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In a genetically admixed population, admixed individuals possess genealogical and genetic ancestry from multiple source groups. Under 
a mechanistic model of admixture, we study the number of distinct ancestors from the source populations that the admixture represents. 
Combining a mechanistic admixture model with a recombination model that describes the probability that a genealogical ancestor is a 
genetic ancestor, for a member of a genetically admixed population, we count genetic ancestors from the source populations—those 
genealogical ancestors from the source populations who contribute to the genome of the modern admixed individual. We compare pat
terns in the numbers of genealogical and genetic ancestors across the generations. To illustrate the enumeration of genetic ancestors 
from source populations in an admixed group, we apply the model to the African-American population, extending recent results on the 
numbers of African and European genealogical ancestors that contribute to the pedigree of an African-American chosen at random, so 
that we also evaluate the numbers of African and European genetic ancestors who contribute to random African-American genomes. The 
model suggests that the autosomal genome of a random African-American born in the interval 1960–1965 contains genetic contributions 
from a mean of 162 African (standard deviation 47, interquartile range 127–192) and 32 European ancestors (standard deviation 14, inter
quartile range 21–43). The enumeration of genetic ancestors can potentially be performed in other diploid species in which admixture 
and recombination models can be specified.
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Introduction
The genealogical pedigree of any individual person can be viewed 
as a structure that has been shaped by demographic events such 
as migrations and population admixtures. The pedigree contains 
the individual’s recent ancestors, who have contributed in a ge
nealogical sense to the individual, and with increasing probability 
as time proceeds toward the most recent generations, in a genetic 
sense as well.

The distinction between genealogical and genetic ancestry is 
inconsequential in recent generations: an individual necessarily 
contains genetic material from both parents, and almost certainly 
from all 4 grandparents and 8 great-grandparents as well. 
However, genetic transmission involves chromosomal segments, 
the number of which is finite. Hence, going back in time, the num
ber of genealogical ancestors increases rapidly, and proportional
ly fewer of them are genetic ancestors: individuals who contribute 
to the genetic material of the modern individual. In the memor
able description of Donnelly (1983), “This means that someone 
descended from the Scottish poet Robert Burns (born 1759) prob
ably carries some of his genes, but that someone unilineally des
cended from the English playwright William Shakespeare (born 
1564) is unlikely to have any genes in common with him.”

A number of studies have explored the peculiar consequences of 
the distinction between genealogical and genetic ancestors (Wiuf 
and Hein 1997; Baird et al. 2003; Matsen and Evans 2008; Gravel 

and Steel 2015; Buffalo et al. 2016; Kelleher et al. 2016). For example, 
one simulation study (Rohde et al. 2004), based on earlier mathem
atical work (Chang 1999), argued that the most recent genealogical 
ancestor shared by all living humans might have lived as few as 
5,000 years ago, even though the most recent genetic ancestor lived 
much earlier. The rate at which recent genealogical ancestors dis
sipate from an individual’s genetic ancestry has been studied by 
Coop (2013), who used approximations to the human recombin
ation process in order to calculate the number of autosomal frag
ments a genealogical ancestor passes to a descendant. Through 
that quantity, Coop (2013) computed the probability that a genea
logical ancestor k generations ago is also a genetic ancestor. This 
analysis finds that although the number of genealogical ancestors 
grows exponentially in the number of generations back from the 
present, the number of genetic ancestors grows only linearly.

Recent admixture introduces a new dimension to the challenge 
of understanding the distinction between genealogical and genet
ic ancestry. In a recently admixed population, genealogical ances
tors ultimately trace to 2 or more source populations. Some of 
these genealogical ancestors are genetic ancestors and some are 
not, so that the fraction of the genetic ancestors that trace to a 
specific source group need not equal the corresponding fraction 
of the genealogical ancestors that trace to that source.

Building on a mechanistic admixture model (Verdu and 
Rosenberg 2011), we have devised a model for counting 
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genealogical ancestors in an admixed individual’s pedigree 
(Mooney et al. 2023), evaluating the numbers of individuals that 
enter the pedigree from each specific source population. Our 
goal here is to extend this genealogical model of an admixed 
pedigree to count the genetic ancestors that enter the pedigree. 
That is, we seek to count genetic ancestors from a certain source 
population that contribute to an individual’s genome, considering 
genetic ancestors in each generation in the pedigree.

To answer the new question posed by the study—how many 
genetic ancestors from the source populations does the genetic admixture 
of a random member of an admixed population represent?—we combine 
2 mathematical approaches. The first is the extension of the ad
mixture model studied by Mooney et al. (2023). The second is the 
method of Coop (2013) for approximating the probability that a ge
nealogical ancestor is also a genetic ancestor. We develop a model 
that counts across the generations both genealogical and genetic 
ancestors from a certain source population of an admixed individ
ual. We apply it to the African-American population, elaborating 
on the strictly genealogical approach of Mooney et al. (2023).

For this purpose, extending the work of Mooney et al. (2023), for 
a member of the admixed population, we study the random num
ber of admixed genealogical ancestors in the pedigree in each gen
eration by proceeding recursively back in time. From this random 
variable, we evaluate properties of the number of genetic ancestors 
from the admixed population and the number of genetic ances
tors from the source populations, as well as the number of genea
logical ancestors from the source populations as studied by 
Mooney et al. (2023).

The model
Admixture process
We build upon the model of Verdu and Rosenberg (2011) and 
Mooney et al. (2023), which considers the formation of a new ad
mixed population. Two source populations that were present in 
generation 0 form the new admixed population in generation 
1. After the initial admixture event, in each subsequent gener
ation after generation 1, individuals from both source populations 
and the admixed population can be parents of an individual in the 
admixed population. Our interest is in an admixed individual in 
generation g after the initial admixture.

We call the source populations “source 1” and “source 2.” For 
each n = 1, 2, . . . , g, we denote by s1,n−1 the probability that for 
an admixed individual in generation n (n generations after mem
bers of generation 0 admix to form generation 1), a specific parent 
is from source population 1. We denote by hn−1 the probability that 
the parent is from the admixed population, and by s2,n−1 the 
corresponding probability for source 2. Therefore, for each 
n = 1, 2, . . . , g, we have s1,n−1 + hn−1 + s2,n−1 = 1, recalling that  
h0 = 0 (Fig. 1). The 2 parents are independent and identically distrib
uted, amounting to an assumption that they are exchangeable 
members of the previous generation. The population is large, so 
that the chance that a particular individual is sampled twice can 
be ignored.

Genealogical ancestors in a pedigree
Consider Fig. 2a, describing the pedigree of an admixed individual. 
Tracing back from the admixed individual on each genealogical 
line, we eventually reach genealogical ancestors from the source 
populations. In each lineage that reaches ancestors who are 
only in source populations, we tabulate only the most recent 
one in our count of genealogical ancestors from source 
populations.

In the figure, some genealogical ancestors are genetic ancestors 
and some are not. In Mooney et al. (2023), we counted genealogical 
ancestors; the mathematical strategy followed previous studies 
(Verdu and Rosenberg 2011; Goldberg et al. 2014; Goldberg and 
Rosenberg 2015; Goldberg et al. 2020; Kim et al. 2021), in which 
source ancestry proportions were calculated recursively, begin
ning with the count of ancestors one generation after the initial 
admixture (n = 1), and moving forward in time.

To count genetic ancestors, the approach of Mooney et al. (2023)
is not straightforward to apply, because the probability that a ge
nealogical ancestor is a genetic ancestor depends on that ances
tor’s number of generations back from the present, even if the 
admixture process itself is constant in time. Further, a genetic an
cestor of an individual in some generation g − n, with 0 < n ≤ g, is 
not necessarily a genetic ancestor of the individual of interest in 
generation g.

To address these problems, we develop a model in which we 
count genealogical and genetic ancestors by proceeding backward 
in time (Fig. 2b and c). Tracing back from the admixed individual 
of interest in generation g, we examine, in each step, the parents 
of all the admixed individuals present in the pedigree. We tabulate 
those who are from a certain source population in our count of ge
nealogical ancestors from that source population (Fig. 2b). We 
tabulate as genetic ancestors those who, in addition to being ge
nealogical ancestors from the source, are also genetic ancestors 
(Fig. 2c). For this step, we use the calculations of Coop (2013) for 
generationwise probabilities of genetic ancestry.

Genetic ancestors and recombination
Coop (2013) used a model of recombination in humans to evaluate 
the probability that 2 individuals with an ancestor–descendant re
lationship share at least 1 piece of DNA. In other words, the model 

Fig. 1. The general admixture model. Starting from generation 0, 2 source 
populations form an admixed population in generation 1, with admixture 
proportions s1,0 and s2,0. In the following generations, n = 2, 3, . . . , g, the 
admixed population receives contributions from both the source 
populations and the admixed population, in proportions s1,n−1, s2,n−1, and 
hn−1.
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gives an approximate probability that a descendant separated by k 
generations from a genealogical ancestor possesses at least 1 gen
omic fragment from the ancestor. The model takes into account 
approximations to the recombination process.

In the model of Coop (2013), the number of genomic fragments 
that a genealogical ancestor passes to a descendant k generations 
forward in time is treated as a random variable Nk. This random 
variable is approximated as Poisson-distributed owing to an 
assumption that recombination breakpoints are Poisson- 
distributed. The probability pk that a genealogical ancestor is a 
genetic ancestor to a k-generation descendant then equals 
1 − P[Nk = 0] = 1 − e−λk , where λk is the Poisson mean E[Nk].

Considering the autosomal genome, the mean number of gen
omic pieces that a parent passes to its offspring, λ1, is 22, the num
ber of autosomes. Each generation, on average every 100  
megabases (Mb) a crossover event occurs, adding 1 piece. Because 
the haploid genome is about 3,300 Mb long, each generation after 
the first, 33 pieces are added on average. In each generation back 

in time after the first, those pieces are distributed between 2 par
ents. Hence, in generation k ≥ 2, the total number of pieces for 
one of an individual’s 2 genomic copies, maternal or paternal, is 
22 + 33(k − 1). Those pieces trace to 2k−1 genealogical ancestors k 
generations back from the present. Hence, the mean number of 
fragments contributed by a specific ancestor k generations back 
from the present is λk = [22 + 33(k − 1)]/2k−1. The Poisson probabil
ity that at least 1 fragment traces to such an ancestor then equals 
1 minus the probability that no fragments trace to the ancestor, 
or for k ≥ 2,

pk = 1 − e−22+33(k−1)

2k−1 . (1) 

We also define p1 = 1.
Figure 3 shows pk across the generations, illustrating its decline 

as k increases. With a 25-year generation time, the claim 
(Donnelly 1983) that an individual living in 1983, say, born in 
1960, probably possesses genetic material from a randomly 

Fig. 2. Counting genealogical and genetic ancestors from the source populations for an admixed individual. a) Pedigree of an admixed individual. 
Ancestors can be from source populations or from the admixed population itself. Ancestors from the source populations can be both genealogical and 
genetic ancestors (solid color), or genealogical ancestors only (striped). Along each genealogical line that reaches a source population, we count the most 
recent ancestor (dark color). b) Counting genealogical ancestors from source populations. For the pedigree in a), this panel goes back in time from an 
admixed individual in generation g (circled), on each line stopping when a source population is reached. The number of individuals from source 1 is 4 
(red), and the number from source 2 is 3 (blue). c) Counting genetic ancestors from source populations. As in b), we traverse all admixed individuals in the 
pedigree, irrespective of genetic ancestry status. However, if a source-1 or source-2 ancestor is not a genetic ancestor, then that individual is not 
tabulated. Note that for ease of interpretation, the figure contains a higher number of genealogical but nongenetic ancestors than is likely in real 
pedigrees.
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chosen genealogical ancestor born in 1759 corresponds to 8 gen
erations and p8 = 0.8615. The claim that the individual probably 
does not possess genetic material from a randomly chosen genea
logical ancestor born in 1564 corresponds to 16 generations and 
p16 = 0.0157. Interestingly, the period in which this probability of 
sharing genetic material with an ancestor decreases from a high 
to a low number corresponds to the period of interest in the found
ing of the African-American population, on which our example 
analysis focuses.

The human-specific Eq. 1 can be written in a more general 
form suitable for other diploid organisms. Denote the number 
of pairs of autosomes by q and the haploid genome length in 
megabases by ℓ. Denote by m the distance in megabases over 
which the mean number of crossover events is 1. As in the spe
cial case for humans, p1 = 1. The probability that a k-generation 
(k > 1) genealogical ancestor is also a genetic ancestor is

pk = 1 − e−q+(ℓ/m)(k−1)

2k−1 . (2) 

The computation requires basic parameters of genomes and re
combination maps, quantities that are available for diverse or
ganisms (Milo and Phillips 2015; Stapley et al. 2017).

Results for the general model
To count genetic ancestors from source populations in a 
pedigree of a random admixed individual, we first trace the 
pedigree back, counting admixed individuals. We then use the 
count of admixed genealogical ancestors to count genetic an
cestors. We also show how this approach can be used to recover 
the distribution of the number of genealogical ancestors 
from source populations in each generation, extending beyond 
calculations from Mooney et al. (2023) that focused on the 
expectation.

Counting admixed individuals in a pedigree
Continuing to consider a model with g generations, we now index 
generations by k, setting k = 0 in generation g, with k increasing 
backward in time. Let Xk be the random number of admixed indi
viduals in the pedigree at step k. When k = 0, we consider a ran
dom admixed individual of interest in generation g, and X0 = 1. 
For 1 ≤ k ≤ g, we proceed backward in time. At step k, or gener
ation g − k, a randomly chosen parent of an admixed individual 
in the previous step, or generation g − (k − 1), has probability hg−k 

of being an admixed individual. Consequently, because an indi
vidual has 2 parents, Xk ∼ Bin(2Xk−1, hg−k).

The number of admixed individuals in the pedigree is a nonho
mogeneous branching process going back in time. It follows from 
Appendix A that for 0 ≤ k ≤ g,

E[Xk] = 2k
􏽙k

i=1

hg−i, (3) 

Var[Xk] =
􏽘k

i=1

2k−1+i[1 − hg−(k+1)+i]

×
􏽙g−1

j=g−(k+1)+i

hj

⎛

⎝

⎞

⎠
􏽙g−(k+2)+i

ℓ=g−k

h2
ℓ

⎛

⎝

⎞

⎠

⎡

⎣

⎤

⎦.

(4) 

For the sum of the number of admixed genealogical ancestors 
across all generations, computing the variance of the sum in 
Appendix A, we have

E
􏽘g

k=1

Xk

􏼢 􏼣

=
􏽘g

k=1

E[Xk], (5) 

Var
􏽘g

k=1

Xk

􏼢 􏼣

=
􏽘g

k=1

Var[Xk]

+
􏽘g−1

m=1

􏽘g

n=m+1

2n−m+1
􏽙n−m

i=1

hg−(m+i)Var[Xm]

􏼠 􏼡

.

(6) 

Fig. 3. The probability pk that a genealogical ancestor is an (autosomal) genetic ancestor as a function of the number of generations back in time from the 
present. This plot is based on Eq. 1.
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Genealogical ancestors
In step k, 1 ≤ k ≤ g, let Ui

k be the random number of source-1 ge
nealogical ancestors of the generation-g admixed individual who 
are parents of individual i, one of the Xk−1 admixed genealogical 
individuals in step k − 1. Proceeding back in time, after step k, 
􏽐k

ℓ=1
􏽐Xℓ−1

i=1 Ui
ℓ genealogical ancestors from source 1 have been 

counted (Fig. 2b).
Random variable Ui

k takes values 0, 1, and 2, with probabilities 
as follows:

Ui
k =

0, h2
g−k + 2hg−ks2,g−k + s2

2,g−k,

1, 2s1,g−khg−k + 2s1,g−ks2,g−k,

2, s2
1,g−k.

⎧
⎪⎨

⎪⎩
(7) 

In fact, Ui
k ∼ Bin(2, s1,g−k), as 1 − s1,g−k = hg−k + s2,g−k. The number of 

source-2 genealogical ancestors can be counted symmetrically by 
transposing subscripts 1 and 2 in Eq. 7.

The {Ui
k}Xk−1

i=1 are independent and identically distributed. 
Therefore, using Uk =

􏽐Xk−1
i=1 Ui

k to sum across all Xk−1 admixed ge
nealogical ancestors in step k − 1, we have for each k, 1 ≤ k ≤ g,

Uk ∼ Bin(2Xk−1, s1,g−k). (8) 

Indeed, considering all parents of the admixed individuals in gen
eration g − (k − 1), the distribution of the vector of counts of genea
logical ancestors in source population 1, the admixed population, 
and source population 2 can be summarized by a multinomial dis
tribution. If we denote by U′k the number of source-2 genealogical 

ancestors reached in generation g − k, then

(Uk, Xk, U′k) ∼ Mult3[2Xk−1, (s1,g−k, hg−k, s2,g−k)]. (9) 

By Eq. 3,

E[Uk] = E
􏽨
E[Uk |Xk−1]

􏽩
= 2s1,g−kE[Xk−1]

= 2ks1,g−k

􏽙k−1

i=1

hg−i.

(10) 

This equation accords with the summand in Eq. 12 of Mooney et al. 
(2023), noting that generation i in that equation is equivalent to 

generation g − k in Eq. 10. If we consider all 2k genealogical ances
tors of the generation-g admixed individual present in step k, 
1 ≤ k ≤ g, then the expected fraction of them who are source-1 in
dividuals who are parents of step-(k − 1) admixed individuals is 

E[Uk]/2k.
We calculate the variance using the law of total variance to

gether with Eqs. 3 and 4:

Var[Uk] = E
􏽨
Var[Uk |Xk−1]

􏽩
+ Var

􏽨
E[Uk |Xk−1]

􏽩

= 2s1,g−k(1 − s1,g−k)E[Xk−1]

+ (2s1,g−k)2Var[Xk−1]

= 2ks1,g−k(1 − s1,g−k)
􏽙k−1

i=1

hg−i

+ s2
1,g−k

􏽘k−1

i=1

2k+i(1 − hg−k+i)

×
􏽙g−1

j=g−k+i

hj

⎛

⎝

⎞

⎠
􏽙g−(k+1)+i

ℓ=g−(k−1)

h2
ℓ

⎛

⎝

⎞

⎠

⎡

⎣

⎤

⎦.

(11) 

We write s̃1,g−k = s1,g−k/(1 − hg−k) for convenience. Summing genea

logical ancestors across generations in Eqs. 10 and 11 and comput
ing the variance in Appendix B, we have

E
􏽘g

k=1

Uk

􏼢 􏼣

=
􏽘g

k=1

E[Uk], (12) 

Var
􏽘g

k=1

Uk

􏼢 􏼣

=
􏽘g−1

k=1

[2s̃1,g−(k+1) − s̃1,g−k]2 Var[Xk]

+
􏽘g−2

m=1

􏽘g−1

n=m+1

2n−m+1[2s̃1,g−(m+1) − s̃1,g−m]

􏼢

× [2s̃1,g−(n+1) − s̃1,g−n]

×
􏽙n−m

i=1

hg−(m+i) Var[Xm]

􏼣

+
􏽘g−1

k=0

2s1,g−(k+1)[1 − s̃1,g−(k+1)]E[Xk].

(13) 

Genetic ancestors
Next, we count genetic ancestors. Let Yi

k be the number of 
source-1 genetic ancestors of the generation-g admixed individual 
who are parents of individual i, one of the admixed genealogical 
ancestors in step k − 1. Proceeding back in time, after step k, 
􏽐k

ℓ=1
􏽐Xℓ−1

i=1 Yi
ℓ genetic ancestors from source 1 have been counted. 

We have for 1 ≤ k ≤ g probabilities

Yi
k =

0, h2
g−k + 2hg−ks2,g−k + s2

2,g−k

+s2
1,g−k(1 − pk)2 + 2s1,g−khg−k(1 − pk)

+2s1,g−ks2,g−k(1 − pk),
1, 2s1,g−ks2,g−kpk + 2s1,g−khg−kpk

+2s2
1,g−kpk(1 − pk),

2, s2
1,g−kp2

k .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Here, pk is the probability that a genealogical ancestor k genera
tions ago is also a genetic ancestor (Eq. 1). The count of genetic an
cestors from source 2 is obtained symmetrically.

We can also see that Yi
k ∼ Bin(2, s1,g−kpk), as

P[Yi
k = 1] = 2s1,g−kpk(1 − s1,g−kpk),

P[Yi
k = 2] = (s1,g−kpk)2.

We write Yk =
􏽐Xk−1

i=1 Yi
k for the number of genetic ancestors tabu

lated in step k. By analogy with the tabulation of genealogical an
cestors, we conclude by Eqs. 3 and 4 that for 1 ≤ k ≤ g,

Yk ∼ Bin(2Xk−1, s1,g−kpk), (14) 

E[Yk] = 2ks1,g−kpk

􏽙k−1

i=1

hg−i, (15) 

Var[Yk] = 2ks1,g−kpk(1 − s1,g−kpk)
􏽙k−1

i=1

hg−i

+ (s1,g−kpk)2
􏽘k−1

i=1

2k+i(1 − hg−k+i)

×
􏽙g−1

j=g−k+i

hj

⎛

⎝

⎞

⎠
􏽙g−(k+1)+i

ℓ=g−(k−1)

h2
ℓ

⎛

⎝

⎞

⎠

⎡

⎣

⎤

⎦.

(16) 
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For the sum of the number of genetic ancestors across all genera
tions, computing the variance in Appendix B, we have

E
􏽘g

k=1

Yk

􏼢 􏼣

=
􏽘g

k=1

E[Yk], (17) 

Var
􏽘g

k=1

Yk

􏼢 􏼣

=
􏽘g−1

k=1

[2s̃1,g−(k+1)pk+1 − s̃1,g−kpk]2

× Var[Xm] +
􏽘g−2

m=1

􏽘g−1

n=m+1

2n−m+1

􏼢

× [2s̃1,g−(m+1)pm+1 − s̃1,g−mpm]

× [2s̃1,g−(n+1)pn+1 − s̃1,g−npn]

×
􏽙n−m

i=1

hg−(m+i) Var[Xm]

􏼣

+
􏽘g−1

k=0

2s1,g−(k+1)pk+1

× [1 − s̃1,g−(k+1)pk+1]E[Xk].

(18) 

Among all 2k genealogical ancestors of the generation-g admixed 
individual who are present in step k, 1 ≤ k ≤ g, the expected frac
tion of them who are source-1 individuals who are parents of 
step-(k − 1) admixed individuals and are genetic ancestors is 

E[Yk]/2k.
In the same way that we count genetic ancestors among the ge

nealogical ancestors from the source populations, we can count 
the number of admixed genealogical ancestors who are also gen
etic ancestors. Denoting the random number of admixed genetic 
ancestors in step k by X∗k, this random variable is binomially dis
tributed for 1 ≤ k ≤ g, so that

X∗k ∼ Bin(2Xk−1, hg−kpk), (19) 

E[X∗k] = 2khg−kpk

􏽙k−1

i=1

hg−i, (20) 

Var[X∗k] = 2khg−kpk(1 − hg−kpk)
􏽙k−1

i=1

hg−i

+ (hg−kpk)2
􏽘k−1

i=1

2k+i(1 − hg−k+i)

×
􏽙g−1

j=g−k+i

hj

⎛

⎝

⎞

⎠
􏽙g−(k+1)+i

ℓ=g−(k−1)

h2
ℓ

⎛

⎝

⎞

⎠

⎡

⎣

⎤

⎦.

(21) 

The expected fraction of the 2k genealogical ancestors of the 
generation-g admixed individual who are themselves admixed in

dividuals and who are also genetic ancestors is E[X∗k]/2k.
Considering all parents of the admixed individuals in gener

ation g − (k − 1), the distribution of the vector of counts of genetic 
ancestors in source population 1, the admixed population, and 
source population 2 follows a multinomial distribution. If we de
note by Y′k the number of source-2 genealogical ancestors reached 
in generation g − k, then

(Yk, X∗k, Y′k) ∼ Mult3[2Xk−1, (s1,g−kpk, hg−kpk, s2,g−kpk)]. (22) 

For the sum of the number of genetic ancestors across genera
tions, we have

E
􏽘g

k=1

X∗k

􏼢 􏼣

=
􏽘g

k=1

E[X∗k], (23) 

Var
􏽘g

k=1

X∗k

􏼢 􏼣

=
􏽘g

k=1

Var[X∗k] +
􏽘g−1

m=1

􏽘g

n=m+1

2n−m+1

×
􏽙n−m

i=1

hg−(m+i)pm+i Var[X∗m].

(24) 

A single admixture event
We now consider 2 specific cases of the admixture model, where 
after the initial generation of admixture, the contributions from 
the 2 sources and from the admixed population are constant across 
generations. First, we study the case in which the constants are 
0. We examine the situation in which no subsequent admixture oc
curs after the admixed population is founded: in other words, 
s1,0, s2,0 > 0 and for all n, 1 ≤ n ≤ g − 1, s1,n = s2,n = 0 and hn = 1.

For each k = 1, 2, . . . , g − 1, the random number of admixed in
dividuals in the pedigree of a randomly chosen admixed individ
ual follows Xk ∼ Bin(2Xk−1, 1). Recalling that X0 = 1 for the single 
admixed individual in generation g, we have Xk = 2k for all 
k = 0, 1, 2, . . . , g − 1: all 2k ancestors of an individual k generations 
back from the present are admixed.

To consider genealogical ancestors from the source popula
tions, we separate between 2 cases, 1 ≤ k ≤ g − 1 and k = g. For 
1 ≤ k ≤ g − 1, Uk ∼ Bin(2k, 0) and no individuals from sources 1 
and 2 are reached. Consequently, Uk = 0 for all k with 1 ≤ k ≤ g − 1.

Next, we proceed one generation back from the case of k = g − 1. 
If k = g, then by Eq. 8, Ug ∼ Bin(2 · 2g−1, s1,0). Therefore, E[Ug] = 
2gs1,0 and Var[Ug] = 2gs1,0(1 − s1,0).

For genetic ancestors, we again separate 1 ≤ k ≤ g − 1 from 
k = g. For 1 ≤ k ≤ g − 1, Yk ∼ Bin(2k, 0), and the count of genetic an
cestors is Yk = 0 for all k with 1 ≤ k ≤ g − 1, as is seen with genea
logical ancestors. For k = g, by Eq. 14, Yg ∼ Bin(2g, s1,0pg). 
Therefore, E[Yg] = 2gs1,0pg and Var[Yg] = 2gs1,0pg(1 − s1,0pg). The 
numbers of genetic ancestors from the source populations, like 
the corresponding numbers of genealogical ancestors, are 
determined by parameters of the initial admixture, as tabulated 
by n = 0 looking forward in time, or by k = g looking backward.

Constant positive admixture
We now examine the situation in which s1,0, s2,0 > 0, after which 
the contributions from the sources are constant and positive. 
We denote s1,n = s1 and s2,n = s2 for all n, 1 ≤ n ≤ g − 1, with 
s1, s2 > 0. Then hn = 1 − s1,n − s2,n is also constant for all n, 
1 ≤ n ≤ g − 1; we denote this constant by hn = h.

Mathematical results
The number of admixed genealogical ancestors Xk follows a 
homogeneous branching process. For k = 0, E[Xk] = 1. By Eq. 3, 
for k = 1, 2, . . . , g − 1,

E[Xk] = (2h)k
. (25) 

For k = g, E[Xk] = 0.
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For the variance of the number of admixed genealogical ances
tors, by Eq. 4, Var[X0] = 0 and for 1 ≤ k ≤ g − 1,

Var[Xk] =
􏽘k

i=1

2k−1+i(1 − h)

×
􏽙g−1

j=g−(k+1)+i

h

⎛

⎝

⎞

⎠
􏽙g−(k+2)+i

ℓ=g−k

h2

⎛

⎝

⎞

⎠

⎡

⎣

⎤

⎦

=
􏽘k

i=1

(1 − h)2k−1+ihk−1+i

=

1 − h
1 − 2h

(2h)k[1 − (2h)k], h ≠
1
2

,

k
2

, h =
1
2
.

⎧
⎪⎪⎨

⎪⎪⎩

(26) 

For k = g, Var[Xk] = 0.
To count genealogical and genetic ancestors, we again separate 

1 ≤ k ≤ g − 1 from k = g. When k = g, by Eq. 8, Ug ∼ Bin(2Xg−1, s1,0). 
Hence, by Eqs. 10 and 25, for genealogical ancestors, we have

E[Ug] = 2ghg−1s1,0. (27) 

For the variance, starting from Eq. 11 and applying Eqs. 25 and 26, 
we have

Var[Ug] = 2s1,0(1 − s1,0)E[Xg−1] + (2s1,0)2Var[Xg−1]

=

2s1,0(1 − s1,0)2g−1hg−1

+(2s1,0)2 1 − h
1 − 2h

􏼒 􏼓

(2h)g−1[1 − (2h)g−1], h ≠
1
2

,

2s1,0(1 − s1,0)2g−1 1
2

􏼒 􏼓g−1

+(2s1,0)2
g − 1

2

􏼒 􏼓

, h =
1
2
.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

=

2s1,0(2h)g−1

×{1 − s1,0 + 2s1,0
1 − h

1 − 2h

􏼒 􏼓

[1 − (2h)g−1]}, h ≠
1
2

,

2s1,0[1 + s1,0(g − 2)], h =
1
2
.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(28) 

For 1 ≤ k ≤ g − 1, by Eq. 8, Uk ∼ Bin(2Xk−1, s1). By Eqs. 10 and 25,

E[Uk] = 2khk−1s1. (29) 

We then obtain, by Eqs. 11, 25, and 26,

Var[Uk] =

2s1(2h)k−1

×{1 − s1 + 2s1
1 − h

1 − 2h

􏼒 􏼓

[1 − (2h)k−1]}, h ≠
1
2

,

2s1[1 + s1(k − 2)], h =
1
2
.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(30) 

For genetic ancestors, when k = g, similarly to the calculations 
for genealogical ancestors, we use Eq. 14 to obtain 
Yg ∼ Bin(2Xg−1, s1,0pg). By Eqs. 15 and 25,

E[Yg] = 2ghg−1s1,0pg. (31) 

Following the reasoning underlying Eq. 16, with Eqs. 25 and 26,

Var[Yg] = 2s1,0pg(1 − s1,0pg)E[Xg−1] + (2s1,0pg)2Var[Xg−1]

=

2s1,0pg(2h)g−1

×{1 − s1,0pg + 2s1,0pg
1 − h
1 − 2h

􏼒 􏼓

[1 − (2h)g−1]}, h ≠
1
2

,

2s1,0pg[1 + s1,0pg(g − 2)], h =
1
2
.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(32) 

For 1 ≤ k ≤ g − 1, by Eq. 14, Yk ∼ Bin(2Xk−1, s1pk). Hence, by Eqs. 
15 and 25,

E[Yk] = 2khk−1s1pk. (33) 

By Eqs. 16, 25, and 26,

Var[Yk]

=

2s1pk(2h)k−1

×{1 − s1pk + 2s1pk
1 − h
1 − 2h

􏼒 􏼓

[1 − (2h)k−1]}, h ≠
1
2

,

2s1pk[1 + s1pk(k − 2)], h =
1
2
.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(34) 

Analysis of temporal trends
In the case of constant positive admixture, we analyze the way in 
which genealogical and genetic ancestors accumulate across the 
generations of the admixture process. Comparing generation k, 
2 ≤ k ≤ g − 1, to the generation k − 1 of its offspring, Eq. 29 gives

E[Uk]
E[Uk−1]

= 2h.

If h < 1
2, then 2h < 1 and E[Uk] decreases with increasing k and 

hence decreasing n = g − k (Fig. 4a). The number of admixed an
cestors is small, so that the source populations are likely to be 
reached in a small number of generations back from the present; 
hence, the numbers of genealogical ancestors from the source po
pulations are also small. The contribution from the admixed 
population is low enough and the contributions from the source 
populations are high enough that the number of genealogical an
cestors from the source populations is greatest in the most recent 
generations.

If, on the other hand, h > 1
2, then 2h > 1 and E[Uk] increases with 

increasing k and decreasing n = g − k (Fig. 4b). The number of ad
mixed genealogical ancestors is larger than with h < 1

2, so that 
the number of genealogical ancestors from the source popula
tions is also larger. With a high contribution from the admixed 
population to itself, the number of genealogical ancestors from 
the source populations is greatest farther back in time. A transi
tion occurs at h = 1

2, where 2h = 1 and E[Uk] is constant in time, 
equaling 2s1 by Eq. 29 (Fig. 4c).

For genetic ancestors, for 2 ≤ k ≤ g − 1, Eq. 33 gives

E[Yk]
E[Yk−1]

= 2h
pk

pk−1
.
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Although the admixture process is constant in time after the 
founding of the admixed population, the dependence of pk on k 
(Eq. 1) affects the time at which genetic ancestors from the 
sources accumulate.

We now examine pk/ pk−1. Denote the event “a k-generation ge
nealogical ancestor is a k-generation genetic ancestor” by Ak, 
k ≥ 1. Irrespective of the form chosen for P[Ak], we argue that

1
2

≤
P[Ak]

P[Ak−1]
=

pk

pk−1
≤ 1. (35) 

For the right-hand side of Eq. 35, a necessary condition for a 
k-generation genealogical ancestor of a descendant to be a 
k-generation genetic ancestor is that it is a (k − 1)-generation gen
etic ancestor of the parent of the descendant. In other words, Ak ⊆ 
Ak−1 and P[Ak] ≤ P[Ak−1].

For the left-hand side of Eq. 35, because Ak ⊆ Ak−1,

P[Ak]
P[Ak−1]

=
P[Ak ∩ Ak−1]

Ak−1
= P[Ak |Ak−1].

Ak |Ak−1 is the event that conditional on a k-generation ancestor 
transmitting at least 1 genomic segment to the parent of a descend
ant, the k-generation ancestor transmits at least 1 segment to the 
descendant itself. The probability that a parent transmits a certain 

segment to an offspring is 12, and therefore 12 ≤ P[Ak |Ak−1].

For the functional form of P[Ak] used by Coop (2013), Eq. 1, a 
proof that 1

2 < pk < 1 for all k ≥ 2 appears in Appendix C. An ex
ample of pk/pk−1 appears in Fig. 4d, illustrating a decrease in 
pk/pk−1 with increasing k and decreasing n = g − k.

Application to African-Americans
Model and methods
We apply our model to count genetic ancestors for a random 
individual in the African-American population in the United 
States. In Mooney et al. (2023), relying on demographic data on 
the history of the population, we considered a model with g = 14 
generations, ending in 1960–1965. Using information on current 
patterns of genetic admixture, we inferred admixture parameters 
(s1,n, hn, s2,n), with source 1 representing Africans and source 2 re
presenting Europeans. The model divided the demographic his
tory of the population into 3 epochs: 1619–1808, during which 
the population was founded, with importation of enslaved 
African captives and admixture with Europeans; 1808–1865, dur
ing which enslavement and admixture continued but importation 
of enslaved persons was illegal; and 1865–1965, after the end of le
gal enslavement. The 1965 endpoint for the model was chosen to 
accord with the approximate timing of the birth of individuals in 
whom genetic ancestry has been measured, and to precede subse
quent major demographic changes.

Fig. 4. Genealogical and genetic ancestors in a model of constant admixture with g = 15, evaluated forward in time from generation n = 0 to generation 
n = g − 1 = 14. The forward-time generation n corresponds to the backward-time generation k = g − n. a–c) Expected number of source-1 genealogical 
ancestors (Eqs. 27, 29) and genetic ancestors (Eqs. 31, 33). The 3 panels use s1,0 = s2,0 = 0.5 and s1 = s2 with different values of h. a) h = 0.4. b) h = 0.6. c) 
h = 0.5. d) The ratio of the conditional probabilities of genetic ancestry given genealogical ancestry for generations k and k − 1, pk/ pk−1 (Eq. 1), where k = 0 
in generation g = 15 and n = g − k. Note that this plot stops at n = 13 and k = 2 with the value of p2/p1.
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The model considered 25-year generations, initializing the 
population solely with Africans (s1,0 = 1, s2,0 = 0). The first epoch 
had 7 generations (1635–1640, 1660–1665, 1685–1690, 1710–1715, 
1735–1740, 1760–1765, 1785–1790; n = 1–7), the second epoch 
had 3 (1810–1815, 1835–1840, 1860–1865; n = 8–10) and the third 
had 4 (1885–1890, 1910–1915, 1935–1940, 1960–1965; n = 11–14). 
In the first epoch, s2,n was kept constant, and the values of s1,n 

and hn were specified by estimating the value of s1,n/(s1,n + hn) 
using demographic data (Hacker 2020) about newly transported 
enslaved individuals from Africa and births in the African- 
American population. In both the second and third epochs, s1,n, 
hn, and s2,n were maintained as constants for all generations in 
the epoch.

Mooney et al. (2023) identified sets of parameter values that 
recovered features of genetic ancestry measured in African- 
Americans: an expected African genetic ancestry in [0.75, 0.85] 
with standard deviation in [0.08, 0.15]. A summary of generation
wise mean parameter values across all accepted parameter sets ap
pears in Fig. 5a. The figure reports mean values of s1, h, and s2, 
summarizing distributions that appear in Fig. 4 of Mooney et al. 
(2023). It shows the high African contribution to the African- 
American population in the earliest generations (s1), with an in
creasing contribution of the African-American population to itself 
(h), and with European contributions occurring across the genera
tions (s2). For each set of accepted parameters, Mooney et al. 
(2023) calculated the generationwise expected numbers of African 
and European genealogical ancestors associated with the set.

Here, using these parameter sets, we calculate the generation
wise expected numbers of African-American genealogical ances
tors and the expected numbers of African, European, and 
African-American genetic ancestors (Eq. 15), in a pedigree of a per
son drawn randomly from the African-American population born 
between 1960 and 1965. We also show the distribution across par
ameter sets, in each generation, of the expected numbers of ge
nealogical ancestors from each population.

Genealogical ancestors
For each accepted parameter set, using Eq. 3, we evaluated the 
generationwise expected number of African-American ancestors 
that appear in a random genealogy, represented by E[Xk]. The 
mean across accepted parameter sets is shown in Fig. 5b and 
Table 1. Forward in time, the mean number of African- 
American genealogical ancestors is initially small, increasing to 
a peak in generation 6 (1760–1765) with a value of 98. It decreases 
toward the end of the admixture process.

At each generation n, genealogical ancestry is split across 5 
groups: Africans reached in generation n, African-Americans pre
sent in generation n, Europeans reached in generation n, Africans 
who are ancestors to Africans reached subsequent to generation 
n, and Europeans who are ancestors to Europeans reached subse
quent to generation n. The first and third of these categories were 
studied by Mooney et al. (2023). The fourth and fifth are individuals 
who are genealogical ancestors of individuals who contributed 
directly to the African-American population, but who are not 
themselves parents of African-Americans; the expected number 
of Africans who are ancestors to African genealogical ancestors 
reached only subsequent to generation n is obtained from Eq. 10
by 

􏽐13
i=n+1 2i−nE[U14−i]. A similar computation can be performed 

for Europeans.
Figure 6a plots the fractions among all genealogical ancestors 

assigned to the 5 categories, and the values plotted appear in 
Table 2. In the earliest generations, all genealogical ancestors 
are Africans and Europeans who do not directly contribute to 

the African-American population. As the admixture continues, 
African and European genealogical ancestors who directly con
tribute are reached, and eventually, African-Americans represent 
most of the genealogical ancestors. In generation 0 (1610–1615), 
∼79% of genealogical ancestors are African and ∼21% are 
European, reflecting the fractions of an African-American genome 
that trace to African genetic ancestry and to European genetic 
ancestry.

Genetic ancestors
Considering the accepted parameter sets from Mooney et al. 
(2023), we used Eq. 15 to calculate generationwise expected num
bers of African and European genetic ancestors. These values en
able evaluation of expected fractions of the total African and 
European ancestry that have contributed to a descendant genome 
by each generation of genetic ancestors. For example, the fraction 
of the genome that traces to a specific African genetic ancestor 
from k generations before the descendant is, on average, 1/Wk, 
where Wk is the number of genetic ancestors in that generation. 
Wk has expectation 2kpk, the product of the number of genealogic
al ancestors k generations ago and the probability that a genea
logical ancestor is a genetic ancestor. Therefore, the expected 
contribution to the African genetic ancestry fraction from all 
African genetic ancestors k generations before the present can 
be approximated by E[Yk]/(2kpk), the ratio of the expected number 
of African genetic ancestors k generations prior to the descendant 
and the expected total number of genetic ancestors in that gener
ation. By Eqs. 10 and 15, E[Yk]/(2kpk) = E[Uk]/2k.

Figure 6b shows the expected African and European genetic an
cestry contributed by the genetic ancestors from each generation 
as fractions of the total African and European genetic ancestry, or

E[Yk]/(2kpk)
􏽐14

ℓ=1 E[Yℓ]/(2ℓpℓ)
. (36) 

The figure converts between the backward-time perspective in
dexed by k and the forward-time n = g − k. Because a genetic an
cestor from the more recent generations (large n) contributes 
more genetic ancestry on average than a genetic ancestor in pre
vious generations (small n), we observe nonnegligible contribu
tions from these later generations. However, ∼40% of the 
African genetic ancestry traces to generations 4 and 5, and ∼35% 
of the European genetic ancestry traces to generations 5 and 6, 
with an additional ∼30% of European genetic ancestry tracing to 
generations 7, 8, and 9.

The generationwise mean values across parameter sets of the 
expected numbers of genetic ancestors appear in Fig. 7, alongside 
expected numbers of genealogical ancestors for comparison. 
Replotting values from Fig. 7 of Mooney et al. (2023), the numbers 
of genealogical ancestors are greater for Africans than for 
Europeans, and the expected total numbers of genealogical ances
tors, summing across generations, are 314 Africans and 51 
Europeans (Tables 3 and 4). Looking forward in time from the 
founding of the population, the numbers of genealogical ances
tors increase to peak values and then decrease. The numbers of 
genetic ancestors also reach peaks and decrease toward the pre
sent. The expected total numbers of genetic ancestors are 162 
Africans and 32 Europeans.

By a similar computation, Fig. 5b provides the generationwise 
expected numbers of African-American genetic ancestors, com
paring them to corresponding numbers of genealogical ancestors. 
The expected total number of African-American genealogical 
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ancestors, summing from generations 0 to 13, is 363, and the ex
pected total for genetic ancestors is 294 (Tables 1 and 3).

In Fig. 7, the peak expected number of African genealogical 
ancestors appears in generation 4 (1735–1740). However, the 

corresponding peak for genetic ancestors occurs in generation 
5. The difference occurs because the peak for African genealogical 
ancestors occurs far enough back in time that the probability of 
genetic ancestry for those genealogical ancestors is well below 

Fig. 5. Generation-specific genealogical and genetic ancestry features for African-Americans. a) Generationwise mean admixture contributions s1 

(African), h (African-American), and s2 (European) across accepted parameter sets. Error bars show standard deviations. b) Means across accepted 
parameter sets of the expected numbers of African-American genealogical and genetic ancestors possessed by a random individual, as calculated by Eqs. 
3 and 20. Error bars show the standard deviations of these expected numbers across accepted parameter sets. The values plotted in a) are obtained by 
summarizing the distributions underlying Fig. 4 of Mooney et al. (2023). The values in b) are given in Table 1.
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Fig. 6. Generation-specific genealogical and genetic ancestry fractions for African-Americans. a) Generationwise genealogical ancestry for a random 
African-American individual, partitioned across 5 categories and averaged across accepted parameter sets. The fraction of genealogical ancestors who 
are Africans in generation n who contribute directly to the African-American population is obtained from Eq. 10 as E[U14−n]/214−n; the fraction of 
genealogical ancestors who are African but who only contribute to the African-American population through their subsequent African descendants is 
(
􏽐13

i=n+1 2i−nE[U14−i])/214−n. Similar calculations are performed for Europeans. The fraction of genealogical ancestors who are African-American is 
E[X14−n]/214−n, calculated using Eq. 3. The values plotted appear in Table 2. b) Generationwise expected African genetic ancestry contributed to a 
descendant as a fraction of the total expected African genetic ancestry in the descendant, and expected European genetic ancestry contributed to the 
descendant as a fraction of the total expected European genetic ancestry in the descendant. The values are obtained from Eq. 36, with n = 14 − k. Error 
bars represent standard deviations of the values from Eq. 36 across accepted parameter sets.
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1 (p10 = p14−4 ≈ 0.4637 by Eq. 1); the number of genetic ancestors 
among the smaller number of generation-5 genealogical ances
tors is greater than among the larger number of generation-4 
genealogical ancestors.

For Europeans, the peak of genealogical ancestors occurs later 
than for Africans, in generation 5 (1760–1765). In that later gener
ation, the fraction of genealogical ancestors who are also genetic 
ancestors is greater than in generation 4 (p9 = p14−5 ≈ 0.6728 by 
Eq. 1). Because the peak in genealogical ancestors occurs later 
for Europeans, the fraction of all European genealogical ancestors 
who are genetic ancestors (32

51 ≈ 0.63) exceeds the corresponding 
fraction for Africans (162

314 ≈ 0.52).

This observation can be illustrated in a computation shown 
in Fig. 8, which compares the ratio of African and European 
genetic ancestors to the ratio of African and European genea
logical ancestors across accepted parameter sets. The 
African:European ratio of genetic ancestors is consistently low
er than the African:European ratio of genealogical ancestors. 
The comparative recency of the European genealogical ances
tors—and the resulting increased probability of genetic ances
try for those genealogical ancestors—produces a greater value 
for the fraction of all genetic ancestors who are European com
pared to the fraction of all genealogical ancestors who are 
European.

Table 2. Generation-specific expectations of the fractions of genealogical ancestry assigned to 5 categories, across accepted parameter 
sets.

Fraction of genealogical ancestors

Generation Birth
African

African-
European

African, European,
(n) year American not counted not counted

0 1610–1615 0.0000 — — 0.7934 0.2066
1 1635–1640 0.0005 0.0000 0.0000 0.7929 0.2066
2 1660–1665 0.0035 0.0006 0.0003 0.7894 0.2062
3 1685–1690 0.0257 0.0044 0.0024 0.7637 0.2038
4 1710–1715 0.1171 0.0325 0.0127 0.6466 0.1911
5 1735–1740 0.1890 0.1623 0.0313 0.4575 0.1599
6 1760–1765 0.0632 0.3825 0.0417 0.3944 0.1182
7 1785–1790 0.0320 0.4874 0.0186 0.3624 0.0996
8 1810–1815 0.0362 0.5380 0.0208 0.3262 0.0788
9 1835–1840 0.0409 0.5950 0.0234 0.2853 0.0554
10 1860–1865 0.0584 0.6593 0.0118 0.2269 0.0436
11 1885–1890 0.0663 0.7296 0.0130 0.1606 0.0305
12 1910–1915 0.0752 0.8088 0.0145 0.0854 0.0161
13 1935–1940 0.0854 0.8985 0.0161 — —

The table shows the values plotted in Fig. 6a.

Table 1. Generation-specific expectations of the numbers of African-American genealogical and genetic ancestors across accepted 
parameter sets.

Number of African-American ancestors

Genealogical Genetic

Mean Standard Mean of Mean Standard Mean of
Generation Birth of deviation of standard of deviation of standard
(n) year expectation expectation deviation expectation expectation deviation

0 1610–1615 — — — — — —
1 1635–1640 0.07 0.03 0.27 0.01 0.00 0.08
2 1660–1665 2.32 0.98 1.83 0.40 0.17 0.66
3 1685–1690 8.93 3.38 4.41 2.60 0.98 1.88
4 1710–1715 33.30 11.15 12.71 15.44 5.17 6.60
5 1735–1740 83.09 24.37 28.93 55.91 16.39 20.05
6 1760–1765 97.93 25.08 33.17 84.36 21.61 28.99
7 1785–1790 62.39 14.22 21.05 60.39 13.76 20.57
8 1810–1815 34.43 6.97 11.51 34.33 6.95 11.52
9 1835–1840 19.04 3.52 6.28 19.04 3.52 6.28
10 1860–1865 10.55 1.87 3.40 10.55 1.87 3.40
11 1885–1890 5.84 0.77 1.83 5.84 0.77 1.83
12 1910–1915 3.24 0.28 0.94 3.24 0.28 0.94
13 1935–1940 1.80 0.08 0.42 1.80 0.08 0.42
Total — 362.93 90.16 119.94 293.89 69.66 99.54

Suppose θi denotes an accepted parameter set and θ = {θi}
|θ|
i=1 denotes the collection of all accepted parameter sets. For each generation n = g − k with g = 14 

(k = 1, 2, . . . , g), the mean of the expectation of the genealogical ancestors is Meanθ{E[Xk(θi)]} (Eq. 3; Eq. 20 for genetic ancestors); the standard deviation of the 
expectation is σθ{E[Xk(θi)]}; the mean of the standard deviation is Meanθ{

��������������
Var[Xk(θi)]

􏽰
} (Eq. 4; Eq. 21 for the genetic ancestors). For the total, the mean of the expectation 

of the genealogical ancestors is Meanθ{E[
􏽐g

k=1 Xk(θi)]} (Eq. 5; Eq. 23 for the genetic ancestors); the standard deviation of the expectation is σθ{E[
􏽐g

k=1 Xk(θi)]}; the mean 

of the standard deviation is Meanθ{
���������������������

Var[
􏽐g

k=1 Xk(θi)]
􏽱

} (Eq. 6; Eq. 24 for genetic ancestors). The table shows the generationwise values plotted in Fig. 5b for the mean 

and standard deviation of the expectation.
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In Fig. 5b, the peak number of African-American genealogical 
ancestors appears still later than the peaks for African and 
European genealogical ancestors, in generation 6 (1785–1790). In 
that generation, the fraction of genealogical ancestors who are 
also genetic ancestors is p8 = p14−6 ≈ 0.8615 (by Eq. 1). Hence, the 
fraction of African-American genealogical ancestors who are 
also genetic ancestors (294

363 ≈ 0.81) exceeds corresponding fractions 
for Africans and Europeans.

Discussion
We have developed an approach to counting genetic ancestors of 
an admixed individual, estimating the number of genetic ances
tors who contributed directly to the admixed population and the 
number of genetic ancestors belonging to the admixed population 
itself. The approach proceeds by recursively treating the number 
of such ancestors in a given generation as a random variable that 
is binomially distributed based on a corresponding random 

variable for the subsequent generation. We used an admixture 
model together with a model of African-American demographic 
history to estimate that a random African-American born be
tween 1960 and 1965 has an estimated mean of 162 for the num
ber of African genetic ancestors (standard deviation 47) and 32 for 
the number of European genetic ancestors (standard deviation 14) 
who contributed to the African-American population directly 
from the source populations, and 294 total African-American gen
etic ancestors (standard deviation 70).

Genetic and genealogical ancestors
In population-genetic studies of genetically admixed populations, 
genetic ancestry that traces to the source populations has gener
ally been analyzed by evaluation of estimated admixture fractions 
in members of an admixed population. The statistical models 
used for this estimation consider admixture in terms of the frac
tions of genomes contributed rather than via contributions of 
specific ancestors. With the increasing use of these genomic 

Fig. 7. Generation-specific expectations of the numbers of African and European genealogical and genetic ancestors. The expected number of African 
genealogical ancestors is calculated according to Eq. 10 (standard deviation, Eq. 11). The expected number of African genetic ancestors is calculated 
according to Eq. 15 (standard deviation, Eq. 16). Similar calculations are performed for Europeans. The plot shows means of the expectation and standard 
deviation across expected parameter sets. The values plotted appear in Table 4.

Table 3. Summary statistics for the expected numbers of African, European, and African-American genealogical and genetic ancestors 
for a random individual from the African-American population across the accepted parameter sets.

Quantity Mean Standard deviation Minimum First quartile Median Third quartile Maximum

African genealogical ancestors 314 99 124 240 299 376 680
African genetic ancestors 162 47 72 127 155 192 332
European genealogical ancestors 51 24 4 32 51 69 125
European genetic ancestors 32 14 4 21 32 43 77
African-American genealogical ancestors 363 90 202 294 345 418 709
African-American genetic ancestors 294 70 172 240 280 336 566

The estimates consider random individuals in the 1960–1965 birth cohort, assumed to be generation g = 14 in a 3-epoch model. The standard deviations are standard 
deviations of the means across accepted parameter sets; means and standard deviations are rounded from Tables 1 and 4. The values for African and European 
genealogical ancestors appear in Table 3 in Mooney et al. (2023).
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contributions to report information to individuals about their own 
genealogies, the meaning of concepts of genetic ancestry and ad
mixture—and their estimates—have been increasingly queried 
(Weiss and Long 2009; Lawson et al. 2018; Mathieson and Scally 
2020). Our use of mechanistic admixture models enables new per
spectives on the interpretation of genetic admixture and ancestry 
estimates, seeking to describe the timing at which the ancestors 
entered pedigrees of individuals and to count genetic ancestors 
across the length of the admixture process.

The number of genetic ancestors is bounded above by the num
ber of genealogical ancestors, as each genetic ancestor must also be 
a genealogical ancestor. Both for genealogical and for genetic an
cestors, the number of ancestors in a given generation is binomially 
distributed based on the number of genealogical ancestors in the 

subsequent generation (Eqs. 3, 10, 15, 20). The difference between 
the distributions of genealogical and genetic ancestors is in the bi
nomial probability of success. For genealogical ancestors, the dis
tribution depends only on parameters of the admixture process 
(Eqs. 3, 10), whereas for genetic ancestors, it depends also on a gen
etic ancestry probability for a genealogical ancestor separated from 
a descendant by a specified number of generations (Eqs. 15, 20). 
Depending on the features of the admixture process, the number 
of genetic ancestors from a source population can be close to the 
number of genealogical ancestors, or far smaller (Fig. 4).

The evaluation of genetic ancestors extends the mechanistic 
admixture model of Mooney et al. (2023). From a mathematical 
perspective, the focus on genealogical ancestors by Mooney et al. 
(2023) proceeded by adding a well-placed factor of 2 to the work 

Table 4. Generation-specific expectations of the numbers of African and European genealogical and genetic ancestors across accepted 
parameter sets.

Number of African ancestors

Genealogical Genetic

Generation 
(n) Birth year

Mean of 
expectation

Standard deviation 
of expectation

Mean of 
standard 
deviation

Mean of 
expectation

Standard deviation 
of expectation

Mean of 
standard 
deviation

0 1610–1615 0.14 0.07 0.54 0.01 0.00 0.09
1 1635–1640 4.25 1.99 3.41 0.41 0.19 0.71
2 1660–1665 14.27 6.04 7.28 2.45 1.03 1.93
3 1685–1690 52.70 19.95 20.47 15.33 5.80 6.91
4 1710–1715 119.90 40.15 42.22 55.60 18.62 20.50
5 1735–1740 96.76 28.37 33.45 65.10 19.09 23.12
6 1760–1765 16.18 4.14 6.60 13.94 3.57 5.88
7 1785–1790 4.10 2.71 2.50 3.97 2.62 2.45
8 1810–1815 2.31 1.57 1.70 2.31 1.57 1.70
9 1835–1840 1.31 0.91 1.20 1.31 0.91 1.19
10 1860–1865 0.94 0.39 0.99 0.94 0.39 0.99
11 1885–1890 0.53 0.23 0.72 0.53 0.23 0.72
12 1910–1915 0.30 0.14 0.53 0.30 0.14 0.53
13 1935–1940 0.17 0.08 0.39 0.17 0.08 0.39
Total — 313.86 98.58 102.62 162.37 46.72 52.66

Number of European ancestors

Genealogical Genetic

Generation 
(n) Birth year

Mean of 
expectation

Standard deviation 
of expectation

Mean of 
standard 
deviation

Mean of 
expectation

Standard deviation 
of expectation

Mean of 
standard 
deviation

0 1610–1615 — — — — — —
1 1635–1640 0.32 0.14 0.61 0.03 0.01 0.18
2 1660–1665 1.28 0.61 1.31 0.22 0.10 0.48
3 1685–1690 4.98 2.52 3.10 1.45 0.73 1.36
4 1710–1715 12.98 7.07 6.50 6.02 3.28 3.53
5 1735–1740 16.01 9.44 7.80 10.77 6.35 5.60
6 1760–1765 10.67 6.85 5.58 9.19 5.90 4.96
7 1785–1790 2.38 1.84 1.84 2.30 1.78 1.81
8 1810–1815 1.33 1.04 1.27 1.33 1.04 1.27
9 1835–1840 0.75 0.60 0.90 0.75 0.60 0.90
10 1860–1865 0.19 0.12 0.44 0.19 0.12 0.44
11 1885–1890 0.10 0.06 0.32 0.10 0.06 0.32
12 1910–1915 0.06 0.03 0.24 0.06 0.03 0.24
13 1935–1940 0.03 0.02 0.18 0.03 0.02 0.18
Total — 51.08 24.32 18.68 32.44 14.31 12.18

Values are calculated as in Table 1. The mean of the expectation for African genealogical ancestors is obtained by averaging values of Eq. 10 across accepted 
parameter sets (Eq. 15 for genetic ancestors); the standard deviation of the expectation takes the standard deviation of those values. The mean of the standard 
deviation for African genealogical ancestors is obtained as the mean of Eq. 11 across accepted parameter sets (Eq. 16 for genetic ancestors). For the total, the mean of 
the expectation of the sum of the African genealogical ancestors is calculated by averaging values of Eq. 12 across accepted parameter sets (Eq. 17 for genetic 
ancestors); the standard deviation of the expectation takes the standard deviation of those values. The mean of the standard deviation for the total African 
genealogical ancestors is obtained as the mean of Eq. 13 across accepted parameter sets (Eq. 18 for genetic ancestors). Corresponding quantities for European 
ancestors are calculated by replacing each s1,g−k with s2,g−k. The values of the total means for the expectation and standard deviation of African and European 
genealogical ancestors are those that appear in Table 3 of Mooney et al. (2023). The table shows the generationwise values plotted in Fig. 7 for the means and standard 
deviations of the expectation across the accepted parameter sets.
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of Verdu and Rosenberg (2011), converting a genomic fraction in a 
single-generation recursion into a genealogical ancestor count. 
The mathematical extension here is substantial, incorporating 
into the admixture model not only the factor of 2 but also the 
time-varying probability that a genealogical ancestor is a genetic 
ancestor.

Viewed from the perspective of the recombination-based gen
etic ancestry model of Coop (2013), our approach extends the ana
lysis of genetic ancestors by separating them across source 
populations. If we were to follow Coop (2013) and consider all po
pulations together as one, then Eq. 3 would reduce to E[Xk] = 2k, 
and our count of the random number of genetic ancestors in gen
eration k would reduce Eq. 20 to X∗k ∼ Bin(2k, pk). In other words, 
with no ancestry proportion considered—or alternatively, with 
all genealogical ancestors treated as members of the admixed 
population—the number of genealogical ancestors in generation 
k is 2k, and the probability that a genealogical ancestor is tabu
lated as a genetic ancestor depends only on the genetic ancestry 
probability pk. The expectation of this random variable gives the 
Coop (2013) calculation of the expected number of genetic ances
tors in generation k, E[X∗k] = 2kpk (Eq. 1, Fig. 3).

African-American demographic history
With the Mooney et al. (2023) 14-generation model of African- 
American demographic history, we examined the expected 
numbers of genetic ancestors from Africa, Europe, and the 

African-American population itself, for random African- 
Americans born 1960–1965. We found for the mean numbers of 
genetic ancestors 162 Africans and 32 Europeans (Fig. 7, 
Table 3), smaller than the corresponding numbers of genealogical 
ancestors, 314 Africans and 51 Europeans (Mooney et al. 2023). 
Tabulating ancestors within the African-American population it
self, the expected numbers of genealogical and genetic ancestors 
are 363 and 294, respectively (Fig. 5b, Table 1).

The peak number of genealogical ancestors occurs in gener
ation 4 for Africans (1710–1715), generation 5 for Europeans 
(1735–1740), and generation 6 for African-Americans (1760–1765, 
Tables 1 and 4). Tracing genealogical ancestors back in time, not
ing that the total number of genealogical ancestors doubles 
in each generation, we find that the proportion of African- 
Americans among genealogical ancestors is greatest in generation 
13, decreasing back in time (Fig. 6a, Table 2). The highest propor
tion occurs for Africans in generation 5 and for Europeans in gen
eration 6. Eventually, African and European genealogical 
ancestors are reached who are parents solely of Africans or of 
Europeans; the proportions of these Africans and Europeans in
crease back in time until all genealogical ancestors are in these 
categories, in an approximate ratio of 79% Africans to 21% 
Europeans (Table 2). These quantities, which estimate fractions 
of all genealogical ancestors tracing to Africans and Europeans, 
lie in the range of permissible mean empirical genomic ancestry 
coefficients (Mooney et al. 2023).

Fig. 8. Ratios of the number of African ancestors to the number of European ancestors. The x-axis shows the ratio for genealogical ancestors, and the 
y-axis shows the ratio for genetic ancestors. For each of 45,189 accepted parameter sets, we calculated ((

􏽐13
n=0 E[U14−n])/(

􏽐13
n=0 E[U′14−n]), 

(
􏽐13

n=0 E[Y14−n])/(
􏽐13

n=0 E[Y′14−n])), visualizing the ordered pair of ratios in a density plot. The 89% of the pairs (40,201) that have both ratios below 20 are 
presented in the plot, with the color of a 12 × 1

2 square representing the number of pairs located in that square. The mean ratios across all accepted 
parameter sets are (9.99, 7.07), and the standard deviations are (11.87, 6.32), with covariance 73.56. For the 89% of points shown, the mean ratios are 
(6.74, 5.36), with standard deviations (4.18, 2.96) and covariance 12.15. The y = x line is shown for comparison. Among the accepted parameter sets, the 
ratio we observed for genetic ancestors was always smaller than the ratio for genealogical ancestors; hence, for squares along the diagonal, only the lower 
triangle is colored. Note that although a smaller value for the ratio of genetic ancestors compared to the ratio of genealogical ancestors was always 
observed, such a relationship need not hold in principle.
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For genetic ancestors, the contribution to African genetic an
cestry is greatest for generations 4 and 5; the European genetic an
cestry is highest in generations 5 and 6 (Fig. 6b). The peak number 
of genetic ancestors occurs in generation 5 for Europeans and gen
eration 6 for African-Americans, matching corresponding peaks 
for genealogical ancestors (Tables 1 and 4). However, the peak 
for African genetic ancestors occurs in generation 5, one gener
ation later than for African genealogical ancestors (Table 4). 
Many African genealogical ancestors are far enough back in 
time that many of them are not genetic ancestors—so that the 
peak for genetic ancestors occurs later for genealogical ancestors. 
The fact that African genealogical ancestors occur on average 
farther in the past than European genealogical ancestors means 
that the 314:51 ratio of the mean numbers of African and 
European genealogical ancestors is smaller than the 162:32 ratio 
of the mean numbers of African and European genetic ancestors 
(Fig. 8), as a larger fraction of the African genealogical ancestors 
have been lost as genetic ancestors. In effect, the fact that the 
European genealogical ancestors are later on average than the 
African genealogical ancestors has the result that the probability 
that a European genealogical ancestor is also a genetic ancestor 
exceeds the corresponding probability for Africans.

An interesting difference occurs between the peak of the 
African ancestor counts and the subsequent peak of the 
Transatlantic Slave Trade. The fraction of Africans transported 
by 1760 is about half of the total (Hacker 2020, Table 1); however, 
the comparable fraction of African genealogical ancestors, indivi
duals born in generation 5 (born 1735–1740, reproductive age at 
1760) or earlier, is 92% (Table 4). Hence, although the many trans
ported Africans born in generations 6 and 7 certainly contributed 
in great numbers to the African-American population, a typical 
pedigree likely contains multiple lines that trace to the earlier en
slaved migrants of generations 5 and earlier. In other words, by 
the time of the birth of generations 6 (1760–1765) and 7 (1785– 
1790), the African-American population was large enough that 
among all genealogical lines of a person born 1960–1965, many 
trace to genealogical ancestors who were already resident in the 
African-American population at the time of those generations. 
Indeed, for generation 6 onward and even for generation 5, 
African-Americans are a nontrivial fraction of the genealogical 
ancestors of a modern person (Fig. 6), from ∼38% in generation 6 
up to ∼90% in generation 13 (Table 2). The other major component 
in generation 6 onward is African genealogical ancestors who did 
not contribute directly to the African-American population. These 
Africans are the genealogical ancestors of Africans newly contrib
uting to the African-American population. The substantial frac
tion for this category results from the accumulation of many 
African genealogical ancestors who contributed to pedigrees in 
generations later than generation 5.

Limitations and extensions
As our approach follows the assumptions of Mooney et al. (2023), it 
is subject to many of the same limitations. For example, we do not 
consider a Native American component of admixture in African- 
Americans. Our treatment of a “random African-American” born 
in the 1960–1965 window does not take into consideration regional 
variation across the African-American population in admixture 
processes or other demographic phenomena. We also disregard 
the possibility that the same genealogical ancestor might occur 
in multiple positions in a pedigree, so that our count of the num
ber of ancestors might double-count some individuals; the time 
over which this assumption is sensible is the period in which the 
number of genealogical ancestors in a pedigree is small in relation 

to the pool of potential ancestors. Our discretization of the genera
tions oversimplifies the demographic history, as does our 3-epoch 
model, though this model does accord with the perspective of one 
of the most comprehensive empirical analyses of African- 
American genetic admixture (Baharian et al. 2016). Another limita
tion is that our model in principle allows an unlikely scenario in 
which the 2 parents of an African-American are 2 Europeans. 
We also do not consider distinct ancestry parameters for males 
and females. Each of these limitations is shared between the as
sessment of genealogical ancestors by Mooney et al. (2023) and 
our analysis of genetic ancestors here. As is discussed by 
(Mooney et al. 2023, p. 13), each is possible to address by extensions 
and modifications of the model, potentially leading to further un
derstanding of both genealogical and genetic ancestors.

Additional limitations not shared in the work of Mooney et al. 
(2023), which focused solely on genealogical ancestors, arise 
from the use of the Coop (2013) model to evaluate the probability 
that a genealogical ancestor is a genetic ancestor. This approach 
does not account for recombination phenomena such as 
recombination-rate variation across the genome, gene conver
sion, the particular sizes of chromosomes, crossover interference 
that perturbs the Poisson distribution assumed for the number of 
new genomic segments each generation, differing male and fe
male recombination rates, or the X chromosome. With its simple 
treatment of the recombination process, the Coop (2013) model 
ignores many complexities that affect the probability that some 
segment from a genealogical ancestor might be retained in a des
cendant. Although extensions to accommodate such phenomena 
could be developed, in a single simple equation (Eq. 1), the Coop 
(2013) recombination model does capture the basic phenom
enon—as explained by Donnelly (1983)—that as the time between 
ancestor and descendant increases, the probability that the des
cendant retains a segment from the ancestor decreases (Fig. 3), 
and a steep drop in probability occurs when the separation in
creases from 7–8 generations (Robert Burns and descendants 
born 1960–1965) to 15–16 generations (descendants of William 
Shakespeare).

Our empirical focus has been on an example from human po
pulations, but the model can be applied more generally to diploid 
species in which mechanistic admixture models and recombin
ation models can be specified. To take one example, Armstrong 
et al. (2023) have studied genetic variation in captive tigers, a popu
lation formed through admixture of wild source populations from 
several different parts of Asia. Armstrong et al. (2023) have esti
mated genomic proportions that trace to the various source popu
lations. With a generalization to permit more than 2 sources, our 
model can assist in understanding the properties of the genetic 
ancestors that have given rise to typical individual captive tigers.

Conclusions
Further study of a mechanistic admixture model has deepened 
the analysis of the number of genealogical ancestors who contrib
ute from a source population to an admixed pedigree, and it has 
also introduced an approach to evaluating the number of contrib
uting genetic ancestors. For African-Americans, the distinction 
between genealogical and genetic ancestors suggests that al
though the number of African genealogical ancestors in a pedigree 
greatly exceeds the number of European genealogical ancestors, 
because the African genealogical ancestors are on average earlier 
in time than the European genealogical ancestors, the number of 
African genetic ancestors does not exceed the number of European 
genetic ancestors by as great a margin. More generally, the calcu
lations contribute to understanding the relationship between an 
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admixed population’s demographic history, its ancestral indivi
duals who have given rise to the modern population, and the gen
omes of its current members.

Data availability
The 45,189 sets of accepted parameter values (s1,0, h0, s2,0), 
(s1,1, h1, s2,1), . . . , (s1,13, h13, s2,13) from Mooney et al. (2023), on 
which the analysis of the African-American population is based, 
are available in Supplementary File 1. Supplemental material is 
available at GENETICS online.
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Appendix A: Proofs of Eqs. 3, 4 and 6
We prove Eq. 3, describing E[Xk], by induction. For k = 0,

Xk = 1 = 20
􏽙0

i=1

hg−i.

We assume that for k − 1,

E[Xk−1] = 2k−1
􏽙k−1

i=1

hg−i.

Using the inductive hypothesis and the fact that Xk ∼ 
Bin(2Xk−1, hg−k) for 1 ≤ k ≤ g, we obtain

E[Xk] = E
􏽨
E[Xk ∣ Xk−1]

􏽩
= 2hg−kE[Xk−1]

= 2hg−k2k−1
􏽙k−1

i=1

hg−i = 2k
􏽙k

i=1

hg−i.
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Next, we prove Eq. 4, again by induction. For k = 0, X0 = 1 has 
variance 0; Eq. 4 holds trivially, as it is an empty sum. For 
k = 1, X1 ∼ Bin(2, hg−1), and therefore,

Var[X1] = 2hg−1(1 − hg−1)

=
􏽘1

i=1

21−1+i[1 − hg−(1+1)+i]

×
􏽙g−1

j=g−(1+1)+i

hj

⎛

⎝

⎞

⎠
􏽙g−(1+2)+i

ℓ=g−1

h2
ℓ

􏼠 􏼡⎡

⎣

⎤

⎦.

We assume that for k − 1,

Var[Xk−1] =
􏽘k−1

i=1

2k−2+i(1 − hg−k+i)

×
􏽙g−1

j=g−k+i

hj

⎛

⎝

⎞

⎠
􏽙g−(k+1)+i

ℓ=g−(k−1)

h2
ℓ

⎛

⎝

⎞

⎠

⎡

⎣

⎤

⎦.

We use the law of total variance with Eq. 3 and the inductive hy
pothesis. We have

Var[Xk] = E
􏽨
Var[Xk ∣ Xk−1]

􏽩
+ Var

􏽨
E[Xk ∣ Xk−1]

􏽩

= E[2hg−k(1 − hg−k)Xk−1] + Var[2hg−kXk−1]

= 2hg−k(1 − hg−k)2k−1
􏽙k−1

i=1

hg−i

􏼠 􏼡

+ (2hg−k)2
􏽘k−1

i=1

2k−2+i(1 − hg−k+i)

×
􏽙g−1

j=g−k+i

hj

⎛

⎝

⎞

⎠
􏽙g−(k+1)+i

ℓ=g−(k−1)

h2
ℓ

⎛

⎝

⎞

⎠

⎡

⎣

⎤

⎦

= 2k(1 − hg−k)
􏽙g−1

j=g−k

hj

⎛

⎝

⎞

⎠

+
􏽘k

i=2

22+k−2+i−1(1 − hg−k+i−1)

×
􏽙g−1

j=g−k+i−1

hj

⎛

⎝

⎞

⎠
􏽙g−(k+1)+i−1

ℓ=g−k

h2
ℓ

⎛

⎝

⎞

⎠

⎡

⎣

⎤

⎦

=
􏽘k

i=1

2k−1+i[1 − hg−(k+1)+i]

×
􏽙g−1

j=g−(k+1)+i

hj

⎛

⎝

⎞

⎠
􏽙g−(k+2)+i

ℓ=g−k

h2
ℓ

⎛

⎝

⎞

⎠

⎡

⎣

⎤

⎦.

Finally, we prove Eq. 6. First, we prove that if 0 ≤ m < n ≤ g, then

Cov[Xn, Xm] = 2n−m
􏽙n−m

i=1

hg−(m+i)Var[Xm].

Fixing m with 0 ≤ m ≤ g − 1, we proceed by induction on n. For 
n = m + 1, we have

Cov[Xm+1, Xm] = E[Xm+1Xm] − E[Xm+1]E[Xm]

= E
􏼂
E[Xm+1Xm |Xm]

􏼃

− 2hg−(m+1)E[Xm]E[Xm]

= E[2hg−(m+1)X
2
m] − 2hg−(m+1)E[Xm]E[Xm]

= 2m+1−mhg−(m+1)Var[Xm].

We now assume that for (n, m) with 0 ≤ m < n ≤ g and n ≥ m + 2,

Cov[Xn−1Xm] = 2n−1−m
􏽙n−1−m

i=1

hg−(m+i)Var[Xm].

Then

Cov[Xn, Xm] = E[XnXm] − E[Xn]E[Xm]

= E
􏼂
E[XnXm |Xm, Xn−1]

􏼃

− 2hg−nE[Xn−1]E[Xm]

= 2hg−n(E[Xn−1Xm] − E[Xn−1]E[Xm])

= 2hg−n2n−1−m
􏽙n−1−m

i=1

hg−(m+i)Var[Xm]

= 2n−m
􏽙n−m

i=1

hg−(m+i)Var[Xm].

Having obtained the covariance Cov[Xn, Xm], we conclude

Var
􏽘g

k=1

Xk

􏼢 􏼣

=
􏽘g

k=1

Var[Xk]

+ 2
􏽘g−1

m=1

􏽘g

n=m+1

Cov[Xn, Xm]

=
􏽘g

k=1

Var[Xk]

+
􏽘g−1

m=1

􏽘g

n=m+1

2n−m+1
􏽙n−m

i=1

hg−(m+i)Var[Xm].
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Appendix B: Proofs of Eqs. 13 and 18
We prove Eq. 13, starting with the law of total variance.

Var
􏽘g

k=1

Uk

􏼢 􏼣

=
(i)

Var E
􏽘g

k=1

Uk |X0, X1, . . . , Xk

􏼢 􏼣􏼢 􏼣

+ E Var
􏽘g

k=1

Uk |X0, X1, . . . , Xk

􏼢 􏼣􏼢 􏼣

=
(ii)

Var
􏽘g

k=1

s̃1,g−k(2Xk−1 − Xk)

􏼢 􏼣

+ E
􏽘g

k=1

s̃1,g−k(1 − s̃1,g−k)(2Xk−1 − Xk)

􏼢 􏼣

=
(iii)

Var
􏽘g−1

k=1

[2s̃1,g−(k+1) − s̃1,g−k]Xk

􏼢 􏼣

+
􏽘g

k=1

s̃1,g−k(1 − s̃1,g−k)E E[2Xk−1 − Xk |Xk−1]
􏼂 􏼃

=
(iv) 􏽘

g−1

k=1

[2s̃1,g−(k+1) − s̃1,g−k]2 Var[Xk]

+
􏽘g−2

m=1

􏽘g−1

n=m+1

2n−m+1[2s̃1,g−(m+1) − s̃1,g−m]

× [2s̃1,g−(n+1) − s̃1,g−n]
􏽙n−m

i=1

hg−(m+i) Var[Xm]

+
􏽘g

k=1

s̃1,g−k(1 − s̃1,g−k)(1 − hg−k)(2E[Xk−1])

=
(v) 􏽘

g−1

k=1

[2s̃1,g−(k+1) − s̃1,g−k]2 Var[Xk]

+
􏽘g−2

m=1

􏽘g−1

n=m+1

2n−m+1[2s̃1,g−(m+1) − s̃1,g−m]

× [2s̃1,g−(n+1) − s̃1,g−n]
􏽙n−m

i=1

hg−(m+i) Var[Xm]

+
􏽘g−1

k=0

2s1,g−(k+1)[1 − s̃1,g−(k+1)]E[Xk].

For line (ii), given X0, . . . , Xk−1, Xk, Uk depends only on Xk−1 and Xk. 
Among the genealogical ancestors in step k of the descendant 
from step 0, 2Xk−1 are parents of admixed individuals from step 
k − 1, and Xk are admixed individuals in step k; 2Xk−1 − Xk reach 
a source population in step k, with binomial probabilities 
s1,g−k/(s1,g−k + s2,g−k) = s1,g−k/(1 − hg−k) = s̃1,g−k for source 1 and 

s2,g−k/(s1,g−k + s2,g−k) = s2,g−k/(1 − hg−k) = s̃2,g−k for source 2, respect

ively. In other words, Uk |Xk−1, Xk ∼ Bin(2Xk−1 − Xk, s̃1,g−k).
For line (iii), in the sum 

􏽐g
k=1 s̃1,g−k(2Xk−1 − Xk), for 

k = 1, 2, . . . , g − 1, X0 = 1 and Xg = 0 are constants and have zero 
variance. We also use the law of total expectation. Line (iv) follows 
from Eq. 6 and from the binomial distribution of Xk |Xk−1, so that 
E E[2Xk−1 − Xk |Xk−1]
􏼂 􏼃

= 2E[Xk−1] − 2hg−kE[Xk−1] = (1 − hg−k)(2E[Xk−1]). 
Finally, for (v), we simplify s̃1,g−k(1 − hg−k) = s1,g−k.

Similarly, we also use the law of total variance to prove Eq. 18:

Var
􏽘g

k=1

Yk

􏼢 􏼣

= Var E
􏽘g

k=1

Yk |X0, X1, . . . , Xk

􏼢 􏼣􏼢 􏼣

+ E Var
􏽘g

k=1

Yk |X0, X1, . . . , Xk

􏼢 􏼣􏼢 􏼣

.

The proof is entirely analogous, except that s̃1,g−kpk appears in 

place of s̃1,g−k.

Appendix C: Proof of Eq. 35
We prove inequalities concerning pk/ pk−1: (1) pk/ pk−1 < 1 for k ≥ 2; 
(2) pk/ pk−1 > 1

2 for k ≥ 2. 

1) By Eq. 1, pk/ pk−1 = [1 − e−a(k)]/[1 − e−b(k)] for k ≥ 3, where a(k) = 
(33k − 11)/2k−1 and b(k) = (33k − 44)/2k−2. For k ≥ 3, 

0 < a(k) < b(k), and hence, 1 − e−a(k) < 1 − e−b(k) and 
pk/ pk−1 < 1. For k = 2, pk/ pk−1 < 1 as pk < 1 by Eq. 1 and 
pk−1 = 1.

2) For k = 2, pk/pk−1 = p2 = 1 − e−55/2 > 1
2. For k ≥ 3, we rearrange 

Eq. 1 to find that the inequality pk/pk−1 > 1
2 is equivalent to

e
66

2k−1 e
33k−77
2k−1 + e−33k−77

2k−1 > 2. (C1) 

The inequality ex + e−x ≥ 2 holds for all x, as it is equivalent to 
coshx ≥ 1. Hence, for c > 1, cex + e−x > ex + e−x ≥ 2. We see 
that Eq. C1 then follows, with

e
66

2k−1 ,
33k − 77

2k−1

􏼒 􏼓

in place of (c, x). As Eq. C1 holds, we conclude pk/pk−1 > 1
2.
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