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Abstract

Consider a discrete set of objects and a sample of size N taken with replacement
from the set, producing a list of counts of the objects that corresponds to a partition of
N . Two statistics that are commonly used for measuring the “diversity” of the sample
are the Gini-Simpson index and the Shannon index. We study the number of possible
values that these indices can take across all possible partitions of the sample size N as
N increases. The two statistics are highly correlated over the set of partitions of N .
However, the number of possible values that the Shannon index can take (A383683)
far exceeds the number of possible values of the Gini-Simpson index (A069999), with
the latter growing quadratically and the former growing faster than every polynomial.

1 Introduction

How does one measure the “diversity” of a set of objects drawn from a finite set of classes?
The question arises in many contexts, including ecology [10], genetics [12], health services
research [16], and the social sciences [5]. Consider a discrete set D of objects {1, 2, . . . , I},
with I ≥ 1, and N draws from D with replacement, producing counts (n1, n2, . . . , nI) with∑I

i=1 ni = N . The ordered vector of counts is a sample. A diversity index is a real-valued
function that is computed from a sample and that seeks to capture the “diversity” of the
sample. Typically, a diversity index has its lowest value if ni = N for some value of i (each
draw is the same as all the others), and its highest value if ni = 1 for N distinct values of i
(each draw is distinct from all the others).
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Two frequently used indices of diversity are theGini-Simpson index H = 1−
∑I

i=1(ni/N)2,

and the Shannon index S = −
∑I

i=1(ni/N) log(ni/N) [9, pp. 39, 94]. The Gini-Simpson index
measures the probability that two objects randomly drawn with replacement from a prob-
ability distribution with frequencies ni/N are distinct. In population genetics, it is known
as heterozygosity, as it computes the probability that a genotype is heterozygous—that it
contains two distinct alleles—if the allele frequencies in an allele frequency distribution have
values n1/N, n2/N, . . . , nI/N . The Shannon index is the information-theoretic measure of
the entropy of the probability distribution specified by (n1/N, n2/N, . . . , nI/N). Across all
possible samples of size N , the Gini-Simpson index has the property that its lowest value is
0 if ni = N for some i, and if I ≥ N , its highest value is 1− 1

N
if ni = 1 for N distinct values

of i. The Shannon index also has its lowest value of 0 if ni = N for some i. If I ≥ N , its
highest value is logN if ni = 1 for N distinct values of i.

Considering only the counts in a sample and not the object labels 1, 2, . . . , I—that is,
disregarding the order of entries in its vector—a sample is simply a partition of N . Provided
that the number of distinct objects I satisfies I ≥ N , the set of all possible samples of size
N corresponds to the partitions of N , where we understand each partition of N to be a
non-decreasing sequence of positive integers summing to N [1, Chapter 1] (appending zeroes
to extend partitions to possess length I where necessary).

Multiple partitions of N can potentially produce the same value of the Gini-Simpson
index. For example, for N = 6, partitions (4, 1, 1) and (3, 3) both produce H = 1

2
. Similarly,

multiple partitions can produce the same value of the Shannon index. WithN = 8, partitions
(4, 1, 1, 1, 1) and (2, 2, 2, 2) both produce S = 2 log 2. Because distinct partitions map to the
same value of a diversity statistic, the value of the statistic does not necessarily indicate
that the underlying sample possesses a specific feature, such as a specific value of its largest
entry, or a specific number of nonzero entries.

In analyses of discrete data, the Gini-Simpson and Shannon indices are used in similar
ways, and they are seen to have high empirical correlation coefficients. Considering all 627
partitions of N = 20, the Pearson correlation coefficient [6, p. 117] of the Gini-Simpson
and Shannon indices is approximately 0.927. As we will see here, however, despite their
conceptual similarity, as N grows, the number of possible values of the Shannon index far
exceeds the number of possible values of the Gini-Simpson index. We study the sequences
describing the number of possible values of the Gini-Simpson index and the number of
possible values of the Shannon index. In particular, we review results concerning the sequence
for the Gini-Simpson index and discuss new results for the sequence for the Shannon index.
We also briefly discuss implications for the use of diversity statistics.
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2 Relationship between the Gini-Simpson and Shan-

non indices

We first illustrate that the Gini-Simpson and Shannon indices have a close relationship. In
particular, we show that it is possible to find bounds on the Shannon index given knowledge
of only the Gini-Simpson index and the number of distinct objects I in the set D. For this
computation, we work with a vector of nonnegative real numbers pi with

∑I
i=1 pi = 1. The

Gini-Simpson index is 1−
∑I

i=1 p
2
i , and the Shannon index is −

∑I
i=1 pi log pi. The analysis

generalizes beyond the case in which the nonnegative real numbers (p1, p2, . . . , pI) can be
written (n1/N, n2/N, . . . , nI/N) for integers n1, n2, . . . , nI and N , with N ≤ I.

Proposition 1 ([15, Thm. 2.7]). Let I ≥ 2. For all length-I vectors p = (p1, p2, . . . , pI)
of nonnegative real numbers with

∑I
i=1 pi = 1 and at least two nonzero entries, writing

J =
∑I

i=1 p
2
i and M = max(p1, p2, . . . , pI), the following inequality holds:

1

⌈J−1⌉

(
1 +

√
⌈J−1⌉J − 1

⌈J−1⌉ − 1

)
≤ M ≤ 1

I

(
1 +

√
(IJ − 1)(I − 1)

)
.

It is convenient to define functions

Mmin(J) =
1

⌈J−1⌉

(
1 +

√
⌈J−1⌉J − 1

⌈J−1⌉ − 1

)
, (1)

Mmax(J) =
1

I

(
1 +

√
(IJ − 1)(I − 1)

)
. (2)

These functions are monotonically increasing on [1
I
, 1) ([15, Lemma 2.9]).

Proposition 2 ([3, Cor. 3.16]). Let I ≥ 2. For all length-I vectors p = (p1, p2, . . . , pI)
of nonnegative real numbers with

∑I
i=1 pi = 1 and at least two nonzero entries, writing

S = −
∑I

i=1 pi log pi and M = max(p1, p2, . . . , pI), the following inequality holds:

⌊M−1⌋M log
1

M
+(1−⌊M−1⌋M) log

(
1

1− ⌊M−1⌋M

)
≤ S ≤ M log

1

M
+(1−M) log

(
I − 1

1−M

)
.

Next, note that the functions in the lower and upper bounds in Proposition 2 are mono-
tonically decreasing functions of M on the permissible domain M ∈ [1

I
, 1). To do so, write

Smin(M) = ⌊M−1⌋M log
1

M
+ (1− ⌊M−1⌋M) log

(
1

1− ⌊M−1
M⌋
)
, (3)

Smax(M) = M log
1

M
+ (1−M) log

(
I − 1

1−M

)
. (4)
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For the monotonicity of the upper bound, we have dSmax(M)/dM = − log
(M(I−1)

1−M

)
. Because

M ≥ 1
I
, I ≥ 2, and M < 1, we have M(I−1)

1−M
≥ 1, and dSmax(M)/dM ≤ 0 with equality if and

only if M = 1
I
, so that Smax(M) is monotonically decreasing on [1

I
, 1).

For the lower bound, it suffices to verify that Smin(M) is decreasing on intervals Ek =
( 1
k+1

, 1
k
) for 1 ≤ k ≤ I − 1, where ⌊M−1⌋ has the fixed value k, as Smin(M) is continuous at

the interval boundaries M = 1
2
, 1
3
, . . . , 1

I−1
(and at M = 1

I
). On intervals Ek, we have that

dSmin(M)/dM = −k log( M
1−kM

), a negative quantity as kM < 1 and M
1−kM

> 1 on Ek.

Theorem 3. Let I ≥ 2. For all length-I vectors p = (p1, p2, . . . , pI) of nonnegative real
numbers with

∑I
i=1 pi = 1 and at least two nonzero entries, if the Gini-Simpson index H =

1−
∑I

i=1 p
2
i is given, 0 < H ≤ 1− 1

I
, then the Shannon index S = −

∑I
i=1 pi log pi satisfies

Smin

(
Mmax(1−H)

)
≤ S ≤ Smax

(
Mmin(1−H)

)
,

where functions Mmin, Mmax, Smin, and Smax are defined in Eqs. (1)-(4).

Proof. Because Smin(M) is monotonically decreasing for M ∈ [1
I
, 1), to find a lower bound

for S, we can set M to its largest possible value given H = 1−J , or Mmax(1−H). Similarly,
because Smax(M) is also monotonically decreasing for M ∈ [1

I
, 1), to find an upper bound

for S, we can set M to its smallest possible value given H = 1− J , or Mmin(1−H).

For the case of I = 40, Figure 1 plots the bounds from Theorem 3 on the Shannon
index in relation to the Gini-Simpson index. The bounds are loose, but the plot nevertheless
illustrates the close relationship between the Shannon and Gini-Simpson indices.

3 Numerical comparisons

Although the Gini-Simpson and Shannon indices are closely related in their numerical values
computed for samples, as illustrated via the bounds in Section 2, we will see that the numbers
of discrete values of the two indices have different behavior as the sample size N increases.

Table 1 provides the numbers of values of the Gini-Simpson and Shannon indices across
all possible partitions of N for small values of N . Even for small N , we see that the number of
possible values of the Gini-Simpson index is substantially lower than the number of possible
values of the Shannon index—which is in turn less than the number of partitions. Sequence
numbers refer to the On-Line Encyclopedia of Integer Sequences (OEIS) [13].

We next demonstrate a faster rate of increase of the number of values of the Shannon
index relative to the number of values of the Gini-Simpson index, as N increases. Let γ(N)
denote the number of possible values of the Gini-Simpson index across all samples of size N .
Let σ(N) denote the corresponding number of possible values of the Shannon index.

4



Figure 1: Upper and lower bounds on the Shannon index in relation to the Gini-Simpson
index, for the case of I = 40. The bounds follow Theorem 3. The points show (H,S) for the
37,338 partitions of 40.

4 Number of possible values of the Gini-Simpson index

We begin by noting that across partitions of N , the number of possible values of the Gini-
Simpson index, 1 −

∑I
i=1(ni/N)2 = 1 − (1/N2)

∑I
i=1 n

2
i , is equal to the number of possible

values of
∑I

i=1 n
2
i , the sum of squares of the entries.

4.1 Upper bound

An upper bound on γ(N) can be obtained by noting that for each partition of N , we have
N =

∑I
i=1 ni ≤

∑I
i=1 n

2
i ≤ (

∑I
i=1 ni)

2 = N2. The quantity γ(N) is therefore bounded above
by the number of integers in the interval [N,N2].
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Number of possible values
N Partitions, p(N) Gini-Simpson index, γ(N) Shannon index, σ(N)

(OEIS A000041) (OEIS A069999) (OEIS A383683)
1 1 1 1
2 2 2 2
3 3 3 3
4 5 5 5
5 7 7 7
6 11 9 11
7 15 13 15
8 22 18 21
9 30 21 29
10 42 27 39
11 56 34 52
12 77 39 68
13 101 46 89
14 135 54 116
15 176 61 149
16 231 72 189
17 297 83 240
18 385 92 298
19 490 106 373
20 627 118 455
21 792 130 562
22 1002 145 690
23 1255 162 837
24 1575 176 1014
25 1958 193 1227
26 2436 209 1480
27 3010 226 1772
28 3718 246 2110
29 4565 265 2516
30 5604 284 2980
31 6842 308 3522
32 8349 330 4147
33 10143 352 4879
34 12310 375 5729
35 14883 402 6688
36 17977 426 7797
37 21637 453 9082
38 26015 480 10546
39 31185 508 12225
40 37338 538 14114
41 44583 570 16303
42 53174 598 18771
43 63261 631 21585
44 75175 661 24760
45 89134 694 28355
46 105558 730 32456
47 124754 765 37042
48 147273 800 42230
49 173525 835 48091
50 204226 872 54612

Table 1: The numbers of possible values of the Gini-Simpson index and Shannon index across
all partitions of N for small N .
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Further,
∑I

i=1 n
2
i has the same parity as N : if N is odd, then a partition of N has an odd

number of odd parts, and the sum of the squares of the parts is odd, whereas if N is even, a
partition of N has an even number of odd parts, and the sum of the squares of the parts is
even. The number of integers in [N,N2] with the same parity as N is (N2 −N + 2)/2. We
have the following proposition.

Proposition 4 ([8, p. 1770]). The number of possible values of the Gini-Simpson index
across all samples of size N , γ(N), is bounded above by 1

2
N2 − 1

2
N + 1.

4.2 Lower bound

We discuss three progressively tighter results concerning the lower bound on γ(N), drawing
on different ideas. The first result considers that the partitions of N can be placed in a
partial order [11, p. 199]. The largest element is (N, 0, . . . , 0), the smallest is (1, 1, . . . , 1),
and partition P1 is greater than (distinct) partition P2 if P1 majorizes P2: if, when P1 and P2

are written with entries in non-increasing order, each partial sum of entries in P1 is greater
than or equal to the corresponding partial sum for P2.

By Karamata’s inequality [11, p. 156] with the strictly convex function f(x) = x2, distinct
partitions P1, P2 for which P1 majorizes P2 have distinct sums of squares for their parts, with
P1 possessing the larger value. The number of distinct values for the sum of squares of entries
in partitions of N is therefore bounded below by the length of the longest chain of partitions
of N—the largest subset of the partitions that can be totally ordered. Each entry in the
chain has a distinct sum of squares.

Write N in its unique decomposition into two parts satisfying N =
(
m+1
2

)
+ r with

0 ≤ r ≤ m for integers m and r. The length of the longest chain of partitions then equals
1
3
m(m2+3r−1)+1 [7, p. 9]. This quantity bounds from below the number of distinct values

of the Gini-Simpson index as a function of N ; starting at N = 1, it has initial entries 1, 2,
3, 5, 7, 9, 12, 15, 18, 21 (OEIS A006463 plus 1). The sequence A006463(N) has asymptotic

growth 2
√
2

3
N3/2 [7, p. 9].

Proposition 5 ([15, Section 6.2.1]). The number of possible values of the Gini-Simpson
index across all samples of size N , γ(N), is bounded below by 1

3
m(m2 + 3r − 1) + 1, where

(m, r) gives the unique decomposition N =
(
m+1
2

)
+ r with 0 ≤ r ≤ m. The lower bound

grows with 2
√
2

3
N3/2.

The number of possible values γ(N) of the Gini-Simpson index across partitions grows

polynomially; the growth has lower bound 2
√
2

3
N3/2 and upper bound 1

2
N2.

A second, tighter lower bound on γ(N) follows from a result of Winkler [19].

Proposition 6. The number of possible values of the Gini-Simpson index across all samples
of size N , γ(N), is bounded below by (⌊1

5
N2⌋ −N)/2.

Lemma 2 of Winkler [19] demonstrated that for each m with N ≤ m ≤ 1
5
N2 and m ≡ N

(mod 2), there exists a partition of N for which the sum of squares of the parts is m.
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The number of integers m in [N, 1
5
N2] with the same parity as N is bounded below by

(⌊1
5
N2⌋ − N)/2. Taken together, Propositions 4 and 6 show that the number of possible

values γ(N) of the Gini-Simpson index across partitions grows quadratically.
The third, stronger result for the lower bound can be obtained via a result from Reznick [14].

In particular, Reznick [14] investigated the largest integer A(N) for which each integer N+2j
with j in {0, 1, 2, . . . , A(N)} can be represented as the sum of the squares of the parts of a
partition of N . The quantity A(N)+1 provides a lower bound on γ(N), as sums of squares of
the parts of partitions of N traverse the values N+2j for all integers j ∈ {0, 1, 2, . . . , A(N)}.

The theorem on p. 201 of [14] demonstrates that A(N) ∼ 1
2
N2−

√
2N3/2. In other words,

the number of distinct values of γ(N) is bounded below by a quantity that, in the leading
term, is asymptotic to 1

2
N2. With Proposition 4, we conclude not only that the number of

possible values γ(N) of the Gini-Simpson index across partitions grows quadratically, but
that the growth constant can be specified: γ(N) ∼ 1

2
N2.

Proposition 7. The number of possible values of the Gini-Simpson index across all samples
of size N , γ(N), satisfies γ(N) ∼ 1

2
N2.

Table 2 gives the sequence of values of A(N) for small N , where it can be seen that A(N)
is near the asymptotic approximation ⌊1

2
N2 −

√
2N3/2⌋. The table also shows N + 2A(N),

which provides the largest integer N + 2j such that all integers {N,N + 2, . . . , N + 2j} can
be written as the sum of squares of the parts of a partition of N .

5 Number of possible values of the Shannon index

Whereas the growth of the number of possible values γ(N) of the Gini-Simpson index across
partitions of N grows quadratically, we will see that the number of possible values σ(N) of
the Shannon index across partitions of N grows faster than polynomially.

The Shannon index −
∑I

i=1(ni/N) log(ni/N) can be rewritten logN − 1
N

∑N
i=1 ni log ni.

The number of possible values of the Shannon index across partitions of N is equal to the
number of possible values of

∑I
i=1 ni log ni across partitions of N .

5.1 Upper bound

The number of possible values of the Shannon index across samples of size N is trivially
bounded above by the number of partitions of size N , or p(N). The Hardy-Ramanujan
asymptotic formula for the partition function specifies [1, eq. 5.1.2]

p(N) ∼ 1

4
√
3N

eπ
√

2
3

√
N . (5)

An upper bound for p(N) applicable for all N ≥ 1 is p(N) ≤ eπ
√

2
3

√
N [2, Theorem 14.5].

8



N ⌊1
2
N2 −

√
2N3/2⌋ A(N) N + 2A(N)

(OEIS A381811) (OEIS A383682)
1 −1 0 1
2 −3 1 4
3 −3 1 5
4 −4 3 10
5 −4 4 13
6 −3 4 14
7 −2 7 21
8 −1 13 34
9 2 13 35
10 5 18 46
11 8 25 61
12 13 25 62
13 18 32 77
14 23 32 78
15 30 40 95
16 37 49 114
17 45 52 121
18 53 62 142
19 63 73 165
20 73 85 190
21 84 102 225
22 96 112 246
23 108 127 277
24 121 133 290
25 135 160 345
26 150 166 358
27 166 166 359
28 182 184 396
29 199 203 435
30 217 208 446
31 236 228 487
32 255 249 530
33 276 271 575
34 297 294 622
35 319 322 679
36 342 343 722
37 366 373 783
38 390 376 790
39 416 376 791
40 442 403 846
41 469 431 903
42 497 490 1022
43 525 521 1085
44 555 521 1086
45 585 553 1151
46 616 592 1230
47 648 620 1287
48 681 655 1358
49 715 662 1373
50 750 662 1374

Table 2: The largest integer A(N) for which each integer N+2j with j in {0, 1, 2, . . . , A(N)}
can be represented as the sum of the squares of a partition of N , and the associated integer
N + 2A(N). The integer A(N) has asymptotic equivalence to ⌊1

2
N2 −

√
2N3/2⌋.
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Proposition 8. For all N ≥ 1, the number of possible values of the Shannon index across

all samples of size N , σ(N), is bounded above by eπ
√

2
3

√
N .

This upper bound can be improved. For each integer m ≥ 2, we can find two partitions of
4m with equal Shannon indices: (m,m, 2, 2, . . . , 2), where the number of copies of 2 is m, and
(2m, 1, 1, . . . , 1), with 2m copies of 1. Both have

∑I
i=1 ni log ni equal to 2m logm+2m log 2.

In particular, partitions (2, 2, 2, 2) and (4, 1, 1, 1, 1) of 8 have the same value, 8 log 2. As a
result, among the partitions of N ≥ 9, we have at least p(N − 8) duplicate values of the
Shannon index: each partition of N − 8 together with (2, 2, 2, 2) shares its Shannon index
with the same partition of N − 8 together with (4, 1, 1, 1, 1). The number of values of the
Shannon index, σ(N), is therefore bounded above by p(N) − p(N − 8). However, it is not
the upper bound but rather the lower bound that provides the key result that the number
of values of the Shannon index far exceeds that of the Gini-Simpson index as N increases.

5.2 Lower bound

Our main result is that the number of possible values of the Shannon index grows faster
than polynomially.

Theorem 9. For all polynomials q(N),

lim
N→∞

σ(N)

|q(N)|
= ∞.

Proof. First, the argument that underlies Proposition 5 in Section 4.2 applies to the strictly
concave f(x) = −x log x: two distinct partitions P1 and P2 of N for which P1 majorizes
P2 possess distinct Shannon indices, with P2 now possessing the larger value. The number
of distinct values for the Shannon index is therefore bounded below by the length of the
longest chain in the partial order on partitions. Letting c1 =

2
√
2

3
− ϵ1 for ϵ1 small, we have

σ(N) > c1N
3/2 for all sufficiently large N > N1.

Enumerate all the prime numbers p1 < p2 < · · · < pk in the interval (N
2
, 3N

4
). Each

partition of N that includes one of these primes pi cannot include another, pj, as pi+pj > N .
A partition that includes pi is formed from pi and a partition of N − pi. Therefore, the total
number of values of the Shannon index formed by partitions that include a prime in (N

2
, 3N

4
)

is
∑k

i=1 σ(N − pi), and

σ(N) ≥
k∑

i=1

σ(N − pi) ≥
k∑

i=1

σ(N − pk) ≥ k σ
(
⌊N/4⌋

)
. (6)

By the prime number theorem [2, Chapter 4], as N grows large, the number of primes k in

(N
2
, 3N

4
) satisfies k ∼ N/4

log(N/4)
. Hence, for a constant c2 = 1− ϵ2 with ϵ2 small, for sufficiently

large N > N2,

σ(N) ≥ c2

(
N/4

log(N/4)

)
σ
(
⌊N/4⌋

)
. (7)
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Suppose for contradiction that σ grows polynomially. Then there exists a polynomially
growing function q(N) ∼ c3N

d with a positive coefficient c3 and exponent d ≥ 3
2
, such that

limN→∞
(
σ(N)/q(N)

)
= c4 < ∞, where c4 > 0. Then

lim
N→∞

σ(N)

q(N)
≥ lim

N→∞
c2

(
N/4

log(N/4)

)
σ
(
⌊N/4⌋

)
q(N)

. (8)

We then have

lim
N→∞

σ
(
⌊N/4⌋

)
q(N)

= lim
N→∞

σ
(
⌊N/4⌋

)
q(⌊N/4⌋)

q(⌊N/4⌋)
q(N)

=
c4
4d

from the fact that q(N) is asymptotically equivalent to c3N
d. It follows that the right-hand

limit in Eq. (8) is infinite, as limN→∞(N
4
/ log N

4
) = ∞, contradicting the assumption that

the left-hand limit is finite.

A stronger lower bound than Theorem 9 can be obtained by consideration of prime parti-
tions, partitions that consist only of primes. Decomposing each ni in the sum

∑I
i=1 ni log ni

for a partition of N by its prime factorization,
∑I

i=1 ni log ni can be written
∑k

i=1 ai log pi,
where (p1, p2, . . . , pk) now represent all the primes less than or equal to N , and the ai are
nonnegative integers. For distinct prime numbers pi and pj, the quantity log pi cannot be
an integer multiple of log pj, so that if the coefficients (a1, a2, . . . , ak) differ for a pair of
partitions of N , then the partitions must have different values for the Shannon index.

Consider two distinct prime partitions of N , P1 and P2. Because P1 ̸= P2, in the
representations of the Shannon indices for P1 and P2, there must exist some prime number
pi whose associated coefficient ai differs between the two partitions. The Shannon indices for
P1 and P2 therefore differ. The number of prime partitions of N (OEIS A000607) provides a
lower bound on the number of distinct values for the Shannon index across partitions of N .

Letting p∗(N) denote the number of prime partitions of N , an asymptotic expression for
p∗(N) is [4, 17, 18]

p∗(N) ∼ 1

2N3/4(3 logN)1/4
e
2π
√

1
3

√
N

logN . (9)

Hence, because σ(N), the number of values of the Shannon index, is bounded below by the
number of prime partitions p∗(N), the quantity σ(N) grows not only faster than polynomi-
ally, but at least as fast as the exponentially growing expression in Eq. (9).

We can observe in Table 1 that the number of possible values σ(N) of the Shannon index,
while growing faster than the quadratically growing number of possible values γ(N) of the
Gini-Simpson index, appears to decrease as a fraction of the number of partitions p(N).

6 Discussion

The Gini-Simpson and Shannon indices are related, in the sense that for a sample, the
Shannon index lies in a narrow range given the Gini-Simpson index (Theorem 3, Figure
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1). However, across samples, the indices differ in their properties. Whereas the number of
distinct values of the Gini-Simpson index across samples of size N grows with O(N2) (Section
4), the number of distinct values of the Shannon index grows faster than polynomially, at
least as fast as the (exponentially growing) number of prime partitions (Section 5.2).

The Gini-Simpson index has been widely used across fields, in part due to its mathemat-
ical simplicity, its potential for moment estimation in a statistical setting, and its natural
meaning, such as its interpretation in genetics as the probability that two genetic copies
in an organism have distinct types [15, p. 10]. However, our observation that the Shannon
index—which is perhaps even more widely used [9, p. 32]—has more distinct values indicates
that a value for the Shannon index comes closer to encoding the precise partition used in
its calculation than does a value for the Gini-Simpson index. This property is useful in a
setting in which the Shannon index and the sample size but not the partition are recorded
in a data analysis, as it may often be possible to recover the lost partition.

We can consider extensions of the Gini-Simpson index to higher powers than the square.
Let Jk(p) =

∑I
i=1 p

k
i for an integer k ≥ 2, and let Hk(p) = 1 − Jk(p) [15, Chapter 5]. The

number of distinct values of Jk across partitions of N has the same O(N3/2) lower bound
shown for the Gini-Simpson index in Proposition 5, following the argument of Section 4.2
with the strictly convex f(x) = xk. For the upper bound, the sum of the kth powers of
the entries of a partition of N lies in [N,Nk]. By the parity argument of Proposition 4, the
number of distinct values of Jk is bounded above by 1

2
Nk − 1

2
N + 1, a degree-k polynomial.

As the number of distinct values of the Shannon index grows faster than polynomially,
it grows faster than the number of distinct values of a generalized Gini-Simpson index with
a higher power. The problem of determining a precise asymptotic for the number of distinct
values of the Shannon index remains open.
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