possible ways of placing the n leaves into the k subtrees of the gall: the
compositions C(n, k) of n into k parts. For each composition c = (c1, c2, . . . , ck) in
C(n, k), where ci is the value of the i th term, the number of galled trees is

∏k
i=1 Aci .

We have

D(e)
n =

� n
2 �∑

a=2

a−1∑

r=1

∑

c∈C(n,2a)

2a∏

i=1

Aci . (8)

The summand
∑

c∈C(n,2a)

∏2a
i=1 Aci , representing the number of distinct lists of 2a

subtrees with total number of leaves n, does not depend on r , the number of those
subtrees descended from right side nodes. For n ≤ 2, a sum from a = 2 to a = � n

2 �
is empty. We can therefore simplify Eq. 8 to obtain, for all n ≥ 1,

D(e)
n =

� n
2 �∑

a=2

[
(a − 1)

∑

c∈C(n,2a)

2a∏

i=1

Aci

]
. (9)

3.2.2 Odd Number of Subtrees of the Root Gall

If k is odd, then we consider k = 2a + 1 for a = 1, 2, . . . , � n−1
2 �. In this case, with

r ≤ �, we have 1 ≤ r ≤ a. With � + 1 + r = k and k odd, r = � is possible.
If r < �, then r ranges from 1 to k−1

2 −1 = a−1 (Fig. 2D).We follow the reasoning
of the case of even k and find that this case contributes a number of galled trees equal
to

� n−1
2 �∑

a=1

[
(a − 1)

∑

c∈C(n,2a+1)

2a+1∏

i=1

Aci

]
. (10)
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Consider r = � = a. For non-palindromic compositions of n into k parts repre-
senting the k subtrees of the gall, an equivalent unlabeled galled tree is obtained by a
mirror-image composition that corresponds to an exchange of left and right subtrees
of the root gall (Fig. 2E). We therefore multiply by 1

2 to account for the fact that each
unlabeled galled tree is counted twice, so that the non-palindromic compositions of n
contribute a number of galled trees equal to

1

2

� n−1
2 �∑

a=1

∑

c∈Cnp(n,2a+1)

2a+1∏

i=1

Aci . (11)

With r = � = a, for a palindromic composition c of n into k parts represent-
ing the k subtrees of the root gall (Fig. 2F, G), we can select two distinct lists of
galled subtrees for the a left and the a right subtrees; the number of ways to do so is
(
∏a

i=1 Aci )[(
∏a

i=1 Aci ) − 1]/2. Alternatively, we can select the same lists of galled
subtrees for the a left and a right subtrees, in

∏a
i=1 Aci ways. Any choices for the left

and right subtrees can be combined with Aca+1 choices for the subtree of the hybrid
node of the gall. The palindromic compositions produce a number of galled trees equal
to

� n−1
2 �∑

a=1

∑

c∈Cp(n,2a+1)

( ∏a
i=1 Aci

)[( ∏a
i=1 Aci

) + 1
]
Aca+1

2
. (12)

Summing the three cases in Eqs. 10, 11, and 12, we obtain

D(o)
n =

� n−1
2 �∑

a=1

[( a−1∑

r=1

∑

c∈C(n,2a+1)

2a+1∏

i=1

Aci

)

+
(
1

2

∑

c∈Cnp(n,2a+1)

2a+1∏

i=1

Aci

)

+
( ∑

c∈Cp(n,2a+1)

(∏a
i=1 Aci

)[( ∏a
i=1 Aci

) + 1
]
Aca+1

2

)]
. (13)

Wecan simplify this expression further. For a palindromic composition c ∈ Cp(n, 2a+
1), by definition of palindromic compositions, ci = c2a+2−i for i = 1, 2, . . . , a.
C(n, 2a + 1) is the disjoint union of Cp(n, 2a + 1) and Cnp(n, 2a + 1). We can then
write

(
1

2

∑

c∈Cnp(n,2a+1)

2a+1∏

i=1

Aci

)
+

( ∑

c∈Cp(n,2a+1)

( ∏a
i=1 Aci )

( ∏a
i=1 Aci

)
Aca+1

2

)
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= 1

2

∑

c∈C(n,2a+1)

2a+1∏

i=1

Aci .

Equation 13 then becomes

D(o)
n =

� n−1
2 �∑

a=1

[[( a−1∑

r=1

1
)

+ 1

2

]( ∑

c∈C(n,2a+1)

2a+1∏

i=1

Aci

)
+

(
1

2

∑

c∈Cp(n,2a+1)

a+1∏

i=1

Aci

)]
.

Note that for n ≤ 2, a sum from a = 1 to � n−1
2 � is empty. Therefore, for all n ≥ 1,

D(o)
n =

� n−1
2 �∑

a=1

[(
a − 1

2

)( ∑

c∈C(n,2a+1)

2a+1∏

i=1

Aci

)
+

(
1

2

∑

c∈Cp(n,2a+1)

a+1∏

i=1

Aci

)]
. (14)

3.3 Summary

To summarize the enumeration, the desired number of unlabeled galled trees with n
leaves, An , can be calculated in Eq. 3 by summing Eqs. 9 and 14 in Eq. 7, and then
adding the result to Bn from Eq. 4.

We simplify by writing the sum of D(e)
n and the first term of D(o)

n in one expression.
When adding the even-k terms in D(e)

n and the odd-k terms D(o)
n , k now ranges from 3

to n, considering even values of k with k = 2a and a = 2, 3, . . . , � n
2 �, and odd values

of k with k = 2a + 1 and a = 1, 2, . . . , � n−1
2 �. For k = 2a, a − 1 = k−2

2 , and for
k = 2a + 1, a − 1

2 = k−2
2 as well.

Recalling Eqs. 5 and 6, we can now write a simplified expression for the recursion
for An . First, A1 = 1. If the number of leaves n of an unlabeled galled tree is an odd
value n ≥ 3, then

An = 1

2

[( ∑

c∈C(n,2)

2∏

i=1

Aci

)
+

( n∑

k=3

(k − 2)
∑

c∈C(n,k)

k∏

i=1

Aci

)

+
( � n−1

2 �∑

a=1

∑

c∈Cp(n,2a+1)

a+1∏

i=1

Aci

)]
. (15)

If the number of leaves n is even, then an extra term appears:

An = 1

2

[( ∑

c∈C(n,2)

2∏

i=1

Aci

)
+ A n

2
+

( n∑

k=3

(k − 2)
∑

c∈C(n,k)

k∏

i=1

Aci

)
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+
( � n−1

2 �∑

a=1

∑

c∈Cp(n,2a+1)

a+1∏

i=1

Aci

)]
. (16)

3.4 Example

To illustrate the recursive enumeration of rooted galled trees, we enumerate the A5 =
20 rooted galled trees with 5 leaves. The base case in Eqs. 15 and 16 is A1 = 1. To
evaluate A5, we first evaluate A2, A3, and A4.

3.4.1 Trees with Two Leaves

Only one galled tree has two leaves: the 2-leaf tree with no galls (Table 2). Equation 16
recovers this result: B2 = A1(A1 + 1)/2 = 1 (Eq. 4), D(e)

2 = 0 (Eq. 9), and D(o)
2 = 0

(Eq. 14), so that A2 = B2 + D(e)
2 + D(o)

2 = 1.

3.4.2 Trees with Three Leaves

For n = 3, there are two galled trees (Table 2). Using Eqs. 4, 9, and 14, we have

B3 = A1A2 = 1

D(e)
4 = 0

D(o)
4 = 1

2
A1A1A1 + 1

2
A1A1 = 1.

Summing B3 = 1, representing the tree with n = 3 leaves and no galls, D(e)
3 = 0, and

D(o)
3 = 1 for the unique tree containing a gall, we have A3 = 2.

3.4.3 Trees with Four Leaves

For n = 4, the number of galled trees is 6. We use Eqs. 4, 9, and 14 to obtain

B4 = A1A3 + 1

2
A2(A2 + 1) = 3

D(e)
4 = A1A1A1A1 = 1

D(o)
4 = 1

2
(A2A1A1 + A1A2A1 + A1A1A2) + 1

2
A1A2 = 2.

B4 counts trees 1 to 3 in Table 2. D(e)
4 counts the unique tree with k = 4 subtrees of

the root gall, tree 6. D(o)
4 counts trees with k = 3 subtrees of the root gall, trees 4 and

5. Summing the three quantities, A4 = 6.
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Table 2 Rooted unlabeled galled trees with at most 5 leaves

Number of leaves Tree number Number of galls Galled tree

1 1 0

2 1 0

3 1 0

3 2 1

4 1 0

4 2 1

4 3 0

4 4 1

4 5 1

4 6 1

5 1 0

5 2 1

5 3 0

5 4 1

5 5 1

5 6 1

5 7 0

5 8 1

5 9 1

5 10 2

5 11 1

5 12 1

5 13 1
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Table 2 continued

Number of leaves Tree number Number of galls Galled tree

5 14 2

5 15 1

5 16 1

5 17 1

5 18 1

5 19 1

5 20 1

Galled trees with different numbers of galls appear in different colors (0, black; 1, orange; 2, purple). For
each number of leaves n, we enumerate galled trees in a canonical order. We recursively proceed through
trees in which the root is not a top node of a gall, incrementing the number of leaves in the right subtree.
Next, for trees in which the root is a top node, we proceed in increasing order of the number of subtrees of
the root gall; for fixed numbers of subtrees, we proceed in dictionary order of (�, r) values; for fixed (�, r),
we use reverse dictionary order of the compositions of leaves into subtrees of the gall. The canonical order
is used in proceeding through subtrees of a fixed size

3.4.4 Trees with Five Leaves

We are now ready for the calculation of A5, which produces A5 = 20 galled trees
with five leaves (Table 2).

B5 = A1A4 + A2A3 = 8

D(e)
5 = A2A1A1A1 + A1A2A1A1 + A1A1A2A1 + A1A1A1A2 = 4

D(o)
5 =

[1
2
(A3A1A1 + A2A2A1 + A2A1A2 + A1A3A1 + A1A2A2 + A1A1A3)

+1

2
(A2A1 + A1A3)

]
+

(3
2
A1A1A1A1A1 + 1

2
A1A1A1

)
= 8.

B5 enumerates trees in which the root is not a top node of a gall, trees 1 to 8 for n = 5
in Table 2. D(e)

5 enumerates trees with k = 4 subtrees of the root gall, trees 15 to

18. D(o)
5 enumerates trees for which the root gall has k = 3 (trees 9 to 14) or k = 5

subtrees (trees 19 and 20). B5, D
(e)
5 , and D(o)

5 sum to A5 = 20.

4 Unlabeled Galled Trees with n Leaves and g Galls

A salient feature of a galled tree is its number of galls. Having enumerated unlabeled
galled trees with n leaves, we now proceed to subdivide the calculation according to
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the number of galls: the number of galled trees with n leaves is a sum over g from 0
to � n−1

2 � of the number of galled trees with n leaves and g galls.
We denote by En,g the number of galled trees with n leaves and g galls. Because

the maximum number of galls with n leaves is � n−1
2 � (Sect. 2.4), we define En,g = 0

for g > � n−1
2 �. As the unique galled tree with n = 1 leaf has no galls, the base case

is E1,0 = 1.
Again we separate two cases: (1) the root is not the top node of a gall, and (2) the

root is the top node of a gall. For the former case, we denote the count by Pn,g , with
P1,0 = P2,0 = 1. For the latter case, we denote the count by Rn,g , with R1,g = R2,g =
0 for all g. We seek to obtain En,g = Pn,g + Rn,g . We use reasoning that parallels the
case in which we do not keep track of the number of galls (Sect. 3).

Note that when summing over all possible values of g, for n ≥ 1, we have

An =
� n−1

2 �∑

g=0

En,g

Bn =
� n−1

2 �∑

g=0

Pn,g

Dn =
� n−1

2 �∑

g=0

Rn,g.

4.1 Root is not a Top Node of a Gall

If the root is not a top node, then a treewith n ≥ 2 leaves and g galls can be decomposed
into two subtrees. We assign one of these trees m leaves, 1 ≤ m ≤ � n

2 �, and h galls,
0 ≤ h ≤ min(g, �m−1

2 �). If n and g are both even, then it is possible for the two
subtrees to be identical. Similarly to Eq. 4, we have

Pn,g =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, (n, g) = (1, 0),
∑ n−1

2
m=1

∑min(g,�m−1
2 �)

h=0 Em,h En−m,g−h, odd n ≥ 3,
∑ n

2
m=1

∑min(g,�m−1
2 �)

h=0 Em,h En−m,g−h, even n and odd g ≥ 1,(
∑ n

2−1
m=1

∑min(g,�m−1
2 �)

h=0 Em,h En−m,g−h

)

+ E n
2 ,

g
2
(E n

2 ,
g
2
+1)

2 , even n and even g.

(17)

Note that in this equation, we can replace min(g, �m−1
2 �) with g; for �m−1

2 � < h ≤ g,
Em,h in the summand is zero, as a tree with m leaves has at most �m−1

2 � galls.
We write another expression for Pn,g by considering compositions of n into two

parts representing the numbers of leaves in the left and right subtrees. We also decom-
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pose g; because entries in a composition are strictly positive, we consider compositions
of g + 2, noting that each entry of the composition exceeds the associated number of
galls by 1.

For (n, g) in which n or g is odd and n ≥ 2, similarly to Eq. 5,

Pn,g = 1

2

∑

c∈C(n,2)

∑

d∈C(g+2,2)

Ec1,d1−1Ec2,d2−1. (18)

For (n, g) both even, as in Eq. 6,

Pn,g = 1

2
E n

2 ,
g
2

+ 1

2

∑

c∈C(n,2)

∑

d∈C(g+2,2)

Ec1,d1−1Ec2,d2−1. (19)

4.2 Root is a Top Node of a Gall

In the case of a root gall, we distribute among the subtrees of the root gall g − 1
galls, as one of the g galls is the root gall. We again distinguish between even and odd
numbers of subtrees of the root gall, writing Rn,g = R(e)

n,g + R(o)
n,g , where R(e)

n,g gives
the number of trees with n nodes and g galls in which the root is a top node and the
root gall has an even number of descendant subtrees, and R(o)

n,g gives the corresponding
number of trees with an odd number of descendant subtrees of the root gall. We follow
our reasoning of Sects. 3.2.1 and 3.2.2.

4.2.1 Even Number of Subtrees of the Root Gall

Suppose the number of the subtrees of the root gall is even, k = 2a, a = 2, 3, . . . , � n
2 �.

As in Sect. 3.2.1, given k, the number of right side nodes of the root gall, r , ranges
from 1 to k

2 − 1 = a − 1.
Here, however, we consider all ways of distributing g − 1 galls across k = 2a

subtrees. Just as n leaves are placed into 2a subtrees by a composition of n into 2a
parts, g − 1 galls are placed into 2a subtrees by a composition of g − 1 + 2a into 2a
parts. By decomposing g− 1+ 2a, we allow for the possibility of 0 galls in a subtree;
in a composition d of g − 1 + 2a, the number of galls in entry di is di − 1.

For all (n, g) with n ≥ 1 and 0 ≤ g ≤ � n−1
2 �, the resulting number of trees is

similar to Eq. 9:

R(e)
n,g =

� n
2 �∑

a=2

[
(a − 1)

∑

c∈C(n,2a)

∑

d∈C(g−1+2a,2a)

2a∏

i=1

Eci ,di−1

]
. (20)

4.2.2 Odd Number of Subtrees of the Root Gall

For an odd number of subtrees of the root gall k = 2a + 1, a = 1, 2, . . . , � n−1
2 �, as

in Sect. 3.2.2, r ranges from 1 to a. Again we consider (�, r) with r < � (as in Eq. 10)
and add the r = � case (as in Eqs. 11 and 12).
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If r < �, then similarly to the case of even k, the number of galled trees with k
subtrees descended from a root gall of a tree with n ≥ 1 leaves and 0 ≤ g ≤ � n−1

2 �
galls is

� n−1
2 �∑

a=1

[
(a − 1)

∑

c∈C(n,2a+1)

∑

d∈C(g−1+2a+1,2a+1)

2a+1∏

i=1

Eci ,di−1

]
. (21)

If r = � = a, then we again distinguish between non-palindromic and palindromic
compositions of n leaves into the k subtrees. Non-palindromic compositions do not
result in symmetric trees, irrespective of theway thegalls are placed across the subtrees.
Therefore, considering only the non-palindromic compositions, similarly to Eq. 11,
the number of galled trees with n ≥ 1 leaves and g ≥ 0 galls is

1

2

� n−1
2 �∑

a=1

∑

c∈Cnp(n,2a+1)

∑

d∈C(g−1+2a+1,2a+1)

2a+1∏

i=1

Eci ,di−1. (22)

Finally, for the palindromic compositions of n leaves with k odd and r = � = a,
we distinguish between cases with palindromic and non-palindromic compositions
describing the placement of the g galls across k subtrees. For the non-palindromic
compositions, similarly to Eq. 22, the number of trees is

1

2

� n−1
2 �∑

a=1

∑

c∈Cp(n,2a+1)

∑

d∈Cnp(g−1+2a+1,2a+1)

2a+1∏

i=1

Eci ,di−1. (23)

If both the composition of n leaves and the composition of g − 1 galls are palin-
dromic, then, as in our reasoning for Eq. 12, we can choose either two distinct or
two identical lists of subtrees for the a left subtrees and the a right subtrees, and the
number of trees is

� n−1
2 �∑

a=1

∑

c∈Cp(n,2a+1)

∑

d∈Cp(g−1+2a+1,2a+1)

×
(∏a

i=1 Eci ,di−1

)[(∏a
i=1 Eci ,di−1

) + 1
]
Eca+1,da+1−1

2
. (24)

We sum Eqs. 21, 22, 23, and 24 to obtain

R(o)
n,g =

� n−1
2 �∑

a=1

[(
a − 1

2

)( ∑

c∈C(n,2a+1)

∑

d∈C(g−1+2a+1,2a+1)

2a+1∏

i=1

Eci ,di−1

)
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+
(
1

2

∑

c∈Cp(n,2a+1)

∑

d∈Cp(g−1+2a+1,2a+1)

a+1∏

i=1

Eci ,di−1

)]
. (25)

4.3 Summary

As En,g = Pn,g+R(e)
n,g+R(o)

n,g , we summarize by adding Eqs. 17, 20, and 25. E1,0 = 1
and E1,g = 0 for g ≥ 1. For (n, g) with n ≥ 2 leaves and 0 ≤ g ≤ � n−1

2 � galls, if n
is odd, g is odd, or both n and g are odd, then

En,g = 1

2

[( ∑

c∈C(n,2)

∑

d∈C(g+2,2)

2∏

i=1

Eci ,di−1

)

+
( n∑

k=3

(k − 2)
∑

c∈C(n,k)

∑

d∈C(g−1+k,k)

k∏

i=1

Eci ,di−1

)

+
( � n−1

2 �∑

a=1

∑

c∈Cp(n,2a+1)

∑

d∈Cp(g−1+2a+1,2a+1)

a+1∏

i=1

Eci ,di−1

)]
. (26)

If both n and g are even, then an extra term appears:

En,g = 1

2

[( ∑

c∈C(n,2)

∑

d∈C(g+2,2)

2∏

i=1

Eci ,di−1

)
+ E n

2 ,
g
2

+
( n∑

k=3

(k − 2)
∑

c∈C(n,k)

∑

d∈C(g−1+k,k)

k∏

i=1

Eci ,di−1

)

+
( � n−1

2 �∑

a=1

∑

c∈Cp(n,2a+1)

∑

d∈Cp(g−1+2a+1,2a+1)

a+1∏

i=1

Eci ,di−1

)]
. (27)

4.4 Example: 1 Gall

After the galled trees with no galls (Sect. 2.3), the next simplest case for enumeration
of galled trees is the galled trees with only one gall. For this case, if there is no root
gall, then the one gall must be in exactly one of the two subtrees descended from the
root. The other subtree is a tree with no galls. If a root gall is present, then there are
no other galls, and all subtrees descended from the root gall are trees with no galls.

For n = 1, E1,1 = 0. For n ≥ 2, using the odd case Eq. 26, the first term of Eq. 26
when g = 1 is

1

2

∑

c∈C(n,2)

∑

d∈C(3,2)

2∏

i=1

Eci ,di−1 = 1

2

n−1∑

c1=1

1∑

d1=0

Ec1,d1En−c1,1−d1 =
n−1∑

m=1

Em,0En−m,1
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=
n−1∑

m=1

UmEn−m,1.

The second term is

1

2

n∑

k=3

(k − 2)
∑

c∈C(n,k)

∑

d∈C(k,k)

k∏

i=1

Eci ,di−1 = 1

2

n∑

k=3

(k − 2)
∑

c∈C(n,k)

k∏

i=1

Eci ,0

= 1

2

n∑

k=3

(k − 2)
∑

c∈C(n,k)

k∏

i=1

Uci .

The third term is

1

2

� n−1
2 �∑

a=1

∑

c∈Cp(n,2a+1)

∑

d∈Cp(2a+1,2a+1)

a+1∏

i=1

Eci ,di−1 = 1

2

� n−1
2 �∑

a=1

∑

c∈Cp(n,2a+1)

a+1∏

i=1

Eci ,0

= 1

2

� n−1
2 �∑

a=1

∑

c∈Cp(n,2a+1)

a+1∏

i=1

Uci .

Summing the three terms, the number of galled trees with n ≥ 2 leaves and g = 1
gall is:

En,1 =
( n−1∑

m=1

UmEn−m,1

)

+1

2

[( n∑

k=3

(k − 2)
∑

c∈C(n,k)

k∏

i=1

Uci

)
+

( � n−1
2 �∑

a=1

∑

c∈Cp(n,2a+1)

a+1∏

i=1

Uci

)]
. (28)

5 Generating Functions

We now derive and analyze generating functions for An , the number of galled trees
with n leaves, and En,1, the number of galled trees with n leaves and 1 gall. We also
show that the exponential growth of An proceeds faster with n than the exponential
growth ofUn , the number of trees without galls—but that En,1 andUn follow the same
exponential growth.

To analyze the generating functions, we will need the values of An for small n and
En,g for small n and g. Hence, we use our recursions to exhaustively calculate the
number of galled trees with n leaves, An (Eqs. 15 and 16), and the number of galled
trees with n leaves and 0 ≤ g ≤ � n−1

2 � galls, En,g (Eqs. 26 and 27). Considering n
from 1 to 18, the numerical values appear in Table 3.
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5.1 Generating Function for An

Define a generating functionA(t) = ∑
n≥0 Antn ,We rewrite Eqs. 15 and 16 in a single

equation. To do so, we note A1 = 1 and define A0 = 0 and An = 0 for non-integer
values of n. For n ≥ 2, we then have

An = 1

2

[( n∑

m=0

Am An−m

)
+ A n

2
+

( n∑

k=3

(k − 2)
∑

c∈C(n,k)

k∏

i=1

Aci

)

+
( � n−1

2 �∑

a=1

∑

c∈Cp(n,2a+1)

a+1∏

i=1

Aci

)]
. (29)

We write the terms of the generating function with three components:

A(t) =
∑

n≥0

Ant
n = 1

2

[
2t +

∑

n≥2

(( n∑

m=0

Am An−m

)
+ A n

2

)
tn

︸ ︷︷ ︸
Ai(t)

+
∑

n≥2

( n∑

k=3

(k − 2)
∑

c∈C(n,k)

k∏

i=1

Aci

)
tn

︸ ︷︷ ︸
Aii(t)

+
∑

n≥2

( � n−1
2 �∑

a=1

∑

c∈Cp(n,2a+1)

a+1∏

i=1

Aci

)
tn

︸ ︷︷ ︸
Aiii(t)

]
. (30)

The first term has the form of twice the generating function for the Wedderburn-
Etherington numbers (Eq. 2):

Ai(t) = 2t + A2(t) + A(t2). (31)

For the second term,

Aii(t) =
∑

k≥3

(k − 2)
∑

n≥k

∑

c∈C(n,k)

k∏

i=1

(Aci t
ci )

=
∑

k≥3

(k − 2)
∑

i1≥0

∑

i2≥0

. . .
∑

ik≥0

Ai1 Ai2 · · · Aik t
i1+i2+···+ik (32)

=
∑

k≥3

(k − 2)Ak(t) =
∑

m≥4

(m − 3)Am−1(t)
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=
[ ∑

m≥1

(m − 3)Am−1(t)

]
− [−2 + (−1)A(t)]

= A(t)

[1 − A(t)]2 − 2

1 − A(t)
+ 2 + A(t). (33)

The step in Eq. 32 makes use of A0 = 0. Equation 33 is obtained if and only if the
sum in the previous step converges; that is, if and only if |A(t)| < 1.

Finally, for the third term,

Aiii(t) =
∑

n≥3

( � n−1
2 �∑

a=1

∑

c∈Cp(n,2a+1)

a+1∏

i=1

Aci

)
tn

=
∑

m≥1

∑

a≥m

∑

n≥2a+1

∑

c∈C(a,m)

( m∏

i=1

(Aci t
2ci )

)
An−2at

n−2a

=
∑

m≥1

∑

i1≥0

∑

i2≥0

. . .
∑

im≥0

Ai1 Ai2 · · · Aim t
2i1+2i2+···+2im

∑

�≥0

A�t
� (34)

=
∑

m≥1

A(t)Am(t2) = A(t)

1 − A(t2)
− A(t). (35)

Equation 34 holds because A0 = 0, and the last equality holds if and only if |A(t2)| <

1.
Labeling the radius of convergence of A(t) by α and inserting into Eq. 30 the

quantities in Eqs. 31, 33 and 35, for 0 < |t | < α,

A(t) = 1 + t + 1

2
A2(t) + 1

2
A(t2) − 1

1 − A(t)
+ A(t)

2[1 − A(t)]2 + A(t)

2[1 − A(t2)] .
(36)

5.2 Growth of An

Wenowaddress the asymptotic growth of An . In particular, we show that the number of
galled trees grows exponentially faster in the number of leavesn than the corresponding
number of trees without galls.

First, note that the radius of convergence α is a positive constant less than 1. The
convergence radius of generating function U(t) for the Un (Eq. 2) is a value ρ ≈
0.4027, and in particular, 0 < ρ < 1 (p. 262 Landau 1977). Because An > Un for all
n ≥ 3, A(t) > U(t) for all 0 < t < ρ. Hence, we have α ≤ ρ < 1; in the Appendix,
we show α > 0.

Also note that because α < 1, t2 < t for 0 < t < α. Because |A(t)| < 1 for
0 < t < α and A(t) increases monotonically for 0 < t < α, |A(t2)| < 1 for
0 < t < α.

Tofind the asymptotic growth from the generating function for galled trees,A(t), we
use theasymptotics of implicit tree-like classes theorem (Meir andMoon1989a, 1989b;
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Flajolet and Sedgewick 2009, pp. 467–468). This theorem describes the asymptotic
growth of the coefficients of a generating function that is described implicitly, such as
in Eq. 36. We write A(t) = φ

(
t,A(t)

)
, and we denote A(t) = w.

To use the theorem, wemust first show that the functionA(t), defined by φ(t, w) =∑
n,k sn,k tnwk , belongs to the smooth implicit-function schema. Indeed, the necessary

conditions are satisfied:

1. φ is analytic in t and w around 0 from Eq. 36 and the positive convergence radius
α > 0.

2. A0 = 0.
3. An ≥ 0 for n ≥ 1.
4. s0,1 �= 1, which is verified by noting that the t0w1 term in the right-hand side of

Eq. 36 is equal to −1 + 1
2 + 1

2

∑
m≥0 Am(t2) = 1

2

∑
m≥1Am(t2) �= 1.

5. s0,0 = 0, which follows from φ(0, 0) = A(0) = 0, and sn,k ≥ 0, which is verified
from the series expansion of Eq. 36.

6. From Eq. 33, there exists a coefficient sn,k > 0 for n ≥ 0 and k ≥ 2: for example,
s0,2 = 1

2 − 1 + 1
22 = 1

2 .
7. The last condition, which we show below, is that there are solutions α and w0 for

the characteristic system:

φ(α,w0) = w0 (37)

φw(α,w0) = 1. (38)

According to the theorem, functions belonging to the smooth implicit-function
schema converge at the solution to the characteristic system, where they possess a
square-root singularity. We conclude that A(t) converges at α, with A(α) = w0, and

that [tn]A(t) ∼ [δ/(2√π)]α−nn− 3
2 , where

δ =
√
2αφt (α,w0)

φww(α,w0)
. (39)

It remains to show condition (7). We can write φ(t, w) as:

φ(t, w) = g1(t) + 1

2
w2 − 1

1 − w
+ w

2(1 − w)2
+ wg2(t), (40)

where g1(t) = 1 + t + 1
2A(t2) and g2(t) = 1/[2(1 − A(t2))]. Taking the derivative

with respect to w, we have

φw(t, w)

= [−1 + 2g2(t)] + [5 − 6g2(t)]w + [−6 + 6g2(t)]w2 + [6 − 2g2(t)]w3 − 2w4

2(1 − w)3
.

(41)

We do not know the value of A(α2) that appears in g2(α). A(t) is monotonically
increasingwith t > 0; becauseα2 is less than the radius of convergenceα,A converges
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at α2 and A(α2) is a finite constant. As shown above, A(α2) < 1. To find (α,w0)

numerically, we first note that Eq. 41 depends on t only through A(t2). Hence, we
can traverse values of y = A(t2), numerically solving Eq. 38 for the single variable
w in terms of y. Solutions for w must satisfy w > y, as w = A(t) > A(t2) by the
monotonicity of A(t).

Next, we see that Eq. 40 contains variables w, y, and t ; using the pairs (w, y)
obtained in the previous step, we numerically solve Eq. 37 for t in terms ofw and y. In
the third step, for each triple (t, w, y), we insert the value of t into the generating
function

∑25
n=1 Ant2n , where values A1, A2, . . . , A25 are taken from Table 3; we

retain triples with small |y − ∑25
n=1 Ant2n|. Note that in this step, we could instead

have retained triples with small |w −∑25
n=1 Antn|; faster convergence of ∑25

n=1 Ant2n

compared to
∑25

n=1 Antn with a fixed number of known values of An suggests that a
more accurate result is obtained by use of y rather than w.

Finally, the best-fit triple (t, w, y) gives the numerical solution for
(
α,w0,A(α2)

)
,

or (0.2073, 0.3550, 0.0450).We hence haveα ≈ 0.2073 for the radius of convergence,
andA(α) ≈ 0.3550. The radius α is indeed lower than ρ ≈ 0.4027. Taking additional
digits, the exponential order of the sequence An is approximately 0.2073397−1 ≈
4.8230, greater than that of the sequence Un for trees without galls (0.4026975−1 ≈
2.4833).

To calculate the asymptotic approximation to An , we evaluate the constant δ. We
have:

φww(t, w) = 1 + 3w

(1 − w)4

φt (t, w) = 1 + tA′(t2) + wt
A′(t2)

[1 − A(t2)]2 .

We numerically evaluate the derivative A′(α2) from the first 25 terms by A′(α2) ≈
[∑25

n=1 An(α
2)n −∑25

n=1 An(α
2−0.001)n]/0.001. Inserting α ≈ 0.2073397 for t and

A(α) ≈ 0.3550 forw, we haveφww(α,w0) ≈ 7.1533,A′(α2) ≈ 1.0981,φt (α,w0) ≈
1.3163, δ ≈ √

2 · 0.2073 · 1.3163/7.1533 ≈ 0.2762 by Eq. 39, and

An = [tn]A(t) ∼ 0.0779(4.8230n)n− 3
2 . (42)

5.3 Generating Function for En,1

We next find the generating function of En,1, E(t) = ∑
n≥0 ent

n , writing en = En,1.
We define e0 = 0, and recall that e1 = 0 and that Eq. 28 applies for n ≥ 2. We then
have for n ≥ 1

en =
( n∑

m=0

Umen−m

)
+ 1

2

[( n∑

k=3

(k − 2)
∑

c∈C(n,k)

k∏

i=1

Uci

)
+

( � n−1
2 �∑

a=1

∑

c∈Cp(n,2a+1)

a+1∏

i=1

Uci

)]
.

(43)
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We can now write

E(t) =
∑

n≥0

ent
n = 1

2

[
2

∑

n≥3

( n∑

m=0

Umen−m

)
tn

︸ ︷︷ ︸
Ei(t)

+
∑

n≥3

( n∑

k=3

(k − 2)
∑

c∈C(n,k)

k∏

i=1

Uci

)
tn

︸ ︷︷ ︸
Eii(t)

+
∑

n≥3

( � n−1
2 �∑

a=1

∑

c∈Cp(n,2a+1)

a+1∏

i=1

Uci

)
tn

︸ ︷︷ ︸
Eiii(t)

]
. (44)

As in the derivation of A(t), we calculate the three parts separately.
First, because em = 0 for m = 0, 1, 2,

Ei(t) = 2
∑

n≥0

( n∑

m=0

Umen−m

)
tn

= 2
∑

m≥0

∑

n≥m

(Umt
m)(en−mt

n−m)

= 2
∑

m≥0

∑

�≥0

(Umt
m)(e�t

�) = 2U(t) E(t). (45)

For the second term, the derivation is identical to that of Eq. 33:

Eii(t) = U(t)

[1 − U(t)]2 − 2

1 − U(t)
+ 2 + U(t). (46)

Analogously to Eq. 33, Eq. 46 relies on a summation that can be completed if and
only if |U(t)| < 1, that is, for |t | < ρ (Landau 1977, Eqs. 4 and 5).

Finally, for the third term, following the derivation of Eq. 35,

Eiii(t) = U(t)

1 − U(t2)
− U(t), (47)

where the last equality holds if and only if |U(t2)| < 1. Because ρ < 1, |t |2 < |t | for
0 < |t | < ρ, and by the monotonicity of U(t) for 0 < t < ρ, |U(t2)| < |U(t)| < 1
for 0 < |t | < ρ.

Summarizing Eqs. 44, 45, 46, and 47, for 0 < t < ρ,

E(t) = 1 + U(t) E(t) − 1

1 − U(t)
+ U(t)

2[1 − U(t)]2 + U(t)

2[1 − U(t2)] .
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Solving for E(t), we have

E(t) = 1

1 − U(t)
− 1

[1 − U(t)]2 + U(t)

2[1 − U(t)]3 + U(t)

2[1 − U(t)][1 − U(t2)] .
(48)

5.4 Growth of En,1

We now show that the asymptotic growth of the number of galled trees with one gall
follows the asymptotic exponential growth of the number of trees with no galls. We
also find the asymptotic approximation of En,1.

First,E(t) > U(t). From the formofEq. 48,E(t) converges if andonly if |U(t)| < 1.
It is shown in Eqs. 4 and 5 of Landau (1977) that 0 < U(t) < 1 for 0 < t < ρ, with
limt→ρ− U(t) = 1. We conclude that E(t) has the same radius of convergence ρ as
U(t). To find the asymptotic behavior of E(t), we notice that

E(t) = U(t)
[
2U(t) − 1

]

2
[
1 − U(t)

]3 + U(t)

2
[
1 − U(t)

][
1 − U(t2)

] . (49)

As t → ρ−, with U(t) ∼ 1−γ
√
1 − t/ρ and γ ≈ 1.1300 (Flajolet and Sedgewick

2009, pp. 476–477), 1 − U(t) → 0. Hence, the first of the two terms in Eq. 49 is the
leading term as t → ρ−, producing

E(t) ∼ 1

2γ 3(1 − t/ρ)
3
2

. (50)

At this point,we seek to use transfer theorems to transfer the asymptotic equivalence
for E(t) to an asymptotic equivalence for its coefficients. To do so, we note that U(t)
satisfies the technical criterion that it is 	-analytic at ρ—that is, it is analytic in a
domain 	 of particular shape around the singularity at ρ. The computation of E(t)
from U(t) maintains the property that E(t) is 	-analytic with a singularity at ρ.

We can therefore use a transfer formula [Corollary VI.1, page 392 and Theorem
VI.4, page 393 in Flajolet and Sedgewick (2009)], according to which, if f (t) is 	-
analytic with a singularity at b, and f (t) ∼ (1 − t

b )−a as t
b → 1 with t in 	, and

a /∈ {0,−1,−2, . . . }, then the coefficients of f satisfy [tn] f (t) ∼ na−1b−n/
(a).
Using Eq. 50, we apply the transfer formula to E(t) with ρ in the role of b and 3

2 for
a, noting 
( 32 ) = √

π/2:

En,1 ∼ 1

2γ 3
( 32 )
n

1
2 ρ−n = 1

γ 3
√

π
n

1
2 ρ−n . (51)

En,1 and Un have the same exponential growth. Whereas Un has subexponential

term 0.3188n− 3
2 , however, En,1 has larger subexponential term 0.3910n

1
2 .
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5.5 Bivariate Generating Function for En,g

We now find the bivariate generating functionA(t, u) = ∑
n≥0

∑
g≥0 En,gtnug . First,

note that E0,g = 0 for each g ≥ 0. For n = 1, E1,0 = 1 and E1,g = 0 for g ≥ 1.
From the recursion for En,g (Eqs. 26, 27), we get

A(t, u) = 1

2

[
2t +

∑

n≥2

∑

g≥0

(( ∑

c∈C(n,2)

∑

d∈C(g+2,2)

2∏

i=1

Eci ,di−1

)
+ E n

2 ,
g
2

)
tnug

︸ ︷︷ ︸
Ai(t,u)

+
∑

n≥2

∑

g≥0

( n∑

k=3

(k − 2)
∑

c∈C(n,k)

∑

d∈C(g−1+k,k)

k∏

i=1

Eci ,di−1

)
tnug

︸ ︷︷ ︸
Aii(t,u)

+
∑

n≥2

∑

g≥0

( � n−1
2 �∑

a=1

∑

c∈Cp(n,2a+1)

∑

d∈Cp(g−1+2a+1,2a+1)

a+1∏

i=1

Eci ,di−1

)
tnug

︸ ︷︷ ︸
Aiii(t,u)

]
,

(52)

where Em,� = 0 if at least one of (m, �) is not in N.
We can solve to find an expression forA(t, u) in a manner similar to the solution for

A(t). For the second and third terms, we have
∑k

i=1(di −1) = g−1 and
∑2a+1

i=1 (di −
1) = g − 1; in these terms, the gth gall is the root gall. Therefore,

Ai (t, u) = 2t +
∑

n≥2

∑

g≥0

n∑

m=0

g∑

�=0

Em,�En−m,g−�t
nug +

∑

n≥0

∑

g≥0

En,gt
2nu2g

= 2t +
∑

m≥0

∑

�≥0

Em,�t
mu�

∑

n≥m

∑

g≥�

En−m,g−�t
n−mug−� + A(t2, u2)

= 2t + A2(t, u) + A(t2, u2), (53)

Ai i (t, u) =
∑

k≥3

(k − 2)
∑

n≥k

∑

g≥1

∑

c∈C(n,k)

∑

d∈C(g−1+k,k)

( k∏

i=1

Eci ,di−1t
ci udi−1

)
u

= u
∑

k≥3

(k − 2)
∑

i1≥0

∑

j1≥0

Ei1, j1 t
i1u j1

∑

i2≥0

∑

j2≥0

Ei2, j2 t
i2u j2 · · ·

∑

ik≥0

∑

jk≥0

Eik , jk t
ik u jk

= u
∑

k≥3

(k − 2)Ak(t, u)

= u

[ A(t, u)

[1 − A(t, u)]2 − 2

1 − A(t, u)
+ 2 + A(t, u)

]
, (54)
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Ai i i (t, u) =
∑

m≥1

∑

a≥m

∑

n≥2a+1

∑

b≥0

∑

g−1≥2b

∑

c∈C(a,m)

∑

d∈C(b+m,m)

( m∏

i=1

Eci ,di−1t
2ci u2(di−1)

)
En−2a,(g−1)−2bt

n−2au(g−1)−2bu

= u
∑

m≥1

∑

i1≥0

∑

j1≥0

Ei1, j1 t
2i1u2 j1

∑

i2≥0

∑

j2≥0

Ei2, j2 t
2i2u2 j2 . . .

∑

im≥0

∑

jm≥0

Eim , jm t
2im u2 jm

∑

�≥0

∑

p≥0

E�,pt
�u p

= u
∑

m≥1

A(t, u)Am(t2, u2) = u

[ A(t, u)

1 − A(t2, u2)
− A(t, u)

]
. (55)

In summary, inserting Eqs. 53, 54, and 55 into Eq. 52,

A(t, u) = u + t + 1

2
A2(t, u) + 1

2
A(t2, u2) − u

1 − A(t, u)
+ uA(t, u)

2[1 − A(t, u)]2
+ uA(t, u)

2[1 − A(t2, u2)] . (56)

5.6 The Distribution of the Number of Galled Trees with a Fixed Number of Leaves

The bivariate generating functionA(t, u) provides a basis for studying the distribution
of the number of galls across galled trees with n leaves. The approach follows a
theorem concerning asymptotic distributions in Theorem 2.23 of Drmota (2009) and
Proposition IX.17 on p. 682 of (Flajolet and Sedgewick 2009). We use the form of the
theorem quoted in Theorem 2 of Bouvel et al. (2020), who considered labeled galled
trees. We conclude that for a fixed number of leaves, the number of galled trees as a
function of the number of galls g is asymptotically normally distributed with mean
and variance linear in n.

Following Bouvel et al. (2020), we consider a power seriesC(z, x) in two variables
that is defined implicitly as the solution ofC(z, x) = F

(
z, x,C(z, x)

)
, where F satis-

fies certain conditions. We suppose {Xn} is a sequence of random variables such that
E[x Xn ] = [zn]C(z, x)/[zn]C(z, 1). Then Xn is asymptotically normally distributed
with a mean and variance that are linear multiples of n calculated from F .

In our scenario, t , u, andA play the roles of z, x , andC .A(t, u) is implicitly defined
as a function of t , u, and A itself. With A(t, u) = ∑

n≥0
∑

g≥0 En,gtnug , Xn gives
the random number of galls in a randomly selected galled tree with n leaves. Fixing
the number of leaves n in A(t, u), this random variable satisfies

E[uXn ] =
∑

g≥0 En,gtnug
∑

g≥0 En,gtn
=

∑
g≥0 En,gug

∑
g≥0 En,g

= [tn]A(t, u)

[tn]A(t, 1)
. (57)

To conclude that random variable Xn—the random number of galls in a tree with n
leaves—is normally distributed, it remains only to verify the conditions of the theorem.
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Translating from the notation of Bouvel et al. (2020) and writing A(t, u) =
ψ

(
t, u,A(t, u)

)
with A(t, u) = w so that w = ψ(t, u, w), we must show all of

the following:

1. ψ(t, u, w) is analytic in t, u, w around 0.
2. ψ(0, u, w) = 0.
3. ψ(t, u, 0) �= 0 for t > 0.
4. All coefficients [tnug]ψ(t, u, w) are real and nonnegative.
5. Nonnegative solutions (t, w) = (t0, w0) exist for the following pair of equations:

i. ψ(t, 1, w) = w,

ii. ψw(t, 1, w) = 1.

6. The solutions satisfy:

i. ψww(t0, 1, w0) �= 0,

ii. ψt (t0, 1, w0) �= 0.

Condition 1 holds because ψ is a quotient of analytic functions in t, u, w with
denominator greater than 0 near (0, 0, 0). Condition 2 is met because A(t, u) =∑

n≥0
∑

g≥0 En,gtnug = ∑
n≥1

∑
g≥0 En,gtnug (because E0,g = 0 for all g ≥ 0)

and so A(0, u) = ∑
n≥1

∑
g≥0 0

nug = 0. Therefore,

ψ(0, u,A) = u + 0 + 1

2
A2(0, u) + 1

2
A(02, u2) − u

1 − A(0, u)
+ uA(0, u)

2[1 − A(0, u)]2
+ uA(0, u)

2[1 − A(02, u2)]
= u + 0 + 0 + 0 − u + 0 + 0 = 0.

For condition 3, ψ(t, u, 0) = t + 0+A(t2, u2) − 0+ 0+ 0, which is not equal to
0 for t > 0. Condition 4 holds trivially from the definition of A(t, u). For conditions
5 and 6, we first show ψ(t, 1, w) = φ(t, w). First,

ψ(t, 1,A(t, 1)) = 1 + t + 1

2
A2(t, 1) + 1

2
A(t2, 12) − 1

1 − A(t, 1)
+ 1 · A(t, 1)

2[1 − A(t, 1)]2
+ 1 · A(t, 1)

2[1 − A(t2, 12)] .

Next, we have

A(t, 1) =
∑

n≥0

∑

g≥0

En,gt
n1g =

∑

n≥0

( ∑

g≥0

En,g

)
tn =

∑

n≥0

Ant
n = A(t).

We then have ψ(t, 1, w) = φ(t, w). We have already shown conditions 5 and 6 in our
analysis of function φ.

With all the conditions demonstrated, we conclude that the random number of galls
in a tree with n leaves is normally distributed.
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Fig. 3 Number of galled trees as a function of the number of galls g, for fixed numbers of leaves n. A
n = 15. B n = 16. C n = 17. D n = 18. Values are computed from Eqs. 26 and 27

6 Numerical Results

The numerical results for the number of galled trees with n leaves and the number
of galled trees with 0 ≤ g ≤ � n−1

2 � galls suggest a number of simple observations
(Table 3). First, for g = 0, we recover the Wedderburn-Etherington numbers obtained
from Eq. 1. For n = 1 to 6, we obtain the values of An and En,g computed by Mathur
and Rosenberg (2023). Finally, as g is bounded above by gmax = � n−1

2 �, pairs of
consecutive values of n, an odd then an even integer, have the same number of values
of g for which the number of galled trees En,g is nonzero, namely � n+1

2 �.
Considering a fixed number of leaves n ≤ 18, we comment informally on the

number of galled trees across different values of g. The number of trees with at
least one gall is larger than the number without galls. As g increases for fixed n, the
number of trees increases to a maximum, then declines. For values of n for which
the maximal number of galls is even (n = 1, 2, 5, 6, 9, 10, 13, 14, 17, 18), the largest
number of trees occurs when the number of galls is gmax/2, half of this maximum.
When gmax is odd (n = 3, 4, 7, 8, 11, 12, 15, 16), the largest number of trees occurs
at g = (gmax − 1)/2 or g = (gmax + 1)/2.

Figure3 plots the number of trees for fixed n as a function of g, considering four
consecutive values of n that represent the four cases possible for the parity of n and
gmax. The plots are somewhat symmetric; for n = 16 and 17, a neighboring value of
g produces a number of trees close to the maximum, and for n = 15 and 18, the peak
stands out more clearly. The patterns accord with the asymptotic normal distribution
demonstrated for the number of galls as n increases (Sect. 5.6).

Figure4 examines the growth of En,g on a logarithmic scale for different fixed

values of g. The number of trees with no galls has exponential growth d0ρ−nn− 3
2 ,

for constants d0 ≈ 0.3188 and 1/ρ ≈ 2.4833 (Sect. 2.3). With one gall, En,1 exceeds

Un with growth d1ρ−nn
1
2 for d1 ≈ 0.3910, but with the same exponential growth

(Sect. 5.4). With specified numbers of galls g ≥ 2, we see that growth of En,g for
fixed g appears to also follow an exponential trend.

7 Discussion

Building on the Wedderburn-Etherington recursion for enumerating rooted binary
unlabeled trees with n leaves (Eq. 1), we have introduced a recursion to enumerate
rooted binary unlabeled (normal) galled trees with n leaves. The recursion follows the
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Fig. 4 Number of galled trees as a function of the number of leaves n, for fixed numbers of galls g =
0, 1, 2, 3, 4, 5, 6. Values are computed from Eqs. 26 and 27. The y-axis appears on a logarithmic scale

Fig. 5 The addition of a gall to a galled tree. A One of the galled trees with 5 leaves and 0 galls. B The ten
galled trees with 5 leaves and 1 gall produced by adding a gall to the tree in (A). The gall is indicated in
blue. C The sole galled tree with 5 leaves and 2 galls produced by adding a gall to the tree highlighted in
(B). The new gall is indicated in orange. A tree with 5 leaves has at most 2 galls (Color figure online)

spirit of the Wedderburn-Etherington formula in its recursive descent from the tree
root—but with additional terms for cases in which the root of the tree is also the top
node of a gall (Eqs. 15 and 16). Continuing with a similar recursive strategy, we have
also obtained a recursive formula for the number of galled trees with a fixed number
of leaves n and a fixed number of galls g (Eqs. 26 and 27). We have derived generating
functions for the number of galled trees (Eq. 36) and for the number of galled trees
with 1 gall (Eq. 48), analyzing their asymptotic behavior.
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Our numerical calculations find that for small n, for a fixed number of galls g, the
increase of the number of galled trees En,g with n appears faster for larger values of the
fixed number of galls g (Table 3, Fig. 4). Because En,g = 0 for n < 2g+1, for higher
values of g, values of En,g at small n do not reflect the asymptotic trend. Nevertheless,
for g = 1, the initial apparent rapid growth of En,g visiblewith increasing nmoderates,
in accord with the finding that the exponential order of the increase is the same as for
the case of no galls (Sect. 5.4). A similar moderation in growth with increasing n is
just observable for En,2, which could hint at a similar exponential growth; we can
conjecture that each En,g with fixed g has the same exponential growth. Note that
Fuchs et al. (2019, Theorem 5.1; 2022, Theorem 1 and Corollary 2) showed that the
exponential growth of labeled tree-child networks and normal networks with a fixed
number of reticulation vertices (corresponding to a fixed number of galls in our case)
is the same for any such number; only the subexponential growth differs.

On the other hand, when g is not restricted, we have shown in Sect. 5.2 that the
convergence radius of the generating function A(t) satisfies 0 < α < ρ < 1, so that

An grows with 0.0779(4.8230n)n− 3
2 . We also observed that the number of galled trees

An grows numerically faster with n than does the number of trees with no galls (Table
3).

For a fixed number of leaves n, the number of trees En,g with a fixed number
of galls increases to a maximum when the number of galls is at or near half the
maximumnumber of galls � n−1

2 �, then decreases. This pattern accordswith the normal
distribution we expect as n increases (Sect. 5.6). It is explained by the fact that many
ways often exist to add a gall to a tree with a small number of galls without changing
the number of lineages n (Fig. 5A). As the number of galls grows, fewer places are
available in the tree to add more galls (Fig. 5B), and the number of possible trees
declines. Informally, for a tree with n leaves, when we have a maximum of gmax
potential galls from which to choose, the binomial

(gmax
g

)
, describing the number of

possible subsets containing g galls, is highest for g near gmax/2.
Galled trees provide a class of networks for use with biological processes such as

admixture of populations, horizontal gene transfer, hybridization, and the recombina-
tion processes for which galled trees were originally introduced (Wang et al. 2001;
Gusfield et al. 2004a). Other definitions of galled trees have previously been consid-
ered in enumerative problems (Semple and Steel 2006; Chang et al. 2018; Bouvel
et al. 2020; Cardona and Zhang 2020); our definition, which requires galled trees to
be “normal” by imposing a minimum of four nodes per gall, is designed for scenarios
in which two lineages merge to form a new third lineage, but continue to have other
descendants that are not descended from this merging event. Such scenarios are suited
to phenomena such as admixture and hybridization, in which the merging process of
two groups to form a third group has this feature: it does not cause the disappearance
of the original two groups, which are free to produce additional descendants through
processes that do not involve admixture and hybridization.

In related work, Cardona and Zhang (2020) enumerated rooted binary labeled
normal galled trees. Their Theorem 8 finds that the number Mn of such trees with n
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leaves is

Mn =
∑

(k2,k3,...,kn)∈C

(n + k2 + · · · + kn − 1)! 1k3 2k4 · · · (n − 2)kn

k2! k3! · · · kn ! 2k2+k3+···+kn
, (58)

where C is the set of vectors (k2, k3, . . . , kn) of nonnegative integers satisfying 1 +
k2 + 2k3 + · · · + (n − 1)kn = n. This enumeration accords with our enumeration of
the corresponding unlabeled normal galled trees. For n = 1 and 2, Eq. 58 produces
1 rooted binary labeled normal galled tree; for n = 3, it gives 6 labeled trees—in
accord with our count of 2 unlabeled normal galled trees, each of which has 3 possible
labelings. For n = 4, Eq. 58 gives 69 labeled trees; the 6 unlabeled normal galled trees
in Table 2 have 12, 12, 3, 12, 6, and 24 labelings, respectively, summing to 69.

The enumeration of galled trees can assist in studies involving mixture processes
in the same way that the Wedderburn-Etherington enumeration assists in evolutionary
biology more generally, by describing the contents of a space of biologically relevant
trees that must be traversed in a variety of algorithmic, combinatorial, probabilistic,
and statistical problems [e.g. Harding (1971), Matsen and Evans (2012), Sievers et al.
(2014), Colijn and Plazzotta (2018), Rosenberg (2021)]. The study adds to the grow-
ing area of enumerative combinatorics of phylogenetic networks [e.g. Bouvel et al.
(2020), Cardona and Zhang (2020), Gunawan et al. (2020), Bienvenu et al. (2022),
Fuchs et al. (2022)] and is one of relatively few studies to examine a class of unla-
beled networks (Chang et al. 2018; Mathur and Rosenberg 2023). Further work can
investigate the properties of En,g for fixed g ≥ 2.
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Appendix

This appendix shows that the radius of convergence α for the generating function
A(t) = ∑

n≥0 Antn is positive. The approach is to bound An from above by a quantity
whose generating function is known to have a positive radius of convergence. For
clarity in comparing with Bouvel et al. (2020) and Cardona and Zhang (2020), we
retain the terms “rooted,” “labeled” and “unlabeled,” and “normal” in this appendix.

Our number of rooted unlabeled normal galled trees An is bounded above by Mn ,
the corresponding number of rooted labeled normal galled trees in Theorem 8 of
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Cardona and Zhang (2020) (Eq. 58). Mn is in turn bounded above by the number of
rooted labeled galled trees tabulated without imposing the normality requirement, a
quantity of Bouvel et al. (2020) that we call Qn . Section 5 of Bouvel et al. (2020)
showed that the exponential generating function Q(t) = ∑

n≥0 Qntn/n! has positive
radius of convergence r = 1

8 .
To prove that α > 0, we note that the number of rooted labeled normal galled

trees with n leaves is Mn = ∑An
i=1 M(Ti ). Here, the sum proceeds over the An rooted

unlabeled normal galled trees, as each rooted labeled normal galled tree is obtained
by placing a labeling on one of the rooted unlabeled normal galled trees. M(Ti ) is the
number of labelings of rooted unlabeled normal galled tree Ti .

Next, consider the concept of a symmetric node of a rooted unlabeled galled tree, an
internal node with two identical rooted unlabeled subtrees. The top node of a gall can
be symmetric, but side nodes of a gall cannot, as one subtree of a side node contains
the reticulation node and the other does not. A reticulation node also cannot be a
symmetric node, as it has only one subtree.

For a rooted unlabeled normal galled tree, the number of distinct labelings is
L(Ti ) = n!/2si , where si is the number of symmetric nodes of Ti . To see why this
result holds, consider a planar representation of Ti , and examine all n! labelings of
the n nodes. For each such labeling, for each symmetric node, a rotation of Ti around
the node generates a distinct labeling for the same labeled tree—so that each rooted
labeled normal galled tree is obtained from 2si of the n! labelings.

The number of symmetric nodes is bounded above by the maximal number of
internal nodes that are not side nodes or hybridization nodes. This number is n − 1,
the number of internal nodes of a rooted tree with no galls; note that each gall adds
two internal nodes to the tree, but neither of the “extra” nodes can be symmetric, as
they include a side node and a reticulation node.

It is convenient to use n rather than n − 1 for the upper bound on the number of
symmetric nodes. Then

An

2n
n! =

An∑

i=1

n!
2n

<

An∑

i=1

n!
2si

= Mn ≤ Qn,

so that

An <
Qn

n! 2
n . (59)

The generating function Q(t) has positive radius of convergence r = 1
8 , so that

Q(2t) converges for |t | < 1
16 . Multiplying Eq. 59 by tn and summing over all n, we

have |A(t)| < |Q(2t)| for 0 < |t | < 1
16 . Hence, the smaller A(t) must have positive

radius of convergence α ≥ 1
16 . In particular, α > 0.
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