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A B S T R A C T

The Hill numbers are statistics for biodiversity measurement in ecological studies, closely related to the Rényi
and Shannon entropies from information theory. Recent developments in the mathematics of diversity in
the setting of population genetics have produced mathematical constraints that characterize how standard
measures depend on the highest-frequency class in a discrete probability distribution. Here, we apply these
constraints to diversity statistics in ecology, focusing on the Hill numbers and the Rényi and Shannon entropies.
The mathematical bounds can shift perspectives on the diversities of communities, in that when upper and
lower bounds on Hill numbers are evaluated in a classic butterfly example, Hill numbers that are initially larger
in one community switch positions—so that associated normalized Hill numbers are instead smaller than those
of the other community. The new bounds hence add to the tools available for interpreting a commonly used
family of statistics for ecological data.
1. Introduction

Consider an ecological community containing up to 𝑛 distinct
species, in which the relative abundance of species 𝑖 is 𝑝𝑖, for 𝑖 =
1, 2,… , 𝑛, with ∑𝑛

𝑖=1 𝑝𝑖 = 1. The measurement of the diversity of such
a community is a basic task in ecology; a diversity measure has high
values if the community contains many species with nontrivial and
comparable abundances and low values if it contains few species, one
of which predominates.

Many statistics have been proposed for use in diversity measure-
ments (Magurran, 2004; Jost, 2006; Gotelli and Ellison, 2013). Fo-
cusing on 𝛼-diversity, a diversity concept for a single community (as
opposed to concepts involving multiple communities), species richness
is simply the number of species in the community, or 𝑅 =

∑𝑛
𝑖=1 𝑝

0
𝑖 .

Simpson’s index, 𝑆 =
∑𝑛

𝑖=1 𝑝
2
𝑖 , gives the probability that two individuals

randomly drawn from the community, with replacement, are from
the same species; 𝑆 is most naturally viewed as a similarity mea-
sure, and 1 − 𝑆 and 1∕𝑆 are diversity measures. Shannon entropy is
𝐻 = −

∑𝑛
𝑖=1 𝑝𝑖 log 𝑝𝑖, where the natural logarithm is most frequently

used (Magurran, 2004, p. 107); an information-theoretic perspective
is natural, as a high-diversity probability distribution of species abun-
dances can be regarded as analogous to a complex message, requiring
‘‘more bits’’ to describe than a low-diversity distribution.

In work that has since become influential (Jost, 2006; Chao and
Ricotta, 2019; Roswell et al., 2021), Hill (1973) described how standard
indices can be placed in a single family of diversity indices related
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through Rényi’s definition of generalized entropy (Rényi, 1961). Again
using the natural logarithm, for 𝑞 ⩾ 0 and 𝑞 ≠ 1, Rényi entropy can be
written

𝐻𝑞 =
1

1 − 𝑞
log

𝑛
∑

𝑖=1
𝑝𝑞𝑖 . (1)

For 𝑞 ⩾ 0 and 𝑞 ≠ 1, the Hill number of order 𝑞 is a diversity index
defined by

𝐷𝑞 =
( 𝑛
∑

𝑖=1
𝑝𝑞𝑖

)
1

1−𝑞
. (2)

In other words, 𝐷𝑞 = 𝑒𝐻𝑞 .
For 𝑞 = 0, 𝐷𝑞 is simply the species richness 𝑛. For 𝑞 = 2, 𝐷𝑞

is 1∕𝑆, the reciprocal of Simpson’s index. In the limit as 𝑞 → 1, 𝐷𝑞
approaches 𝑒𝐻 for Shannon entropy 𝐻 . The value of 𝑞 determines the
relative weight that common and rare species have in the diversity
measurement. An increase in 𝑞 increases the weight that the most
common species has in the calculation, with 𝑞 < 1 emphasizing rare
species and 𝑞 > 1 emphasizing common species—and the limits 𝑞 = 0
weighting all species equally, irrespective of their abundances, and
𝑞 → ∞ weighting only the most abundant species.

Hill numbers have a number of features as diversity measures (Chao
et al., 2014a; Leinster, 2021; Roswell et al., 2021). For example, as can
be seen by supposing that each 𝑝𝑖 = 1

𝑛 to obtain 𝐷𝑞 = 𝑛 in Eq. (2),
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the Hill numbers behave sensibly in that when all species have the
same abundance, their values increase with the number of species,
irrespective of the value of 𝑞. Second, for fixed numbers of species,

ill numbers increase toward a maximum achieved when all species
bundances are equal. Third, the ability to modulate the value of 𝑞 in

a framework based on the Hill numbers enables a researcher to change
the emphasis on common and rare species while maintaining the same
conceptual structure for diversity measurement. Finally, that the Hill
numbers subsume long-used standard measures of diversity facilitates
their interpretation.

With recent attention to the mathematical and statistical properties
of diversity measures (Jost, 2006; Ellison, 2010; Chao et al., 2014a),
the Hill numbers have become prominent. Studies have proposed them
in specific contexts, such as for tracking diversity in communities
over time (Maturo and Di Battista, 2018) and for measuring diversi-
ties of species interactions (Ohlmann et al., 2019). The Hill numbers
have also been employed with newer forms of data beyond counts of
individuals—such as acoustic measurements (Luypaert et al., 2022),
and with increasing frequency, the DNA sequence data that appear in
metagenomics (Kang et al., 2016; Ma and Li, 2018; Alberdi and Gilbert,
2019). Alongside these extensions focused on applications, further
mathematical analysis has contributed to advancing the understanding
of the behavior of the Hill numbers (Jost, 2007; Chao et al., 2014b;
Chiu et al., 2014; Leinster, 2021).

Throughout the long history of diversity measurement studies in
ecology—with the co-option of Shannon and Rényi entropies from
information theory serving as prominent examples—the mathematical
study of ecological diversity measures has benefited from parallels with
investigations of analogous problems in other types of data. One such
data type is allelic data in population genetics, in which, instead of
distinct species, discrete allelic categories are tabulated. Considering
counts of observations of alleles, each allele has a frequency that is
analogous to a species relative abundance. Mathematically, the two
contexts are the same in evaluating diversity from a vector of nonnega-
tive entries whose sum is 1. The analogy of species diversity and allelic
diversity enables mathematical properties of diversity measures in one
context to inform the use of equivalent measures in the other.

Because of the way they are formulated, the Hill numbers derive
a number of their mathematical properties from properties of Rényi
entropies. In a mathematical analysis of Rényi entropy in the context
of population genetics, Aw and Rosenberg (2018) discerned the upper
and lower bounds on Rényi entropy as functions of the frequency of the
most frequent allele in an allele frequency distribution. This analysis
relied on the study of a quantity termed by Aw and Rosenberg (2018)
the 𝛼-homozygosity, or 𝐽 (𝛼) =

∑𝑛
𝑖=1 𝑝

𝛼
𝑖 , and it obtained a variety of results

useful for interpreting 𝛼-homozygosity. If we replace the notation 𝛼
with 𝑞 to avoid confusion with the 𝛼 in 𝛼-diversity, then the formula
for 𝑞-homozygosity lies within the Hill number formula in Eq. (2).
𝐷𝑞 = (𝐽 (𝑞))

1
1−𝑞 .

Here, we use results obtained for 𝑞-homozygosity and Rényi en-
ropy in the context of population genetics to understand mathematical
ounds on Hill numbers. We examine the dependence of the Hill
umbers on the frequency of the most abundant species, considering
he effect on this dependence of the value of 𝑞. We illustrate our
athematical results in an example taken from rainforest butterfly

ommunities, suggesting how the bounds can be used to enhance the
nterpretation of Hill numbers in ecology.

. Results

.1. Homozygosity, Rényi entropy, and Shannon entropy

We make use of connections between the Hill numbers and a family
2

f measures in genetics termed 𝛼-homozygosities and 𝛼-heterozygosities u
y Aw and Rosenberg (2018). For parallelism with the Hill num-
ers, we henceforth call the quantities of Aw and Rosenberg (2018)
-homozygosities and 𝑞-heterozygosities.

In population genetics, a standard genetic diversity measure for a
enetic locus in a population is expected heterozygosity, equal to 1 −

∑𝑛
𝑖=1 𝑝

2
𝑖 for a set of nonnegative allele frequencies 𝑝𝑖 with ∑𝑛

𝑖=1 𝑝𝑖 = 1;
he ‘‘expected’’ in ‘‘expected heterozygosity’’ refers to its computation
rom the allele frequency distribution as the probability that two draws
rom the distribution are distinct, as opposed to a separate computation
ermed ‘‘observed heterozygosity,’’ obtained from empirical measure-
ent of the fraction of heterozygotes seen in actual individuals. A

omplementary homogeneity measure is expected homozygosity, ∑𝑛
𝑖=1 𝑝

2
𝑖 .

In the same way that Hill (1973) suggested a family of diversity
easures with different exponents for use in diversity computations in

cology, Aw and Rosenberg (2018) examined a corresponding family
f diversity measures in population genetics. For an allele frequency
ector 𝐩 and an exponent 𝑞 > 1, generalized diversity and similarity
easures can be written

(𝑞)(𝐩) = 1 −
𝑛
∑

𝑖=1
𝑝𝑞𝑖 (3)

𝐽 (𝑞)(𝐩) =
𝑛
∑

𝑖=1
𝑝𝑞𝑖 , (4)

here we show the argument 𝐩 here to emphasize that these quantities
re computed from allele frequency vectors. Dropping the argument
and also dropping the term ‘‘expected’’), standard heterozygosity and
omozygosity are 𝐻 (2) and 𝐽 (2), respectively.

Aw and Rosenberg (2018) showed that if the frequency of the most
requent allele at a locus is equal to 𝑀 < 1, then the 𝑞-homozygosities
nd 𝑞-heterozygosities are constrained within the open unit interval.
pecifically, each 𝑞-homozygosity and each 𝑞-heterozygosity has an
pper bound that is less than 1 and a lower bound that is greater than
; these bounds depend on 𝑀 . Aw and Rosenberg (2018) found that
he upper and lower bounds on 𝑞-homozygosity decrease as 𝑞 increases.
urthermore, they proved that the area between the upper and lower
ounds of 𝑞-homozygosity on the unit square, representing the set of
ossible ordered pairs (𝑀,𝐽 (𝑞)), decreases as 𝑞 increases. Initially, Aw
nd Rosenberg (2018) did not suppose that the number of distinct
lleles was known; this initial assumption amounts to an assumption
hat the number of distinct alleles is arbitrarily large. Aw and Rosenberg
2018) then obtained a stricter result, assuming that the number of
istinct alleles is fixed. That result, their Corollary 3.13, appears here
s Result 1 in Box I.

Result 1 assumes 𝑞 > 1, so that 𝑞-homozygosity and 𝑞-heterozygosity
ill lie within [0, 1]. Aw and Rosenberg (2018) also obtained entirely
nalogous bounds on the Rényi entropy for 0 < 𝑞 < 1 and 1 < 𝑞.
heir Corollary 3.19 states the bounds of the Rényi entropy for a fixed
requency of the most frequent allele and fixed number of alleles, and
t is restated in Box I as Result 2.

The Shannon entropy and its bounds can be interpreted as a limit
f the Rényi entropy as 𝑞 → 1, or 𝐻1. Aw and Rosenberg (2018)
irectly derived bounds for the case of the Shannon entropy. Result 3
n Box I provides the bounds on Shannon entropy for a fixed frequency
f the most frequent allele and fixed number of alleles, restated from
orollary 3.16 of Aw and Rosenberg (2018).

.2. Connections to Hill numbers

At this point, we exploit the connections among 𝑞-homozygosities,
ényi entropies, and Hill numbers. We can convert among
-homozygosities 𝐽 (𝑞), Rényi entropies 𝐻𝑞 , and Hill numbers 𝐷𝑞 by

sing transformations
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𝐻𝑞 = 1
1 − 𝑞

log 𝐽 (𝑞) (5)

𝐽 (𝑞) = 𝑒(1−𝑞)𝐻𝑞 (6)
𝐷𝑞 = 𝑒𝐻𝑞 (7)

𝐻𝑞 = log𝐷𝑞 (8)

𝐷𝑞 = (𝐽 (𝑞))
1

1−𝑞 (9)
(𝑞) = (𝐷𝑞)1−𝑞 . (10)

n particular, for fixed 𝑞, the transformation in Eq. (7) is monotonically
ncreasing in Rényi entropy 𝐻𝑞 and the transformation in Eq. (9) is
onotonically decreasing in 𝑞-homozygosity 𝐽 (𝑞).

Because the Hill number for 𝑞 is obtained from the corresponding
ényi entropy by a monotonic transformation, we can conclude that the
ill number 𝐷𝑞 obtains its minimum and maximum at the same places
s the Rényi entropy 𝐻𝑞 . Changing alleles to species, we obtain a new
esult, labeled Result 4 in Box I, which describes the upper and lower
ounds of the Hill number 𝐷𝑞 as functions of the frequency of the most
bundant species in a community with a fixed number of species.

With our mathematical results describing bounds on the statistics
ow established, we explore the behavior of the statistics in relation
o the bounds, viewing the results in terms of species abundances. For
arallelism, although Result 2 for Rényi entropy and Result 4 for Hill
umbers apply on larger domains, we restrict attention to 𝑞 > 1, the
omain that produces Result 1 for 𝑞-homozygosity.

.3. Analysis of the bounds

Fig. 1 graphs the 𝑞-homozygosity as a function of the frequency of
he most abundant species 𝑀 , following Result 1. In all panels, both
he upper bound and the lower bound increase as 𝑀 increases. The
aximal 𝑞-homozygosity is 1, and it occurs when a single species has

requency 1. Within a panel, as the maximal permissible number of
istinct species increases, the lower bound becomes less strict; for a
ixed number of distinct species 𝐼 , the lower bound is defined only on
he interval [ 1𝐼 , 1]. The upper bound does not depend on the maximal

number of distinct species.
In Fig. 1, as the exponent 𝑞 in 𝑞-homozygosity increases, the upper

nd lower bound curves decrease. Comparing across values of 𝑞, we see
hat for low values of 𝑞, a visible difference exists between the upper
nd lower bounds, indicating an influence of species other than the
ost abundant species on 𝑞-homozygosity. As 𝑞 increases to a large

alue, however, the upper and lower bounds nearly coincide, so that
-homozygosity is largely determined by the frequency of the most
bundant species.

Fig. 2 displays the bounds on Rényi entropy as a function of 𝑀 ,
ollowing Result 2. As Rényi entropy is, unlike 𝑞-homozygosity, a diver-
ity measure, a number of patterns reverse those for 𝑞-homozygosity.
he minimal Rényi entropy is zero and occurs when a single species
as frequency 1. As the maximal permissible number of distinct species
ncreases, the lower bound of Rényi entropy remains unchanged, while
he upper bound increases. Comparing panels in Fig. 2, as the exponent

increases, the upper and lower bounds decrease. For large 𝑞, as
as seen with 𝑞-homozygosity, the upper and lower bounds are close

ogether, so that Rényi entropy is closely predicted by the frequency of
he most abundant species.

The patterns for Hill numbers, shown in Fig. 3 according to Result
, closely follow those seen for Rényi entropy, but with larger numbers
nd more separation between upper and lower bounds. The upper
nd lower bounds decrease with an increasing frequency of the most
bundant species. The minimal value of the Hill numbers is 1, occurring
t 𝑀 = 1. The upper bound on Hill numbers depends on the number of
3

ermissible species, whereas the lower bound does not. For increasing
, comparing panels of Fig. 3, the upper and lower bounds on the Hill
umbers decrease, and they approach one another. As was seen for 𝑞-
omozygosity and for Rényi entropy, for large 𝑞, the Hill number with
xponent 𝑞 depends primarily on the frequency of the most abundant
pecies.

.4. Example data set

To illustrate the application of the bounds to empirical data, we
eexamined data analyzed by Jost (2006) based on samples reported
y Devries and Walla (2001). Devries and Walla (2001) collected five
ears of butterfly abundance data in a rainforest region of eastern
cuador, sampling butterflies in both the canopy and the understory.
ithin the data of Devries and Walla (2001), Jost (2006) restricted

ttention to species with at least 8 captures, considering 11,696 ob-
ervations across 74 species. The total number of canopy observations
s 5774 in 𝐼𝑐 = 56 species, and the total number of understory
bservations is 5922 in 𝐼𝑢 = 65 species. Jost (2006) studied the diversity
n the two communities, calculating a variety of quantities to compare
hem. We make use of these data to illustrate the utility of bounds on
iversity statistics.

One feature of the two communities is that they differ substantially
n the frequency of the most abundant species. The canopy community
as 1882 observations of its most abundant species, Historis acheronta,
or a frequency 𝑀𝑐 ≈ 0.3259. In the understory, the most abundant
pecies is Nessaea hewitsoni, with 984 observations and frequency 𝑀𝑢 ≈
.1662.

We calculated Hill numbers for values of 𝑞 from 1.01 to 10 for the
anopy and understory butterfly communities, considering upper and
ower bounds from Result 4 with the values of 𝐼 and 𝑀 associated with
he two communities. Fig. 4A shows Hill numbers plotted as a function
f 𝑞 for the canopy butterfly community. The upper and lower bounds
se the 𝐼𝑐 = 56 butterfly species found in that habitat and the frequency
𝑐 ≈ 0.3259 of the most abundant species. Fig. 4B is an analogous plot

or the understory butterfly community (𝐼𝑢 = 65, 𝑀𝑢 ≈ 0.1662).
Comparing Figs. 4A and 4B, it appears that the understory has a

ore diverse community. The understory has 9 more butterfly species
han the canopy, 𝐼𝑢 − 𝐼𝑐 = 9. The Hill number at 𝑞 = 2, the inverse of
he Simpson index, is 12.48 for the understory, but only 6.63 for the
anopy. The limit of the Hill number as 𝑞 → 1, the exponential of the
hannon entropy, is 19.74 for the understory and 14.02 for the canopy.

If the Hill numbers for the canopy and understory are considered
ith their upper and lower bounds, however, then the comparison

hanges. Fig. 4C graphs the position of the Hill numbers in relation
o their upper and lower bounds, or

𝐷𝑞 − 𝐿𝑞(𝑀, 𝐼)
𝑈𝑞(𝑀, 𝐼) − 𝐿𝑞(𝑀, 𝐼)

, (11)

where 𝑈𝑞(𝑀, 𝐼) and 𝐿𝑞(𝑀, 𝐼) represent the upper and lower bounds
on the Hill number 𝐷𝑞 as functions of the frequency 𝑀 of the most
abundant species and the number of species 𝐼 , as obtained in Result 4.
For this normalized quantity, a value of 1 indicates that the Hill number
lies at its maximum, and a value of 0 gives the minimum. Note that
even with monotonicity in 𝑞 for the upper and lower bounds and for
the Hill numbers of a dataset itself, the normalized value need not be
monotonic in 𝑞.

In Fig. 4C, the canopy has a larger value than the understory for
the normalized Hill number. This result suggests that given both the
frequency of the most abundant species and the species richness in
the two habitats, the canopy appears to be more diverse. Thus, a
computation that takes into account bounds on Hill numbers provides
an alternative view of the comparison of the two communities.
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Fig. 1. Lower and upper bounds of 𝑞-homozygosity for different choices of 𝑞 and the maximal number of distinct alleles 𝐼 . Relying on Result 1 in Box I, each panel represents a
ifferent value of 𝑞. (A) 𝑞 = 1.01. (B) 𝑞 = 1.5. (C) 𝑞 = 2. (D) 𝑞 = 3. (E) 𝑞 = 5. (F) 𝑞 = 10. Lower bounds are shown for different values of the maximal number of alleles 𝐼 (from
op to bottom, 𝐼 = 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 50). The upper bound is the same irrespective of the number of alleles (black), except that it is defined only for 𝑀 ⩾ 1

𝐼
. For large 𝑞,

he upper and lower bounds are very close together.
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. Discussion

Making use of analytical bounds derived previously for
-homozygosity and Rényi entropy, we have obtained bounds on Hill
umbers as functions of the exponent 𝑞, the number of species, and the
requency of the most abundant species. These bounds limit the possible
alues of the Hill numbers in relation to both the frequency of this
ost abundant species in a sample from a community and the number

f species present. In an example with data from rainforest butterfly
ommunities, we have shown that viewing the diversity statistics with
he bounds can influence a comparison of two communities. The
4

i

ounds provide context for interpretation of Hill numbers, enabling
normalization that allows a researcher to understand the diversity

f a community relative to minimum and maximum values given the
requency of the most abundant species (Eq. (11)). The understanding
hat such bounds exist can add to a researcher’s toolbox of principles
or interpreting the values of Hill numbers seen in empirical studies—
nd the associated normalized statistics can add to the repertoire of
tatistics that can be usefully computed.

Statistics for measuring diversity from data on species abundances
n communities are assessed for a variety of properties, including
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Fig. 2. Lower and upper bounds of Rényi entropy for different choices of 𝑞 and the maximal number of distinct species 𝐼 . Relying on Result 2 in Box I, each panel represents a
different value of 𝑞. (A) 𝑞 = 1.01. (B) 𝑞 = 1.5. (C) 𝑞 = 2. (D) 𝑞 = 3. (E) 𝑞 = 5. (F) 𝑞 = 10. Upper bounds are shown for different values of the maximal number of species 𝐼 (from
ottom to top, 𝐼 = 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 50). The lower bound is the same irrespective of the number of species (black), except that it is defined only for 𝑀 ⩾ 1

𝐼
. For large 𝑞,

he upper and lower bounds are very close together.
m
s
e
i
f
e
2
f

athematical simplicity, relationship to historical data sets, and in-
uitive alignment with researchers’ understanding of factors affecting
ommunities (e.g. Pielou, 1975; Magurran, 2004; Jost, 2006; Liu et al.,
007; Leinster and Cobbold, 2012; Gotelli and Ellison, 2013; Chao
t al., 2014a; Leinster, 2021; Roswell et al., 2021). Hill numbers have
ecently been regarded as some of the most useful diversity statistics, as
hey provide a relatively simple and mathematically desirable family of
alues that both encompasses the Simpson and Shannon statistics and
xtends beyond them. Indeed, use of a trajectory of the Hill numbers
s a function of 𝑞—a Hill number ‘‘diversity profile’’—is a way to
5

m

ore fully explain the diversity of a community than use of single
tatistics (Leinster and Cobbold, 2012; Chao and Jost, 2015; Roswell
t al., 2021). Our bounds further enable assessments of Hill numbers
n relation to a 𝑞-dependent maximum. The normalization in Eq. (11)
ollows a similar form to other normalizations that consider global
xtrema of diversity statistics over all possible abundance vectors (Jost,
010), but instead with extrema considered only over vectors with a
ixed value for the frequency of the most abundant species.

How do the new bounds augment the long-available potential to
odulate 𝑞 in application of the Hill numbers? Modulation of 𝑞 already
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Fig. 3. Lower and upper bounds of Hill numbers for different choices of 𝑞 and the maximal number of distinct species 𝐼 . Relying on Result 4 in Box I, each panel represents a
different value of 𝑞. (A) 𝑞 = 1.01. (B) 𝑞 = 1.5. (C) 𝑞 = 2. (D) 𝑞 = 3. (E) 𝑞 = 5. (F) 𝑞 = 10. Upper bounds are shown for different values of the maximal number of species 𝐼 (from
ottom to top, 𝐼 = 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 50). The lower bound is the same irrespective of the number of species (black), except that it is defined only for 𝑀 ⩾ 1

𝐼
. For large 𝑞,

he upper and lower bounds are very close together.
n
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unes the effect of the largest abundance 𝑀 on the value of a diversity
tatistic: with larger 𝑞, the Hill number increasingly depends primarily
n 𝑀 . The normalization in Eq. (11) achieves something different:
t captures effects of the remaining species, and it does so in the
nterval [0, 1]. For any choice of 𝑞, the normalization evaluates a sense
f diversity if the remainder of the community is considered without
ts most abundant species. Consider two communities with the same
ominant species, say, Community 1 with abundances (0.8, 0.2, 0, 0, 0)
nd Community 2 with (0.8, 0.05, 0.05, 0.05, 0.05). For large 𝑞, the Hill
6

d

umbers are nearly identical—𝐷3 = 1.387 for Community 1 and 1.397
or Community 2. A difference in communities is detectable mainly by
oting that the pattern of change in Hill numbers with 𝑞 differs for
he two communities: for example, the difference between communities
s larger at 𝑞 = 2, with 𝐷2 = 1.470 for Community 1 and 1.538 for
ommunity 2. The relative change in Hill numbers between commu-
ities is modest, so that their quite different features—excluding the
ominant species—are not easily seen. Using the bounds, however, the
ifference widens: across the full range of values of 𝑞, Community 2
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Fig. 4. Hill numbers for two communities. Panels (A) and (B) plot Hill numbers for
two communities as a function of 𝑞, alongside the lower and upper bounds on the Hill
umber as a function of the frequency 𝑀 of the most abundant species and the number
f species 𝐼 . The value of 𝑞 ranges from 1.01 to 10. The Hill number for the data is
lotted alongside bounds taken from Result 4. (A) Canopy community. (B) Understory
ommunity. (C) The proximity of the Hill number to its upper bound, calculated for two
ommunities using [𝐷𝑞 −𝐿𝑞 (𝑀, 𝐼)]∕[𝑈𝑞 (𝑀, 𝐼) −𝐿𝑞 (𝑀, 𝐼)], as a function of 𝑞 (Eq. (11)).
𝑞 (𝑀, 𝐼) and 𝑈𝑞 (𝑀, 𝐼) represent the lower and upper bounds on the Hill number 𝐷𝑞 as

unctions of the frequency 𝑀 of the most abundant species and the number of species
, as obtained in Result 4 in Box I.

lways has maximal diversity given 𝑀 = 0.8 and number of species
𝐼 = 5, with Eq. (11) equal to 1, whereas Community 1 always lies at
the minimum, with Eq. (11) equal to 0. The normalization thus clarifies
relative diversities in sets of rarer species, as obtained by discarding the
species that is most abundant.

Indeed, the butterfly data that we have considered, reanalyzing data
from Jost (2006), generates an interesting finding. In particular, the
understory has higher values for the Hill numbers—but when normal-
7

izing Hill numbers based on their maximal values given the frequency
of the most abundant species, instead the canopy has higher values.
Like Jost (2006), Leinster and Cobbold (2012) had used Hill numbers
to reanalyze rainforest butterfly data—in this case from DeVries et al.
(1997). They noted the higher values in the understory for values of
𝑞 ≲ 3.1, writing ‘‘if one is principally concerned with dominance, the
opulation in the canopy appears to be fractionally more diverse, but from
ny other point of view, there is more diversity in the understory.’’ In other
ords, if the diversity index emphasizes the most frequent species by
sing a high value of 𝑞, then the canopy is more diverse—but otherwise,
he understory is more diverse. We offer a view in which, in a similar
ata set, when the frequency of the most abundant species is taken
nto consideration, the canopy appears to be more diverse than the
nderstory across a range of values of 𝑞 (Fig. 4C). The point of this
bservation is not to establish which community is in fact more diverse,
ut to note that our bounds enable a researcher to control for the
ontribution to diversity of the most frequent species, and that when
ccounting for its abundance, the relative order of the diversity values
ight be transposed. In the analysis of Leinster and Cobbold (2012),
odulation of 𝑞, which alters the influence of the highest abundance on

he Hill numbers, does not transpose the two communities for 𝑞 ≲ 3.1;
t is the normalization, which in effect compares the sets of remaining
pecies as communities in themselves, that changes the relative order
f the diversity profiles.

A contribution of our study is its further development of a con-
ection between results concerning diversity indices in population
enetics and mathematically related diversity indices in ecology. As
oth areas rely on measurement of abundances in categorical data
or the purpose of understanding features of biological diversity, the
easures that they can employ are similar and often mathematically

dentical. Insights obtained in one domain can be imported into the
ther, such as in the influence of the ecological use of the information-
heoretic Shannon entropy on the choice of Lewontin (1972) to employ
his measure for characterizing human population-genetic diversity at
ifferent geographical scales (Winther, 2021; Novembre, 2022).

Many studies of population-genetic statistics have been providing
athematical bounds that constrain the values of the statistics in

elation to allele frequencies (e.g. Rosenberg and Jakobsson, 2008;
aruki et al., 2012; Alcala and Rosenberg, 2019, 2022). Results for

uch statistics can be used to obtain corresponding results for related
tatistics in the ecological context. Indeed, more general results than
hose we have used can be employed for additional statistics that satisfy
he necessary mathematical requirements (Aw and Rosenberg, 2018);
esults fixing frequencies other than the most abundant can also be
btained (Morrison and Rosenberg, 2023). Further exploration of math-
matical bounds can potentially contribute to decisions on researchers’
hoices of ecological statistics and to improving the interpretation of
tatistics that are chosen.

RediT authorship contribution statement

Theodore D. Gress: Conceptualization, Investigation, Writing –
riginal draft, Writing – review & editing. Noah A. Rosenberg: Con-
eptualization, Investigation, Supervision, Writing – original draft,
riting – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

We thank Maike Morrison for helpful comments. We acknowledge
ational Institutes of Health grant R01 HG005855 for support.



BioSystems 237 (2024) 105153T.D. Gress and N.A. Rosenberg
Suppose 𝐩 is a vector of length 𝐼 of nonnegative numbers that sum to 1, arranged in decreasing order with 𝑝𝑖 ⩾ 𝑝𝑗 if 𝑖 < 𝑗. Suppose the
largest element in 𝐩 is fixed at 𝑝1 = 𝑀 , with 𝑀 in [ 1𝐼 , 1]. In this setting, the following four results hold. Note that the vector 𝐩 can be
taken to represent a vector of species relative abundances or a vector of allele frequencies.

Result 1 (Bounds on 𝑞-homozygosity). For 𝑞 > 1, 𝑞-homozygosity satisfies

𝑀𝑞 +
(1 −𝑀)𝑞

(𝐼 − 1)𝑞−1
⩽ 𝐽 (𝑞) ⩽ ⌊𝑀−1

⌋𝑀𝑞 + (1 − ⌊𝑀−1
⌋𝑀)𝑞 .

Equality with the upper bound occurs if and only if 𝑝𝑖 = 𝑀 for 1 ⩽ 𝑖 ⩽ 𝐾 − 1, 𝑝𝐾 = 1 − (𝐾 − 1)𝑀 , and 𝑝𝑖 = 0 for 𝑖 > 𝐾, where 𝐾 = ⌈𝑀−1
⌉.

Equality with the lower bound occurs if and only if 𝑝𝑖 =
1−𝑀
𝐼−1 for 2 ⩽ 𝑖 ⩽ 𝐼 .

Result 2 (Bounds on Rényi entropy). For 𝑞 > 0, 𝑞 ≠ 1, Rényi entropy satisfies

𝐻𝑞 ⩾ 1
1 − 𝑞

log
[

⌊𝑀−1
⌋𝑀𝑞 + (1 − ⌊𝑀−1

⌋𝑀)𝑞
]

𝐻𝑞 ⩽ 1
1 − 𝑞

log
[

𝑀𝑞 + (𝐼 − 1)
(

1 −𝑀
𝐼 − 1

)𝑞]

.

Equality with the upper bound occurs if and only if 𝑝𝑖 =
1−𝑀
𝐼−1 for 2 ⩽ 𝑖 ⩽ 𝐼 . Equality with the lower bound occurs if and only if 𝑝𝑖 = 𝑀 for

1 ⩽ 𝑖 ⩽ 𝐾 − 1, 𝑝𝐾 = 1 − (𝐾 − 1)𝑀 , and 𝑝𝑖 = 0 for 𝑖 > 𝐾, where 𝐾 = ⌈𝑀−1
⌉.

Result 3 (Bounds on Shannon entropy). Shannon entropy, obtained as the 𝑞 → 1 limit of Rényi entropy, satisfies

𝐻1 ⩾ ⌊𝑀−1
⌋𝑀 log 1

𝑀
+ (1 − ⌊𝑀−1

⌋𝑀) log
(

1
1 − ⌊𝑀−1

⌋𝑀

)

𝐻1 ⩽ 𝑀 log 1
𝑀

+ (1 −𝑀) log
(

1 −𝑀
𝐼 − 1

)

.

Equality with the upper bound occurs if and only if 𝑝𝑖 =
1−𝑀
𝐼−1 for 2 ⩽ 𝑖 ⩽ 𝐼 . Equality with the lower bound occurs if and only if 𝑝𝑖 = 𝑀 for

1 ⩽ 𝑖 ⩽ 𝐾 − 1, 𝑝𝐾 = 1 − (𝐾 − 1)𝑀 , and 𝑝𝑖 = 0 for 𝑖 > 𝐾, where 𝐾 = ⌈𝑀−1
⌉.

Result 4 (Bounds on Hill numbers). The Hill numbers satisfy the following results.
(i) For 𝑞 > 0, 𝑞 ≠ 1,

𝐷𝑞 ⩾
[

⌊𝑀−1
⌋𝑀𝑞 +

(

1 − ⌊𝑀−1
⌋𝑀

)𝑞
]

1
1−𝑞

𝐷𝑞 ⩽
[

𝑀𝑞 + (𝐼 − 1)
(

1 −𝑀
𝐼 − 1

)𝑞] 1
1−𝑞

.

(ii) For 𝑞 = 1,

𝐷1 ⩾ 𝑒
⌊𝑀−1

⌋𝑀 log 1
𝑀 +(1−⌊𝑀−1

⌋𝑀) log
(

1
1−⌊𝑀−1

⌋𝑀

)

𝐷1 ⩽ 𝑒𝑀 log 1
𝑀 +(1−𝑀) log

(

1−𝑀
𝐼−1

)

.

(iii) Equality with the upper bound occurs if and only if 𝑝𝑖 =
1−𝑀
𝐼−1 for 2 ⩽ 𝑖 ⩽ 𝐼 . Equality with the lower bound occurs if and only if 𝑝𝑖 = 𝑀 for

1 ⩽ 𝑖 ⩽ 𝐾 − 1, 𝑝𝐾 = 1 − (𝐾 − 1)𝑀 , and 𝑝𝑖 = 0 for 𝑖 > 𝐾, where 𝐾 = ⌈𝑀−1
⌉.

Box I. Mathematical bounds on diversity statistics for vectors of species relative abundances.
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