
Periodic Behavior of the Minimal Colijn-Plazzotta
Rank for Trees with a Fixed Number of Leaves
Michael R. Doboli 1 #

Department of Mathematics, Stanford University, CA, USA

Hsien-Kuei Hwang #

Institute of Statistical Science, Academia Sinica, Taipei, Taiwan

Noah A. Rosenberg #

Department of Biology, Stanford University, CA, USA

Abstract
The Colijn-Plazzotta ranking is a certain bijection between the unlabeled binary rooted trees
and the positive integers, such that the integer associated with a tree is determined from the
integers associated with the two immediate subtrees of its root. Letting an denote the minimal
Colijn-Plazzotta rank among all trees with a specified number of leaves n, the sequence {an}
begins 1, 2, 3, 4, 6, 7, 10, 11, 20, 22, 28, 29, 53, 56, 66, 67 (OEIS A354970). Here we show
that an ∼ 2[2P (log2 n)]n, where P varies as a periodic function dependent on {log2 n} and satisfies
1.24602 < 2P (log2 n) < 1.33429.
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1 Introduction

Consider an unlabeled binary rooted tree t with m(t) leaves. Colijn & Plazzotta [2] introduced
a ranking for the unlabeled binary rooted trees, according to which the rank f(t) of t is
determined from the ranks ℓ(t) of its left subtree and r(t) of its right subtree: f(t) = 1
for m(t) = 1, and f(t) = f

(
ℓ(t)

)[
f

(
ℓ(t)

)
− 1

]
/2 + 1 + f

(
r(t)

)
for m(t) ≥ 2. To compute

the Colijn-Plazzotta rank, or CP rank, of a tree t, the “left” and “right” subtrees of t are
arranged in a canonical order, such that f

(
ℓ(t)

)
≥ f

(
r(t)

)
.

The ranking f bijectively associates positive integers to unlabeled binary rooted trees –
which number 1, 1, 2, 3, 6, 11, 23, 46, 98 for trees of n = 1 to 10 leaves (the Wedderburn-
Etherington numbers, OEIS A001190). Among trees with n leaves, CP ranks vary greatly; for
example, the 8-leaf symmetric tree has rank 11 and the 8-leaf caterpillar has rank 2,598,062.

The CP rank has been proposed for various uses in the mathematical study of evolutionary
trees [2, 3, 9]. It provides a tree encoding with the property that similar shapes often have
nearby ranks, even if they possess different numbers of leaves. As a result, it gives a basis
for computing a distance between unlabeled trees of differing size – a useful metric for the
evolutionary trees that might be produced from genetic sequences in pathogens and other
organisms. Because highly balanced shapes have the smallest rank among trees with a fixed
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18:2 Periodic Behavior of the Minimal Colijn-Plazzotta Rank

number of leaves and highly unbalanced shapes have the largest rank, the CP rank can
serve as a measure of the balance of an unlabeled tree – for example, in studies that seek to
compare the balance of observed trees to that predicted by models of evolutionary processes.

The minimal and maximal CP ranks across all trees with a fixed number of leaves n

can assist in assessing the CP ranks of specific trees, for example by normalizing the CP
rank as a measure of tree balance. Rosenberg [9] studied the minimal and maximal CP
ranks across trees with n leaves, identifying the trees that give rise to those ranks. The
maximal rank, denoted bn, recursively follows bn = bn−1(bn−1 − 1)/2 + 2 for n ≥ 2, with
b1 = 1 [9, Theorem 9]. As a quadratic recursion of a form studied by Aho & Sloane [1], bn

has asymptotic growth bn ∼ 2β2n for a constant β ≈ 1.05653 [9, Corollary 14].
The minimal CP rank, denoted an, recursively follows [9, Theorem 6]

an =
{

1, n = 1
a⌈n/2⌉(a⌈n/2⌉ − 1)/2 + 1 + a⌊n/2⌋, n ≥ 2.

(1)

For n equal to a power of 2, Rosenberg [9] showed that the recursion for an is related to that
for bn, producing an ∼ 2αn for a constant α = β4, α ≈ 1.24602 [9, Theorem 13]. For general
n, however, Rosenberg [9] gave only an upper bound, an < ( 3

2 )n [9, Proposition 15].
Here we obtain the asymptotic growth of an. Informally, our main result, obtained in

Theorems 6 and 9 and summarized in Corollary 10, states that the minimal Colijn-Plazzotta
rank an across trees with n leaves is approximately equal to 2[2P (log2 n)]n, where P is a
bounded periodic function of period 1. Moreover, the minimum and supremum of 2P are
given by constants c1 ≈ 1.24602 and c2 ≈ 1.33429.

Extremal properties of the non-differentiable periodic functions arising from recursions
such as eq. 1 that involve ⌊n/2⌋ and ⌈n/2⌉ are often difficult to characterize; many examples
therefore rely on case-dependent approaches. The computation here uses an inductive method
for studying the extrema.

2 An elementary improvement to the bounds on an

We begin by providing a refined exponential upper and lower bound on an for n ≥ 66 that
improves upon the ( 3

2 )n exponential upper bound in [9].

▶ Proposition 1. For all integers n ≥ 66, 3(1.2)n < an < (1.34)n.

Proof. We proceed via induction on n. For the base case, we verify computationally from
eq. 1 that 3(1.2)n < an < (1.34)n for all integers 66 ≤ n ≤ 132. For the inductive hypothesis,
assume that 3(1.2)k < ak < (1.34)k for all k, 66 ≤ k < n. Because we have already considered
66 ≤ n ≤ 132, suppose n > 132. Writing an = 1

2 a⌈n/2⌉(a⌈n/2⌉ − 1) + a⌊n/2⌋ + 1, by the
inductive hypothesis, we have for the lower bound

an >
3(1.2)⌈n/2⌉[3(1.2)⌈n/2⌉ − 1]

2 + 3(1.2)⌊n/2⌋ + 1

= 9
2(1.2)2⌈n/2⌉ − 3

2(1.2)⌈n/2⌉ + 3(1.2)⌊n/2⌋ + 1

≥ 9
2(1.2)2⌈n/2⌉ +

[
− 3

2(1.2) + 3
]
(1.2)⌊n/2⌋ + 1 >

9
2(1.2)n + 1.2(1.2)⌊n/2⌋ + 1 > 3(1.2)n.
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For the upper bound, by the recursive formula for an and the inductive hypothesis,

an <
(1.34)⌈n/2⌉[(1.34)⌈n/2⌉ − 1]

2 + (1.34)⌊n/2⌋ + 1

= 1
2(1.34)2⌈n/2⌉ − 1

2(1.34)⌈n/2⌉ + (1.34)⌊n/2⌋ + 1

≤ 1
2(1.34)2⌈n/2⌉ +

(
− 1

2 + 1
)

(1.34)⌊n/2⌋ + 1

= 1
2(1.34)2⌈n/2⌉ + 1

2(1.34)⌊n/2⌋ + 1 ≤ 1
2(1.34)n+1 + 1

2(1.34)n/2 + 1

= (1.34)n +
[

− 0.33(1.34)n + 0.5(1.34)n/2 + 1
]

< (1.34)n,

where the last step follows by noting that −0.33(1.34)n + 0.5(1.34)n/2 + 1 < 0 for 1.34n/2 >

(0.5 +
√

1.57)/0.66, or n > 2 log[(0.5 +
√

1.57)/0.66]/ log 1.34 ≈ 6.6754. ◀

We continue now with a more precise analysis via the methods of [4].

3 Obtaining the periodically varying exponential order

Hwang et al. [4] studied recurrences with the nth term written in terms of ⌊ n
2 ⌋ and ⌈ n

2 ⌉.
Such recurrences can arise in tree problems, in which a quantity associated with the root is
written in terms of corresponding quantities for subtrees (see also e.g. [6, 8]). The floor and
ceiling function give rise to periodicity in the exponential orders of the associated sequences.

Theorem 5 of [4], which considers recurrences that involve ⌈ n
2 ⌉, enables asymptotic

evaluation of an from eq. 1. Denote {t} = t − ⌊t⌋, writing {t−} as the left-continuous version
of {t}: {t−} = 1 for integer t, and {t−} = {t} otherwise. In other words, {t−} = 1 − {−t}.

▶ Theorem 2 ([4]). Suppose f(n) = 2f(⌈ n
2 ⌉) + g(n) for n ≥ 2, where f(1) is given and

g(1) = 0. Suppose further that the function Gm(t) =
∑m

k=0 2−kg
(
⌈2kt⌉

)
converges uniformly

to G(t) =
∑∞

k=0 2−kg
(
⌈2kt⌉

)
for t ∈ [1, 2].

Then for n ≥ 1, we have f(n) = nP (log2 n) − Q(n), with P and Q defined by

P (t) = 2−{t−}
[
G

(
2{t−})

+ 2f(1)
]

Q(n) = G(n) − g(n) =
∞∑

k=1
2−kg(2kn).

The theorem states that for a class of recurrences in which f(n) is expressed in terms of
f(⌈ n

2 ⌉), f(n) can be written in terms of a periodic function P that varies with the fractional
part of log2 n. We rewrite an from eq. 1 in a form suited to the theorem.

Expanding eq. 1, for n ≥ 2, we have an = 1
2 a2

⌈n/2⌉ − 1
2 a⌈n/2⌉ + a⌊n/2⌋ + 1, with a1 = 1.

We augment the definition by writing a0 = 0. Writing an = 2gn − 1
2 , we have g0 = 1

4 , g1 = 3
4 ,

and for n ≥ 2, gn = g2
⌈n/2⌉ + hn, where hn = g⌊n/2⌋ − g⌈n/2⌉ + 11

16 , with h0 = 11
16 and h1 = 3

16 .
Let λn = log2 gn. Then λ0 = −2, λ1 = log2

3
4 , and for n ≥ 2, λn = 2λ⌈n/2⌉ + µn, where

µn = log2(1 + hn/g2
⌈n/2⌉) for n ≥ 2. We set µ1 = 0; a value for µ0 is not needed.

▶ Proposition 3. For n ≥ 2, the sequence λn can be written λn = nP (log2 n) − Q(n), where

P (t) = 2−{t−}
(

2λ1 +
∞∑

k=0
2−kµ⌈2k+{t−}⌉

)
(2)

Q(n) =
∞∑

k=1
2−kµ2kn. (3)

AofA 2024
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Proof. First, λn has the correct recursive form for the theorem: λn = 2λ⌈n/2⌉ + µn for n ≥ 2,
with λ and µ in the roles of f and g. λ1 is given, equaling log2

3
4 , and µ1 = 0 by definition.

Note that the µn depend on the λn, which is not the case for g(n) in Theorem 2 in
relation to f(n), so that Theorem 2 does not immediately apply. However, because f(n)
here is solved in closed form without error, we can check the conditions of the theorem –
which amounts to showing the convergence of an infinite series – and still apply the resulting
solution to λn.

If we can show uniform convergence of Gm(t) =
∑m

k=0 2−kµ⌈2kt⌉ to G(t) =∑∞
k=0 2−kµ⌈2kt⌉ on t ∈ [1, 2], then the proposition will follow by Theorem 2, with f re-

placed by λ and g by µ. To prove this uniform convergence result, we first note that

µn = log2

(
1 +

g⌊n/2⌋ − g⌈n/2⌉ + 11
16

g2
⌈n/2⌉

)
= log2

(
1 +

g⌊n/2⌋

g2
⌈n/2⌉

− 1
g⌈n/2⌉

+
11
16

g2
⌈n/2⌉

)
≤ log2

(
1 + 1

g⌈n/2⌉
− 1

g⌈n/2⌉
+

11
16

g2
⌈n/2⌉

)
= log2

(
1 +

11
16

g2
⌈n/2⌉

)
.

The inequality follows from g⌊n/2⌋ ≤ g⌈n/2⌉, which holds because gn = 1
2 (an + 1

2 ) and
{an}∞

n=1 is strictly increasing [9, Lemma 5]. Then {gn}∞
n=1 is also strictly increasing. We

conclude that there exists a constant upper bound on log2
[
1 + ( 11

16 )/g2
⌈n/2⌉

]
that is applicable

for all n ≥ 1. Next, notice that

µn = log2

(
1 +

g⌊n/2⌋

g2
⌈n/2⌉

− 1
g⌈n/2⌉

+
11
16

g2
⌈n/2⌉

)
≥ log2

(
1 − 1

g⌈n/2⌉

)
.

Because {gn}∞
n=1 is strictly increasing and g2 = 5

4 , we can conclude that for all n ≥ 4,
µn ≥ log2

(
1 − 1/g⌈n/2⌉

)
≥ log2

(
1 − 1/g2

)
= log2

( 1
5
)
. Hence, µn ≥ min

(
µ1, µ2, µ3, log2( 1

5 )
)

for all n ≥ 1, showing that µn is also bounded below by a constant applicable for all n ≥ 1.
Because µn is bounded below and above by constants applicable for all n, there exists

a constant M such that |µn| < M for all n ≥ 1. We use this constant to show that Gm(t)
converges uniformly to G(t) =

∑∞
k=0 2−kµ⌈2kt⌉ for t ∈ [1, 2]. Indeed, if we let gk(t) =

2−kµ⌈2kt⌉, we then have that Gm(t) =
∑m

k=0 gk(t). Because |gk(t)| = |2−kµ⌈2kt⌉| ≤ 2−kM

for all t ∈ [1, 2] and k ≥ 0 and
∑∞

k=0 2−kM = 2M < ∞, it follows by the Weierstrass M-test
that Gm(t) converges uniformly to G(t) on t ∈ [1, 2], as desired.

By Theorem 2, we deduce that λn = nP (log2 n) − Q(n), where P and Q are defined by

P (t) := 2−{t−}
[
G(2{t−}) + 2λ1

]
= 2−{t−}

(
2λ1 +

∞∑
k=0

2−kµ⌈2k+{t−}⌉

)
(4)

Q(n) := G(n) − µn =
∞∑

k=1
2−kµ2kn. (5)

◀

Examples of an, gn, hn, λn, µn, P (log2 n) and Q(n) for small values of n appear in Table 1.
Values for P (log2 n) and Q(n) are numerical approximations, and values for λn and µn are
rounded to four decimal places. To find the asymptotic growth of an, we use Proposition 3:

an = 2gn − 1
2 = 2(2λn) − 1

2 = 2[2nP (log2 n)−Q(n)] − 1
2 = 2[2−Q(n)] [2P (log2 n)]n − 1

2 .
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Table 1 Examples of an, gn, hn, λn, µn, P (log2 n) and Q(n) for 0 ≤ n ≤ 5. an is calculated
recursively using eq. 1, and gn is evaluated from an = 2gn − 1

2 . hn is evaluated as hn = g⌊n/2⌋ −
g⌈n/2⌉ + 11

16 , and λn as λn = log2 gn. µn is defined as log2(1 + hn/g2
⌈n/2⌉) for n ≥ 2 with µ1 = 0.

The values of P (log2 n) and Q(n) are approximated via eqs. 2 and 3, using the values of µn and λ1.

n an gn hn λn µn P (log2 n) Q(n)
0 0 0.25 0.6875 −2 - - -
1 1 0.75 0.1875 −0.4150 0 0.3173 0.7324
2 2 1.25 0.6875 0.3219 1.1520 0.3173 0.3127
3 3 1.75 0.1875 0.8074 0.1635 0.3237 0.1639
4 4 2.25 0.6875 1.1699 0.5261 0.3173 0.0994
5 6 3.25 0.1875 1.7004 0.0857 0.3496 0.0474

Figure 1 2P (t) as a function of t. 2P (t) is a periodic function with period 1. The plot computes
all µn for 1 ≤ n ≤ 2056 using µn = log2(1 + hn/g2

⌈n/2⌉) for n ≥ 2, where hn = g⌊n/2⌋ − g⌈n/2⌉ + 11
16

and gn = an
2 + 1

4 for n ≥ 2 with g1 = 3
4 and h1 = 3

16 ; an is defined by eq. 1. We use the µn to
approximate P (t) as in eq. 2, evaluating P (t) for all t = k/100000 for integers 0 ≤ k < 100000.

We use a lemma from A to show in B that Q(n) → 0 as n → ∞. It follows that an ∼
2[2P (log2 n)]n. The asymptotic exponential growth of an thus depends only on the value
of {log2 n}. Because P is a periodic function with period 1, we have that P [log2(2n)] =
P (1 + log2 n) = P (log2 n). The base of the exponent of a2n is the same as that of an for any
n. A plot of 2P (t) as a function of t ∈ [0, 1] appears in Figure 1.

The function in Figure 1 appears to have many discontinuities, the most visually apparent
of which lies at t = 0. In the next section, we show that 2P (t) has its supremum as P (t)
approaches 0 from the right and its minimum at t = 0.

4 The upper bound on the exponential order

From Section 3, an ∼ 2[2P (log2 n)]n. Hence, to find upper and lower bounds on the exponential
order of an, we must find the extreme values of 2P (log2 n). Because P is a 1-periodic function,
it suffices to find the extrema of 2P (t) on t ∈ [0, 1).

We obtain the upper bound in Theorem 6 and the lower bound in Theorem 9. The
proof of Theorem 6 requires an inequality that concerns a certain sum involving the µn. To
prove the inequality, Lemma 4 obtains a term-wise result for terms in the sum that have a
sufficiently high index. The term-wise result does not hold for terms with a small index, and
Lemma 5 addresses their sum all at once. The lemmas are proven in C.

AofA 2024



18:6 Periodic Behavior of the Minimal Colijn-Plazzotta Rank

▶ Lemma 4. µ2k+1 − 2−tµ⌈2k+t⌉ − λ1(2−t − 1) > −[µ2 − 2−tµ2 − λ1(2−t − 1)] for all integers
k ≥ 11 and all t ∈ (0, 1).

▶ Lemma 5. For all t ∈ (0, 1),

10∑
k=1

[
2−kµ2k+1 − 2−k−tµ⌈2k+t⌉ − 2−kλ1(2−t − 1)

]
> −

10∑
k=1

2−k
[
µ2 − 2−tµ2 − λ1(2−t − 1)

]
.

▶ Theorem 6. supt∈(0,1) 2P (t) = limt→0+ 2P (t).

Proof. Because 2x is a strictly increasing function with respect to x, finding the supremum
of 2P (t) on (0, 1) is equivalent to finding the supremum of P (t). For t ∈ (0, 1), {t−} = t.
Hence, applying the definition of P (t) from eq. 4,

lim
t→0+

P (t) = lim
t→0+

2−{t−}
(

2λ1 +
∞∑

k=0
2−kµ⌈2k+{t−}⌉

)
= 2λ1 +

∞∑
k=0

2−kµ2k+1.

Proving that P (t) < limt→0+ P (t) for t ∈ (0, 1) is equivalent to proving

2−t

(
2λ1 +

∞∑
k=0

2−kµ⌈2k+t⌉

)
< 2λ1 +

∞∑
k=0

2−kµ2k+1. (6)

Rearranging eq. 6 and noting 2 =
∑∞

k=0 2−k, we must prove
∑∞

k=0[2−kµ2k+1 −2−k−tµ⌈2k+t⌉ −
2−kλ1(2−t − 1)] > 0, or equivalently, extracting the k = 0 term,

µ2 − 2−tµ2 − λ1(2−t − 1) +
∞∑

k=1

[
2−kµ2k+1 − 2−k−tµ⌈2k+t⌉ − 2−kλ1(2−t − 1)

]
> 0. (7)

By Lemmas 4 and 5, we have the following:

[
µ2 − 2−tµ2 − λ1(2−t − 1)

]
+

10∑
k=1

[
2−kµ2k+1 − 2−k−tµ⌈2k+t⌉ − 2−kλ1(2−t − 1)

]
+

∞∑
k=11

[
2−k

[
µ2k+1 − 2−tµ⌈2k+t⌉ − λ1(2−t − 1)

]]

>
[
µ2 − 2−tµ2 − λ1(2−t − 1)

][
1 −

10∑
k=1

2−k −
∞∑

k=11
2−k

]
= 0.

The chain of inequalities verifies eq. 7, proving the theorem. ◀

5 The lower bound on the exponential order

We can use techniques similar to those of Section 4 to find the minimum of 2P (t) for t ∈ [0, 1).
Again, we need two lemmas, one for terms with a sufficiently large index, and another for
terms with small values for the index. The lemmas are proven in D.

▶ Lemma 7. For integers k ≥ 11 and all t ∈ (0, 1):

2−tµ⌈2k+t⌉ − 2−1µ2k+1 − λ1(2−1 − 2−t) > −[2−tµ2 − 2−1µ2 − λ1(2−1 − 2−t)].
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▶ Lemma 8. For all t ∈ (0, 1),

10∑
k=1

[
2−k−tµ⌈2k+t⌉ − 2−k−1µ2k+1 − 2−kλ1(2−1 − 2−t)

]
> −

10∑
k=1

2−k
[
2−tµ2 − 2−1µ2 − λ1(2−1 − 2−t)

]
.

▶ Theorem 9. mint∈[0,1) 2P (t) = 2P (0).

Proof. As before, 2x is an increasing function in x, so that finding the minimum of the
1-periodic 2P (t) is equivalent to finding the minimum of P (t) over [0, 1). We must show that

P (0) = 1
2

[
2λ1 +

∞∑
k=0

2−kµ2k+1

]
< 2−t

[
2λ1 +

∞∑
k=0

2−kµ⌈2k+t⌉

]
= P (t),

for all t ∈ (0, 1). Equivalently, replacing 2 by
∑∞

k=0 2−k, we must show
∑∞

k=0[2−k−tµ⌈2k+t⌉ −
2−k−1µ2k+1 − 2−kλ1(2−1 − 2−t)] > 0. Using Lemmas 7 and 8,

∞∑
k=0

[2−k−tµ⌈2k+t⌉ − 2−k−1µ2k+1 − 2−kλ1(2−1 − 2−t)]

> 2−tµ2 − 2−1µ2 − λ1(2−1 − 2−t) −
10∑

k=1
2−k

[
2−tµ2 − 2−1µ2 − λ1(2−1 − 2−t)

]

−
∞∑

k=11
2−k[2−tµ2 − 2−1µ2 − λ1(2−1 − 2−t)]

= [2−tµ2 − 2−1µ2 − λ1(2−1 − 2−t)]
[
1 −

10∑
k=1

2−k −
∞∑

k=11
2−k

]
= 0. ◀

6 Summary of exponential bounds

Theorems 6 and 9 produce the following corollary. We define two constants, c1 and c2:

c1 = 2P (0) = 2
1
2 (2λ1+

∑∞
k=0

2−kµ2k+1 ) ≈ 1.2460208329836624

c2 = limlog2 n→0+ 2P (log2 n) = 2(2λ1+
∑∞

k=0
2−kµ2k+1) ≈ 1.3342827071604892.

▶ Corollary 10. lim supn→∞[an/(2cn
2 )] = 1, and lim infn→∞[an/(2cn

1 )] = 1.

Proof. an ∼ 2[2P (log2 n)]n by Proposition 3, or limn→∞
[
an/

(
2[2P (log2 n)]n

)]
= 1. By The-

orem 6, the supremum of 2P (log2 n) on [0, 1) is attained as {log2 n} → 0+. By definition of
c2, the supremum is limlog2 n→0+ 2P (log2 n) = c2. Hence, lim supn→∞[an/(2cn

2 )] = 1.
Similarly, by Theorem 9, the minimum of 2P (log2 n) is attained at {log2 n} = 0. The

minimum is thus 2P (0) = c1. We conclude that lim infn→∞[an/(2cn
1 )] = 1. ◀

Note that the constant c1 is equal to the value of α in [9, Theorem 13], which finds
a2n ∼ 2α(2n). We can also improve on the upper bound an < ( 3

2 )n from [9, Proposition 15],
producing a corollary that gives the strictest exponential upper bound possible for an.

▶ Corollary 11. an < 2cn
2 for all n ≥ 1.
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Proof. By Proposition 3, an = 2 [2−Q(n)] [2P (log2 n)]n − 1
2 for all n ≥ 1. In B, we prove

Q(n) > 0 for every integer n ≥ 1. By Theorem 6, we have an = 2
[
2−Q(n)] [

2P (log2 n)]n − 1
2 <

2
[
2−Q(n)] [

2P (log2 n)]n
< 2

[
2P (log2 n)]n

< 2cn
2 . ◀

A result of [4] (see also [5]) enables a computation of E[P (t)], producing an approximation
for the mean of the exponential order 2P (t) over the unit interval for t: Theorem 3 of [4] obtains
the analogous quantity to E[P (t)] for recursions f(n) = f(⌊n/2⌋)+f(⌈n/2⌉)+g(n). To obtain
our next result, we follow its reasoning for a recursion of the form f(n) = 2f(⌈n/2⌉) + g(n).

We wish to compute the mean
∫ 1

0 P (t) dt. In the proof of Proposition 3, we showed that∑∞
k=0 2−kµ⌈2kt⌉ is bounded above by a constant applicable for all t, so that the 1-periodic

P (t) is also bounded on unit intervals for t, say t ∈ [0, 1]. To show that the bounded P (t) is
integrable on [0, 1], it remains to show that P (t) is continuous almost everywhere.

We show P (t) = 2−{t−}(2λ1 +
∑∞

k=0 2−kµ⌈2k+{t−}⌉) is continuous outside the countable
set S =

⋃∞
k=1 Sk, where Sk = {t : t ∈ [0, 1] and 2k+t ∈ N}. It suffices to show that

2λ1 +
∑∞

k=0 2−kµ⌈2k+{t−}⌉ = 2λ1 +
∑∞

k=0 2−kµ⌈2k+t⌉ is continuous for t ∈ (0, 1)\S.
For a positive integer N , recall from the proof of Proposition 3 the uniform convergence

of Gm(t) =
∑m

k=0 2−kµ⌈2kt⌉ on t = [1, 2] (and uniform boundedness of |µn| by M for
all n). Choose ϵN > 0 such that

∑∞
k=N+1 |2−kµ⌈2k+t⌉| < ϵN /2 for all t ∈ (0, 1). For

all t ∈ (0, 1)\S, given N , there exists δN > 0 such that for all x ∈ (t − δN , t + δN ),
2λ1 +

∑N
k=0 2−kµ⌈2k+x⌉ = 2λ1 +

∑N
k=0 2−kµ⌈2k+t⌉. Therefore, for all x ∈ (t − δN , t + δN ),∣∣∣∣(2λ1 +

∞∑
k=0

2−kµ⌈2k+t⌉

)
−

(
2λ1 +

∞∑
k=0

2−kµ⌈2k+x⌉

)∣∣∣∣ =
∣∣∣∣ ∞∑

k=N+1
2−k(µ⌈2k+t⌉ − µ⌈2k+x⌉)

∣∣∣∣.
Then

∣∣∑∞
k=N+1 2−k(µ⌈2k+t⌉ − µ⌈2k+x⌉)

∣∣ <
∑∞

k=N+1 |2−kµ⌈2k+t⌉| +
∑∞

k=N+1 |2−kµ⌈2k+x⌉| <

ϵN . We let N grow large, concluding that P (t) is continuous almost everywhere and integrable.
For the integral, with G(t) =

∑∞
k=0 2−kµ⌈2kt⌉, we have that

∫ 1
0 P (t) dt =

∫ 1
0 21−tλ1 dt +∫ 1

0 2−tG(2t) dt = λ1/log 2 +
∫ 1

0 2−tG(2t) dt. Define µ(v) = µ⌈v⌉. It remains to compute∫ 1

0
2−tG(2t) dt = 1

log 2

∫ 2

1
v−2G(v) dv = 1

log 2

∫ 2

1
v−2

∞∑
k=0

2−kµ(2kv) dv

DCT= 1
log 2 lim

m→∞

∫ 2

1

m∑
k=0

v−22−kµ(2kv) dv = 1
log 2 lim

m→∞

m∑
k=0

∫ 2

1
v−22−kµ(2kv) dv

= 1
log 2 lim

m→∞

m∑
k=0

∫ 2k+1

2k

y−2µ(y) dy = 1
log 2 lim

m→∞

∫ 2m+1

1
y−2µ(y) dy.

To justify use of the dominated convergence theorem (DCT), we note that for
v ∈ [1, 2], |

∑m
k=0 v−22−kµ(2kv)| ≤

∑m
k=0 |v−22−kµ(2kv)| ≤

∑∞
k=0 |v−22−kµ(2kv)| ≤∑∞

k=0 |2−kµ(2kv)|, a quantity that is uniformly bounded for all v. Next, notice that∫ 2m+1

1
y−2µ(y) dy =

2m+1∑
n=2

∫ n

n−1
y−2µ(y) dy =

2m+1∑
n=2

∫ n

n−1
y−2µ(⌈y⌉) dy

=
2m+1∑
n=2

µn

∫ n

n−1
y−2 dy =

2m+1∑
n=2

µn

n(n − 1) .

Therefore,

1
log 2 lim

m→∞

∫ 2m+1

1
y−2µ(y) dy = 1

log 2 lim
m→∞

2m+1∑
n=2

µn

n(n − 1) = 1
log 2

∞∑
n=2

µn

n(n − 1) .



M. R. Doboli, H.-K. Hwang, and N. A. Rosenberg 18:9

We have proven the following proposition.

▶ Proposition 12. The mean value of P (t) on the unit interval [0, 1] is∫ 1

0
P (t) dt = λ1

log 2 + 1
log 2

∞∑
n=2

µn

n(n − 1) .

By Jensen’s inequality on the convex function φ(x) = 2x, we obtain a numerical lower bound
on the mean of the exponential order 2P (t),∫ 1

0
2P (t)dt = E[2P (t)] ≥ 2E[P (t)] = 2

∫ 1

0
P (t)dt ≈ 1.2860382564771475.

Note that the mean values of P (t) and 2E[P (t)] represent means for uniformly distributed t;
they do not correspond to means over integers n with fixed ⌊log2 n⌋, as log2 n does not have
a uniformly distributed fractional part over integers n with fixed ⌊log2 n⌋.

7 Discussion

We have solved the problem of finding an exact expression for the asymptotic growth of an,
the minimal Colijn-Plazzotta rank among unlabeled binary rooted trees with n leaves. We
find that an has periodically varying exponential growth, with exponential order depending
on {log2 n} (Section 3). Its value lies in [1.246020832983662, 1.3342827071604892), where the
lower bound is achieved if {log2 n} = 0 and the upper bound is approached as {log2 n} → 0+

(Sections 5 and 4). We have obtained the tight upper bound an < 2cn
2 for all n ≥ 1, where

c ≈ 1.3342827071604892 (Corollary 11), improving upon an earlier bound.
The growth of an is slowest when n is a power of two and fastest when n is slightly larger

than a power of two. This result captures the “jumps” that occur in CP rank near powers
of two. For example, in [9, Figure 1] the ratio an/(2αn) for α ≈ 1.24602 is near 1 if n is a
power of two but sharply increases when n is one larger than a power of two. The jumps are
visible numerically: a32 = 2279 yet a33 = 20369, and a64 = 2598061 yet a65 = 207440176.
The dependence of the exponential growth of an on {log2 n} reflects these discontinuities.

Maranca & Rosenberg [7] studied an extension of CP rank to strictly and at-most-k-
furcating trees, k ≥ 2, where each internal node of a strictly k-furcating tree has exactly k

children, and each internal node of an at-most-k-furcating tree has at least two and at most
k children. For such trees, the same questions about the minimal and maximal rank among
trees with n leaves can be posed. The work of [4] contains theorems that can potentially be
used for asymptotics in these more general cases, whose analyses we defer to future work.

The Colijn-Plazzotta rank has been suggested for use in tree balance indices [3, 9]. Our
results characterize the minimal value of the rank across trees with a fixed number of nodes, so
that a statistic such as [f(t) − an]/(bn − an) or [log f(t) − log an]/(log bn − log an) normalized
to lie in [0, 1] can be used as a measure of the balance of a tree.
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Appendix

A Upper bound on x|µx|

We provide an upper bound for x|µx|. This bound is utilized in Sections 4 and 5, as well as
for a result in Section 3. First, we need an upper bound on | log2 x| for all positive reals x.

▶ Lemma 13. For all x > 0, | log2 x| ≤ 1
2 (log2 e) |x − 1

x |.

Proof. For x ≥ 1, we show log x ≤ 1
2 (x − 1

x ). Writing a function f(x) = log(x) − x
2 + 1

2x ,
we have f(1) = 0 and f ′(x) = −(1 − x)2/(2x2) ≤ 0 for x ≥ 1. As a function that begins at
0 for x = 1 and is nonincreasing for x ≥ 1, f(x) ≤ 0 for x ≥ 1. For 0 < x < 1, we show
log x ≥ 1

2 (x− 1
x ). This statement follows by noting 1

x > 1 and applying the case of x ≥ 1. ◀

Next, we need a uniform lower bound on the expression 1 + g⌊n/2⌋/g2
⌈n/2⌉ − 1/g⌈n/2⌉ +

11/(16g2
⌈n/2⌉) for n ≥ 66; the use of n ≥ 66 follows Proposition 1.

▶ Lemma 14. For all integers n ≥ 66, 1 + g⌊n/2⌋/g2
⌈n/2⌉ − 1/g⌈n/2⌉ + 11/(16g2

⌈n/2⌉) > 1
2 .

Proof. Because gn = (2an + 1)/4 is positive, we have that 1 + g⌊n/2⌋/g2
⌈n/2⌉ − 1/g⌈n/2⌉ +

11/(16g2
⌈n/2⌉) > 1 − 1/g⌈n/2⌉ ≥ 1 − 1/g33, where the last inequality follows from the mono-

tonicity of gn. We have 1 − 1/g33 ≈ 0.9999 > 1
2 , as desired. ◀

We are now ready for the main result of this appendix.

▶ Lemma 15. For all integers x ≥ 245, x|µx| < (2λ1 + µ2)/2.

Proof. First note that 1 + g⌊x/2⌋/g2
⌈x/2⌉ − 1/g⌈x/2⌉ + 11/(16g2

⌈x/2⌉) > 0 for x ≥ 245 by the
stronger result in Lemma 14. Using Lemma 13,

x|µx| = x

∣∣∣∣ log2

(
1 +

g⌊x/2⌋

g2
⌈x/2⌉

− 1
g⌈x/2⌉

+ 11
16g2

⌈x/2⌉

)∣∣∣∣
≤ x(log2 e)

2

∣∣∣∣
g⌊x/2⌋
g2

⌈x/2⌉
− 1

g⌈x/2⌉
+ 11

16g2
⌈x/2⌉

1 + g⌊x/2⌋
g2

⌈x/2⌉
− 1

g⌈x/2⌉
+ 11

16g2
⌈x/2⌉

+
g⌊x/2⌋

g2
⌈x/2⌉

− 1
g⌈x/2⌉

+ 11
16g2

⌈x/2⌉

∣∣∣∣
≤ x(log2 e)

2

[∣∣∣∣
g⌊x/2⌋
g2

⌈x/2⌉
− 1

g⌈x/2⌉
+ 11

16g2
⌈x/2⌉

1 + g⌊x/2⌋
g2

⌈x/2⌉
− 1

g⌈x/2⌉
+ 11

16g2
⌈x/2⌉

∣∣∣∣ +
∣∣∣∣g⌊x/2⌋

g2
⌈x/2⌉

− 1
g⌈x/2⌉

+ 11
16g2

⌈x/2⌉

∣∣∣∣]

≤ x(log2 e)
2

[ g⌊x/2⌋
g2

⌈x/2⌉
+ 1

g⌈x/2⌉
+ 11

16g2
⌈x/2⌉

1 + g⌊x/2⌋
g2

⌈x/2⌉
− 1

g⌈x/2⌉
+ 11

16g2
⌈x/2⌉

+
g⌊x/2⌋

g2
⌈x/2⌉

+ 1
g⌈x/2⌉

+ 11
16g2

⌈x/2⌉

]
.
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Using Proposition 1 with the fact that gn = (2an + 1)/4, we have that for n ≥ 66,

2
(1.2)n

>
1
gn

= 4
2an + 1 >

4
2(1.34)n + 1 (8)

(1.2)n

2 + 1
4 <

an

2 + 1
4 = gn <

(1.34)n

2 + 1
4 . (9)

The bounds in eqs. 8 and 9 and Lemma 14 then yield

x|µx| <
x(log2 e)

2

[[ (1.34)⌊x/2⌋

2 + 1
4(

(1.2)⌈x/2⌉

2

)2 + 2
(1.2)⌈x/2⌉ + 11

16

(
2

(1.2)⌈x/2⌉

)2]/(
1
2

)

+
(1.34)⌊x/2⌋

2 + 1
4

( (1.2)⌈x/2⌉

2 )2
+ 2

(1.2)⌈x/2⌉ + 11
16

(
2

(1.2)⌈x/2⌉

)2
]

= 3x(log2 e)
2

[(
(1.34)⌊x/2⌋

2 + 1
4

)(
2

(1.2)⌈x/2⌉

)2
+ 2

(1.2)⌈x/2⌉ + 11
16

(
2

(1.2)⌈x/2⌉

)2]
≤ 3x(log2 e)

2

[(
(1.34)x/2

2 + 1
4

)(
2

(1.2)x/2

)2
+ 2

(1.2)x/2 + 11
16

(
2

(1.2)x/2

)2]
= (3 log2 e)

[
x

(√
1.34
1.2

)x

+ x

(
1√
1.2

)x

+ 15
8 x

(
1

1.2

)x]
. (10)

Eq. 10 sums constant multiples of three terms of the form xax, where a < 1. For a < 1,
function f(x) = xax attains its maximum at xmax = −1/log a and is decreasing for x > xmax.
With

√
1.34/1.2, 1/

√
1.2 and 1/1.2 in the role of a, xmax evaluates to approximately 27.7880,

10.9696, and 5.4848, respectively. The sum of three decreasing functions is also decreasing.
It follows that for x ≥ −1/ log(

√
1.34/1.2) ≈ 27.7880, the quantity in eq. 10 is decreasing.

To show that the quantity in eq. 10 is less than (2λ1 + µ2)/2 for x ≥ 245, it suffices to
show that if x = 245 is inserted into eq. 10, the result is bounded above by (2λ1 + µ2)/2;
indeed, with x = 245, we get 0.15718 in eq. 10, while (2λ1 +µ2)/2 ≈ 0.1609640474436812. ◀

B Properties of Q(n)

We give two results about Q(n): Lemma 16 for Section 3, and Lemma 17 for Section 6.

▶ Lemma 16. limn→∞ Q(n) = 0.

Proof. We apply Lemma 15. For all n ≥ 245, noting (2λ1 + µ2)/2 < µ2/2 because λ1 < 0,

Q(n) =
∞∑

k=1
2−kµ2kn ≤

∞∑
k=1

2−k|µ2kn| <

∞∑
k=1

2−k µ2

2(2kn) ≤
∞∑

k=1
2−k µ2

2(2kn) .

For n ≥ 245, we have Q(n) < [µ2/(2n)]
∑∞

k=1 4−k = µ2/(6n), so Q(n) → 0 as n → ∞. ◀

▶ Lemma 17. For all positive integers n, Q(n) > 0.

Proof. By definition, µn = log2[1 + (g⌊n/2⌋ − g⌈n/2⌉ + 11
16 )/g2

⌈n/2⌉]. For any integer n ≥ 1,
µ2n = log2[1 + (gn − gn + 11

16 )/g2
n] = log2[1 + 11/(16g2

n)] > 0, noting gn > 0 because an > 0.
By definition of Q(n), for any positive integer n ≥ 1, Q(n) =

∑∞
k=1 2−kµ2kn =∑∞

k=1 2−kµ2kn > 0, where the last inequality follows because µ2kn > 0 for each k ≥ 1. ◀
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C Proofs of Lemmas 4 and 5 for Section 4

This appendix proves Lemmas 4 and 5, used in the proof of Theorem 6. First, we prove two
additional lemmas, Lemmas 18 and 19, needed for the proof of Lemma 4.

▶ Lemma 18. µ2k+1 + 2λ1 + µ2 > [2k/(2k + 1)](µ⌈2k+t⌉ + 2λ1 + µ2) for all integers k ≥ 11
and all t ∈

[
log2(2k + 1), 1

)
.

Proof. Because we assume k ≥ 11 and t > 0, ⌈2k+t⌉ ≥ 245 and 2k + 1 ≥ 245. We apply
Lemma 15 twice, to ⌈2k+t⌉ and then to 2k + 1. From the first application, we obtain
⌈2k+t⌉|µ⌈2k+t⌉| < (2λ1 + µ2)/2, from which 2k |µ⌈2k+t⌉| < (2λ1 + µ2)/2.

From the second application, we obtain (2k + 1) |µ2k+1| < (2λ1 + µ2)/2. We then have

2k

2k + 1µ⌈2k+t⌉ − µ2k+1 ≤
∣∣∣∣ 2k

2k + 1µ⌈2k+t⌉

∣∣∣∣ +
∣∣µ2k+1

∣∣
<

1
2k + 1

2λ1 + µ2

2 + 1
2k + 1

2λ1 + µ2

2 = 1
2k + 1(2λ1 + µ2).

Adding µ2k+1 + [2k/(2k + 1)](2λ1 + µ2) to both sides, we obtain the result. ◀

▶ Lemma 19. µx + 2λ1 + µ2 > 0 for all integers x ≥ 1.

Proof. For 1 ≤ x ≤ 244, we verify the finite number of cases computationally. For x ≥ 245,
we can use Lemma 15 to obtain x|µx| < (2λ1 + µ2)/2. Noting that λ1 < 0, we have
|µx| < µ2/(2x), from which µx > −µ2/(2x) because µ2 > 0. We then have µx + 2λ1 + µ2 >

−µ2/(2x) + 2λ1 + µ2 ≥ −µ2/(2 · 245) + 2λ1 + µ2 ≈ 0.31957706816604603 ≥ 0. ◀

We are now ready to provide a lower bound on µ2k+1 − 2−tµ⌈2k+t⌉, applicable for all
k ≥ 1 and all t ∈ (0, 1), and independent of k. In particular, we prove Lemma 4.

Proof of Lemma 4. The desired inequality is equivalent to

µ2k+1 + 2λ1 + µ2 > 2−t(µ⌈2k+t⌉ + 2λ1 + µ2). (11)

By Lemma 19, µ⌈2k+t⌉ + 2λ1 + µ2 > 0 for all positive integer values of ⌈2k+t⌉, and
specifically for k ≥ 11 and t ∈ (0, 1). Therefore, the right-hand side of eq. 11 is strictly
decreasing in t other than at discontinuities: values of t at which ⌈2k+t⌉ increments by 1. For
fixed k, the discontinuities are precisely those values of t at which 2k+t is one of the integers
2k, 2k + 1, . . . , 2k+1 − 1, the values t = log2(2k + n) − k for integers n, 0 ≤ n ≤ 2k − 1.

To verify inequality 11 for all t ∈ (0, 1), it suffices to check points at which t approaches
a discontinuity from the right. For t → 0+, inequality 11 becomes µ2k+1 + 2λ1 + µ2 >

2−t(µ2k+1 + 2λ1 + µ2), which holds from the positivity of µ2k+1 + 2λ1 + µ2 > 0 by Lemma 19.
At t = log(2k +n)−k for integers 1 ≤ n ≤ 2k −1, because the discontinuity is approached

from the right, t > log2(2k + 1) − k, so that 2−t < 2−[log2(2k+1)−k] = 2k/(2k + 1). Lemma 18
gives µ2k+1 + 2λ1 + µ2 > [2k/(2k + 1)](µ⌈2k+t⌉ + 2λ1 + µ2) > 2−t(µ⌈2k+t⌉ + 2λ1 + µ2). ◀

Proof of Lemma 5. Moving terms with t to one side, we must prove, for all t ∈ (0, 1),

10∑
k=1

2−k(µ2k+1 + 2λ1 + µ2) > 2−t
10∑

k=1
2−k(µ⌈2k+t⌉ + 2λ1 + µ2). (12)

Because µ⌈2k+t⌉ + 2λ1 + µ2 > 0 by Lemma 19 for all k, 1 ≤ k ≤ 10, and t ∈ (0, 1), the
right-hand side of eq. 12 is decreasing except at values of t where ⌈2k+t⌉ increments by one:
set S = {log2(2k + n) − k : 1 ≤ k ≤ 10, 0 ≤ n ≤ 2k − 1}. Hence, to verify eq. 12 for all
t ∈ (0, 1), it suffices to examine only the limits as t approaches points in S from the right.
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First, for 0 ∈ S, as t → 0+, inequality 12 approaches
∑10

k=1 2−k(µ2k+1 + 2λ1 + µ2) >

2−t
∑10

k=1 2−k(µ2k+1 + 2λ1 + µ2), which holds by Lemma 19, noting t > 0.
Next, denote the points in finite set S′ = {log2(2k + n) − k : 1 ≤ k ≤ 10, 1 ≤ n ≤ 2k − 1}

by t1 < t2 < . . . < tK , where K = |S′|. Notice that if t ∈ (ti, ti+1] for some i, then the
right-hand side of inequality 12 is maximized as t → t+

i . Furthermore, for all t ∈ (ti, ti+1]:

2−t
10∑

k=1
2−k(µ⌈2k+t⌉ + 2λ1 + µ2) < lim

t→t+
i

2−t
10∑

k=1
2−k(µ⌈2k+t⌉ + 2λ1 + µ2)

< 2−ti

10∑
k=1

2−k(µ⌈2k+ti+ϵ⌉ + 2λ1 + µ2),

where ϵ > 0 satisfies ti+ϵ < ti+1 for all i, 1 ≤ i ≤ K−1; we can take ϵ = 1
2 min1≤i≤K−1(ti+1−

ti). Hence, to prove inequality 12, it suffices to prove the stronger inequality

10∑
k=1

2−k(µ2k+1 + 2λ1 + µ2) > 2−ti

10∑
k=1

2−k(µ⌈2k+ti+ϵ⌉ + 2λ1 + µ2). (13)

for each i, 1 ≤ i ≤ K. The advantage of inequality 13 over 12 is that it can be computationally
verified by testing a finite number of points. In particular, we consider each ti ∈ S′, choose
an appropriate ϵ (ϵ = 10−16 suffices), and verify inequality 13 with that ti and ϵ. ◀

D Proof of Lemmas 7 and 8 for Section 5

This appendix proves two lemmas used for Theorem 9. First, Lemma 20 gives a refined
upper bound for |µx| that improves upon Lemma 15. This lemma is needed for Lemma 7.

▶ Lemma 20. For all integers x ≥ 267, 2⌈log2 x⌉|µx| < (2λ1 + µ2)/2.

Proof. From eq. 10, |µx| ≤ 3(log2 e) [(
√

1.34/1.2)x + (1/
√

1.2)x + 15/
(
8(1.2)x

)
]. Because

2⌊log2 x⌋ ≤ 2log2 x = x, it follows that 2⌈log2 x⌉ ≤ 2(2⌊log2 x⌋) ≤ 2x. Hence, it suffices to prove
that 2x|µx| ≤ (2λ1 + µ2)/2 for integers x ≥ 267. That is, we can show the stronger inequality

2x(3 log2 e)
[(√

1.34
1.2

)x

+ 1
(
√

1.2)x
+ 15

8(1.2)x

]
<

2λ1 + µ2

2 .

As in A, the left-hand side is the sum of three terms of the form xax, where a < 1. By
the same argument, this sum is decreasing for x ≥ −1/ log(

√
1.34/1.2) ≈ 27.7880. Hence, it

suffices to show that the sum is less than (2λ1 +µ2)/2 at x = 267, which can be accomplished
computationally. Therefore, 2⌈log2 x⌉|µx| < (2λ1 + µ2)/2 for x ≥ 267. ◀

Proof of Lemma 7. Moving all the terms involving t to one side, we must prove

2−t(µ⌈2k+t⌉ + 2λ1 + µ2) > 2−1(µ2k+1 + 2λ1 + µ2). (14)

Lemma 19 finds that µ⌈2k+t⌉ + 2λ1 + µ2 > 0 for all k ≥ 11 and t ∈ (0, 1). Therefore,
except at discontinuities where 2k+t is an integer and ⌈2k+t⌉ increments by 1, the left-
hand side strictly decreases as we increase t. It suffices to check inequality 14 at those
discontinuities and as t → 1−. First, as t → 1−, inequality 14 becomes 2−t(µ2k+1 +2λ1+µ2) >

2−1(µ2k+1 + 2λ1 + µ2), a result that follows because µ2k+1 + 2λ1 + µ2 > 0 and 0 < t < 1.

AofA 2024



18:14 Periodic Behavior of the Minimal Colijn-Plazzotta Rank

Next, because t ∈ (0, 1), 2k+t is an integer if and only if t = log2(2k +n)−k for an integer
1 ≤ n ≤ 2k − 1. Plugging t = log2(2k + n) − k into inequality 14 yields [2k/(2k + n)](µ2k+n +
2λ1 + µ2) > 2−1(µ2k+1 + 2λ1 + µ2). Because µ2k+n + 2λ1 + µ2 > 0, it suffices to prove the
stronger inequality [2k/(2k+1 − 1)](µ2k+n +2λ1 +µ2) > 2−1(µ2k+1 +2λ1 +µ2), or equivalently,
[2k/(2k+1 − 1)]µ2k+n − 1

2 µ2k+1 > −
[ 1

2 /(2k+1 − 1)
]
(2λ1 + µ2).

By Lemma 20, which applies for k ≥ 11 because 2k + n ≥ 267, we have
2⌈log2(2k+n)⌉|µ2k+n| < (2λ1 + µ2)/2 and 2k+1|µ2k+n| < (2λ1 + µ2)/2. Furthermore, by
Lemma 15, we have that 2k+1|µ2k+1 | < (2λ1 + µ2)/2, from which (2k+1 − 1)|µ2k+1 | <

(2λ1 + µ2)/2. We then obtain

2k

2k+1 − 1µ2k+n − 1
2µ2k+1 ≥ −

∣∣∣∣ 2k

2k+1 − 1µ2k+n

∣∣∣∣ −
∣∣∣∣1
2µ2k+1

∣∣∣∣
≥ −1

2
1

2(2k+1 − 1)(2λ1 + µ2) − 1
2

1
2(2k+1 − 1)(2λ1 + µ2) = − 1

2(2k+1 − 1)(2λ1 + µ2). ◀

Proof of Lemma 8. Moving all the terms involving t to one side, we must prove

2−t
10∑

k=1
2−k(µ⌈2k+t⌉ + 2λ1 + µ2) >

10∑
k=1

2−k−1(µ2k+1 + 2λ1 + µ2). (15)

The terms in both summands are positive (Lemma 19). Therefore, except at the discontinuities
in the left-hand side, the left-hand side strictly decreases with t. Hence, it suffices to check
inequality 15 precisely at the discontinuities of the left-hand side and as t → 1−.

As t → 1−, the left-hand side of inequality 15 decreases to limt→1−1 2−t
∑10

k=1 2−k(µ2k+1 +
2λ1 + µ2) =

∑10
k=1 2−k−1(µ2k+1 + 2λ1 + µ2), verifying inequality 15 at t → 1−.

Hence, it remains to check inequality 15 at the discontinuities of the left-hand side,
the points in S′ = {log2(2k + n) − k : 1 ≤ k ≤ 10, 1 ≤ n ≤ 2k − 1} used in C. We can
computationally verify that inequality 15 holds for the finitely many points in S′. ◀
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