
RESEARCH ARTICLE ECOLOGY OPEN ACCESS

Quantifying compositional variability in microbial communities
with FAVA
Maike L. Morrisona,1 ID , Katherine S. Xuea ID , and Noah A. Rosenberga ID

Edited by Andrew Clark, Cornell University, Ithaca, NY; received July 2, 2024; accepted January 21, 2025

Microbial communities vary across space, time, and individual hosts, generating
a need for statistical methods capable of quantifying variability across multiple
microbiome samples at once. To understand heterogeneity across microbiome samples
from different host individuals, sampling times, spatial locations, or experimental
replicates, we present FAVA (FST -based Assessment of Variability across vectors of
relative Abundances), a framework for characterizing compositional variability across
two or more microbiome samples. FAVA quantifies variability across many samples
of taxonomic or functional relative abundances in a single index ranging between 0
and 1, equaling 0 when all samples are identical and 1 when each sample is entirely
composed of a single taxon (and at least two distinct taxa are present across samples).
Its definition relies on the population-genetic statistic FST , with samples playing the
role of “populations” and taxa playing the role of “alleles.” Its mathematical properties
allow users to compare datasets with different numbers of samples and taxonomic
categories. We introduce extensions that incorporate phylogenetic similarity among
taxa and spatial or temporal distances between samples. We demonstrate FAVA in
two examples. First, we use FAVA to measure how the taxonomic and functional
variability of gastrointestinal microbiomes across individuals from seven ruminant
species changes along the gastrointestinal tract. Second, we use FAVA to quantify the
increase in temporal variability of gut microbiomes in healthy humans following an
antibiotic course and to measure the duration of the antibiotic’s influence on temporal
microbiome variability. We have implemented this tool in an R package, FAVA, for
use in pipelines for the analysis of microbial relative abundances.

compositional variability | FST | microbial communities | microbiomes | population genetics

Understanding the compositional variability of microbial communities across space,
time, or host individuals is important for characterizing these communities and their
relationships with biological variables of interest (1–13). For example, studies of
microbiome composition have found that microbiome compositions are often more
variable across dysbiotic individuals than across healthy individuals (14), the microbial
communities of infants tend to be more variable across individuals than those of adults
(15), and gut and tongue microbiomes that are more diverse may be less temporally
variable (5). Despite its biological importance, however, compositional variability is
difficult to directly quantify with existing methods.

We define “compositional variability” as variability across two or more compositional
vectors—lists of proportions that sum to 1 (Fig. 1A). Compositional variability is min-
imized when the vectors have identical compositions; it is maximized when each vector
contains a single category at 100% frequency and at least two categories have nonzero
frequency in the sum of the vectors (Fig. 1B andC ). We focus on vectors that represent the
composition of microbiome samples. These vectors’ entries represent relative abundances
of taxonomic categories such as operational taxonomic units (OTUs), species, or even
functional categories such as gene classifications (16–18). Each vector can represent
the composition of a microbiome sample from a distinct timepoint, spatial location,
host individual, or replicate. Compositional variability can therefore represent temporal
stability, spatial heterogeneity, interhost diversity, or repeatability (3, 9, 12, 18–24).

Traditionally, microbiome studies have used statistics such as the Shannon and
Gini-Simpson indices (25), the Jensen–Shannon divergence (26), and the Bray–Curtis
dissimilarity (27). Single-sample diversity statistics such as the Shannon and Gini-
Simpson indices quantify the variability of microbiome samples considered individually,
answering questions such as “Which of these microbiomes is the most diverse?”
Pairwise statistics, such as the Jensen–Shannon divergence, Jaccard index, and Bray–
Curtis dissimilarity compare the compositions of two samples, answering questions such
as “How does the composition of a perturbed microbial community compare to a
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preperturbation reference sample?” Although these tools are
valuable when variability is of interest in one sample or between
two samples, they are less well suited to scenarios in which three
or more samples are of interest, as they only consider one or two
samples at once.

Studies that seek to quantify variability across many samples are
often limited to computing summary measures of each sample,
such as diversity indices (5, 18), principal component coefficients
(14, 28), or the abundances of individual taxa (10, 29), and com-
puting the variability across samples of these summary statistics.
However, this approach measures the variability of a summary
statistic, not the variability of the microbiome composition
itself. Because it is possible for very different compositions to
produce similar values of a summary statistic, such indirect
variability measures potentially obscure large differences among
samples.

Consider for illustration the study of Flores et al. (5), which
aimed to compare regions of the body in terms of their temporal
variability in microbiome composition. For 85 adults, they
profiled the microbiomes of four body habitats weekly for
three months. They measured temporal variability by computing
diversity statistics such as the Shannon index for each temporal
sample, then computing the coefficient of variation of the
Shannon index over time for each of the 85 individuals and
four body regions. This approach quantifies the variability of
the Shannon diversity, not the variability of the microbiome
composition itself. Because equal values of the Shannon index
can be obtained for two communities with similar compositions,
as well as for two communities with quite different compositions,
this method could assign time series with dramatically different
levels of compositional change the same coefficient of variation,
obscuring meaningful differences among them.

Here, we present FAVA, a statistic that quantifies variability of
microbiome composition across many microbiome samples. In a
single number, FAVA measures variability of microbial compo-
sition across arbitrarily many microbiome samples, summarizing
large datasets. The measure allows for the optional inclusion
of similarities among taxonomic categories (e.g., phylogenetic
similarity) and for optional nonuniform weighting of samples
(e.g., to account for uneven sampling time intervals). FAVA,
which stands for an FST -based Assessment of Variability across
vectors of relative Abundances, is based on the statisticFST , which
originated in population genetics to quantify variability across
vectors of allele frequencies for multiple populations. FAVA takes
values between 0 and 1, equaling 0 when all sampled microbiome
compositions are identical and 1 when each sample contains only
a single taxon and at least two distinct taxa are present across
samples (Fig. 1 B and C ). It has mathematical properties that
allow it to be used to compare variability among sets of samples
with very different numbers of taxa or datasets with very different
numbers of samples.

We demonstrate the FAVA framework with two datasets,
one containing spatial samples along the gastrointestinal tract of
seven species of ruminants, and the other describing time series
of gut microbiome samples from 22 human individuals who
experienced an antibiotic perturbation. In the ruminant dataset,
we identify substantially higher interindividual variability in the
stomach and small intestine than in the large intestine, supporting
the view that substantial microbiome variability is obscured
when gastrointestinal communities are sampled through fecal
samples alone (18). In the human dataset, we show that temporal
variability in microbiome composition is elevated following an
antibiotic perturbation, and that just half of subjects return to low
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Fig. 1. FAVA quantifies compositional variability across many abundance
vectors in a single number. (A) FAVA is computed among the rows of a
matrix, with rows representing microbiome samples, columns corresponding
to microbial taxa such as OTUs or families, and entries representing relative
abundances. FAVA quantifies variability across many rows in a single number,
distinguishing it from other methods, which analyze just one or two rows at
a time. (B) Given the number of samples (I) and number of taxa (K ), variability
is minimized if the rows are identical, corresponding to the case where each
sample is the same as every other sample. Variability is maximized if each
sample contains just one taxon, as long as there are at least two different
taxa present across all samples. When plotted as a relative abundance plot
(e.g., panel C), each row of these matrices is visualized as a vertical bar. The
matrix pivots 90 degrees when visualized. (C) For the four matrices, variability
across samples increases as samples become less similar; from Left to Right,
the values of FAVA for the matrices are 0, 0.006, 0.452, and 1.

levels of temporal variability in the 30 d following completion of
the antibiotic.

Results

Definition of FAVA. The composition of a microbial community
is most commonly described in terms of relative abundances
of OTUs, species, bacterial families, or other units, including
functional units such as gene categories. Matrices of such
abundances are central to software widely used for the analysis
of microbiome data, such as Phyloseq (30) and QIIME2 (31). In
an “OTU table,” denoted Q , each row represents a microbial
community sample, each column represents a distinct taxon, and
the entry qi,k represents the relative abundance of taxon k in
sample i (Fig. 1A). The samples in an OTU table represent
samples of microbial communities that could vary in their
sampling location, sampling time, and subject or replicate.
Throughout this paper, we use “sample i” to refer to row i of the
OTU table.

FAVA quantifies variability across the rows of an OTU table
(Fig. 1A). If the rows represent samples from different time points
for one subject, FAVA is a measure of the temporal stability of the
community. If the rows represent different sampling locations,
FAVA quantifies the spatial heterogeneity of the community.
FAVA can be independently computed on disjoint subsets of the
rows of an OTU table. For example, to measure the temporal vari-
ability in microbiome composition for each of many subjects, the
entire matrix would contain many subjects and time points, and
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matrix subsets containing just one subject and many time points
could be separately analyzed. The measure ranges between 0 (no
variability) and 1 (maximal variability) and can be used to com-
pare the variabilities of multiple sets of samples (Fig. 1 B and C ).

FAVA is based on the population-genetic statistic FST , which
is used mainly to measure variability of allele frequencies across
populations but can also apply for other types of compositional
data (32–34). We apply FAVA to microbiomes by analyzing
microbial taxon abundances in place of allele frequencies, and
microbiome samples in place of populations.

FST is defined in terms of the population-genetic statistic
heterozygosity, mathematically equivalent to the Gini-Simpson
diversity in ecology. For a sample i with k = 1, 2, . . . , K taxa
with abundances qi,k, the Gini-Simpson diversity of the sample
is the probability that two random draws from the sample do not
belong to the same taxon (25):

Δ(qi,1, qi,2, . . . , qi,K ) = 1−
K∑

k=1

(qi,k)2
. [1]

Δ(qi,1, qi,2, . . . , qi,K ) = 0 if and only if some taxon has
abundance 1 and all others have abundance 0 (i.e., qi,k′ = 1
for some k′, and qi,k = 0 for all k 6= k′). Δ(qi,1, qi,2, . . . , qi,K ) =
1 − 1

K , its maximum given K , if and only if all taxa are equally
abundant (i.e., qi,k = 1

K for all k = 1, 2, . . . , K ).
FST proceeds by computing this diversity index on the set of

all i = 1, 2, . . . , I microbiome samples (i.e., rows of the OTU
table, Q) in two ways. The mean sample Gini-Simpson diversity,
ΔS , is computed by averaging the Gini-Simpson diversities of the
samples:

ΔS(Q) =
1
I

I∑
i=1

Δ(qi,1, qi,2, . . . , qi,K ) = 1−
1
I

I∑
i=1

K∑
k=1

(qi,k)2
.

[2]
The total Gini-Simpson diversity, ΔT , is the Gini-Simpson

index if the samples were pooled. It is computed by first
calculating the centroid of the samples (the vector of mean taxon
abundances over all I samples) and then computing the Gini-
Simpson diversity of the centroid:

ΔT (Q) = Δ(q1, q2, . . . , qK ) = 1−
K∑

k=1

(
1
I

I∑
i=1

qi,k

)2

, [3]

where qk = 1
I
∑I

i=1 qi,k. In short, we compute ΔS by first
computing the Gini-Simpson index for all samples and then
averaging, and we compute ΔT by first averaging all samples and
then computing the Gini-Simpson index.

The population-genetic statistic FST is the normalized differ-
ence between these two quantities:

FST (Q) =
ΔT (Q)− ΔS(Q)

ΔT (Q)
. [4]

Assuming ΔT (Q) > 0, FST equals 0 if and only if ΔT (Q) =
ΔS(Q), which occurs if and only if all I samples are identical
(Fig. 1 B, Left-hand side). FST equals 1 if and only if ΔS(Q) = 0
andΔT (Q) > 0, which occurs if and only if each sample has only
a single taxon, and there are at least two distinct taxa present across
all samples (Fig. 1 B, Right-hand side). In the language of OTU
tables, FST equals 0 if and only if all rows of the OTU table are

identical, and it equals 1 if and only if each row contains a single
one and K − 1 zeroes (and at least two columns contain a one).
FST can be viewed as a measure of how well mixed the samples are
across a dimension of interest: If all samples are perfectly mixed,
then their compositions are identical and FST is 0.

Possible values of FST range between 0 and 1 for any sample
size. However, when the number of samples is small, FST can be
constrained by the mean frequency of the dominant taxon, espe-
cially if this frequency is close to 0 or 1 (35). Normalizing FST by
its theoretical upper bound conditional on the number of samples
and the mean frequency of the most abundant taxon (Fmax

ST ) can
account for this property, allowing for differences in variability to
be distinguished from differences in the abundance of the domi-
nant taxon. However, because the normalized statistic is divided
by a theoretical upper bound possibly less than 1, FST /Fmax

ST can
equal one without satisfying the conditions described in Fig. 1C.
The normalized statistic FST /Fmax

ST (33) is included as an option
in the FAVA R package. Further discussion of when to consider
normalizing FST by this upper bound is included in the FAVA R
package’s vignette on microbiome data analysis.

FST has favorable mathematical properties that make it
well-suited for comparisons of compositional variability among
datasets with different values of the number of taxa K . Under a
Dirichlet mathematical model for the probabilities of the relative
abundances in a sample, the expected value of FST is linearly
related to the Dirichlet variance and does not depend on the
number of samples (I ), the number of categories (K ), or the
category abundance parameters (33, equations A5 and A11).
SI Appendix, Fig. S1A further demonstrates in Dirichlet sim-
ulations that FAVA is comparable between datasets with very
different numbers of categories (3 and 99 taxa).

Having introduced FAVA and its mathematical properties,
we now apply the method to data. Here, we focus on two
example applications: using FAVA to quantify variability across
individuals in the ruminant gastrointestinal tract, and using
weighted FAVA to quantify temporal variability in the human
gut in response to antibiotic perturbation.

Gastrointestinal Microbiome Variability Across Ruminant
Species. Along the vertebrate gastrointestinal tract, factors such
as nutrient availability, pH, and oxygen level vary substan-
tially, shaping the types, abundances, and functions of resident
microbes (18, 36, 37). Quantifying the across-host variability
of microbiomes along the gastrointestinal tract can elucidate
spatially structured, in vivo community assembly.

We here use FAVA to quantify the variability of ruminant
gastrointestinal microbiomes across individuals from seven
host species. We analyze data from Xie et al. (38), who used
shotgun metagenomics to profile samples collected along the
gastrointestinal tracts of 37 individuals across seven species
of ruminants (Fig. 2). For each individual, Xie et al. (38)
collected samples from ten gastrointestinal regions: the rumen,
reticulum, omasum, and abomasum of the stomach (Fig. 2, blue
x-axis labels); the duodenum, jejunum, and ileum of the small
intestine (Fig. 2, yellow x-axis labels); and the cecum, colon, and
rectum of the large intestine (Fig. 2, red x-axis labels). Xie et
al. (38) used their metagenomic sequences to infer abundances
of both taxonomic categories, namely microbial genera (Fig.
2A), and functional categories, such as carbohydrate-active
enzymes (Fig. 2C ). We computed FAVA on these data in order
to understand which gastrointestinal regions have the most and
least variable genus-level compositions across individuals within
each host species (Fig. 2B) and to compare the across-individual
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A

B

C

D

Fig. 2. FAVA quantifies taxonomic and functional variability across host individuals and species along the ruminant gastrointestinal tract. (A) Relative
abundances of genera across gastrointestinal regions for seven host species: dairy cattle (n = 6), yak (n = 5), water buffalo (n = 5), goat (n = 6), sheep
(n = 5), roe deer (n = 5), and water deer (n = 5). Vertical black lines delimit the 10 gastrointestinal regions: rumen, reticulum, omasum, and abomasum for the
stomach (blue); duodenum, jejunum, and ileum for the small intestine (yellow); and cecum, colon, and rectum for the large intestine (red). The ordering of these
regions matches the ordering of the regions along the digestive tract. Each colored vertical bar represents the genus-level composition of a microbiome sample
from one gastrointestinal region within one host individual. The horizontal ordering of individuals is consistent across regions. Of the 4,134 genera across all
samples, the 15 with mean across-sample abundance greater than 1% are colored; all other genera are dark gray. Light gray horizontal lines delineate breaks
between different genera. Genera are plotted in order of decreasing genus abundance across all samples and host species, from Bottom (most abundant) to
Top (least abundant). (B) Across-individual variability of genus abundances within each gastrointestinal region for each host species. Each dot corresponds to
the value of FAVA computed across all samples within a gastrointestinal region for one species. Species are grouped into panels by subfamily. (C) Carbohydrate-
active enzyme (CAZyme) relative abundances across gastrointestinal regions for each host species. We color the 23 of 350 CAZymes that are present at more
than 1% abundance across all samples. (D) Taxonomic (genus) versus functional (CAZyme) variability across the 37 individuals from 7 host species for each
gastrointestinal region. For each gastrointestinal region, we compute FAVA using relative abundances of either genera (navy, panel A) or CAZYme categories
(green, panel C). We compute variability across samples from the 37 host individuals, irrespective of host species. Each dot corresponds to the value of FAVA
for a gastrointestinal region across the 37 host individuals. The Inset panel magnifies the plot for CAZymes.

variability of microbial genera to the across-individual variability
of functional gene categories throughout the gastrointestinal
tract, across all seven host species (Fig. 2D).
Variability in genus abundances. The genus-level compositions of
the microbiome samples are shown in Fig. 2A. Across host species,
all regions of the stomach (blue x-axis labels) are dominated by
bacteria in the genus Prevotella. The samples from the small
intestine (yellow x-axis labels), on the other hand, are much
less homogeneous, with dramatic inconsistency across individuals
even within a single region and host species. Samples from the
large intestine (red x-axis labels) possess a few genera, such as
Bacteroides (olive),Clostridium (navy), andRuminococcus (peach),
at similar frequencies across host species and regions.

We first used FAVA to quantify for each region the variability
of microbial genus abundances across samples from the same
host species (Fig. 2B). In order to do this calculation, we first

partitioned the 370 samples of microbial genus abundances
(37 individuals × 10 regions) into 70 matrices, each corre-
sponding to one of the seven host species and one of the ten
gastrointestinal regions. In each matrix, rows represent micro-
biome samples (vertical bars in Fig. 2A) and columns represent
microbial genera. We then computed FAVA across the rows of
each matrix, quantifying in a single number the variability across
all 5 or 6 samples in the same host species and gastrointestinal
region.

We find that FAVA is significantly higher in regions of the
small intestine than in regions of the other two organs: Wilcoxon
rank-sum tests comparing the 21 small-intestine FAVA values (3
small-intestine regions× 7 host species) to the 28 stomach FAVA
values (4 stomach regions × 7 host species) or to the 21 large-
intestine FAVA values (3 large-intestine regions× 7 host species)
have one-sided P = 0.002 and P < 10−5, respectively. FAVA
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is also lower in large-intestine regions than in stomach regions
(Wilcoxon rank-sum test, one-sided P = 0.001). These results
accord with a view that monitoring microbiome composition via
stool sampling alone may obscure substantial among-individual
variability present upstream in the digestive tract (18, 36).

Next, we measured the compositional variability of genus
abundances for each gastrointestinal region across all host species
(Fig. 2A, vertical slices delimited by black lines). We partitioned
the same 370 samples of microbial genus abundances into 10
matrices, one per gastrointestinal region. Again, matrix rows
represent microbiome samples and columns represent microbial
genera. We then used FAVA to quantify, for each region, the
variability of genus abundances across the 37 individuals from
the seven host species (Fig. 2D, navy). We compared FAVA
values between pairs of matrices by bootstrapping. For each pair,
we generated 1,000 pairs of bootstrap replicate matrices under the
null hypothesis that there is no difference in variability between
them; in particular, we generated each bootstrap-resampled
matrix by drawing rows from both matrices with replacement. We
next computed the difference in FAVA values between resampled
pairs of matrices in order to generate a null distribution of the
difference in FAVA values between the matrices. Comparing
the observed difference in FAVA values between the original
two matrices to this distribution yields a P-value for the null
hypothesis that the observed difference in FAVA values is 0;
further details appear in Materials and Methods.

We find that FAVA values are highest at the distal end of
the stomach and proximal end of the small intestine (pairwise
bootstrap comparisons between duodenum and all regions except
for abomasum and jejunum, one-sided P < 0.04 for all 7
pairs). FAVA values are lowest in the large intestine (21 pairwise
bootstrap comparisons between each of the three large-intestine
regions and the seven other regions: one-sided P < 0.001 for
9 comparisons to small-intestine regions; one-sided P < 0.01
for 3 comparisons to the abomasum; one-sided P < 0.06 for
6 comparisons to the reticulum or omasum; and one-sided
P < 0.04 for 3 comparisons to the rumen). Variability changes
continuously along the gastrointestinal tract, in the sense that the
FAVA value for each region is generally between or near those of
its preceding and subsequent regions.
Variability in microbiome function. The functional profile of a
microbial community, measured in terms of the types of genes
present, provides information not captured by the community’s
taxonomic composition (39). Abundances of gene functional
categories are generated by mapping shotgun metagenomic reads
to a database of gene sequences grouped by function. We focus
here on 350 carbohydrate-active enzymes (CAZymes), which
determine the ability of a microbial community to break down
complex carbohydrates (40) (Fig. 2C ). In general, we expect to
see lower variability in functional categories such as CAZymes
than in taxonomic categories such as genera because of the
phenomenon of functional redundancy: multiple microbial taxa
carry out similar metabolic processes, allowing the taxonomic
composition of a community to vary without influencing its
function (1, 12, 16, 39, 41, 42). Because FAVA can be computed
irrespective of the number of categories, we can use it to compare
the variabilities of very different types of data, such as taxonomic
and functional abundances.

To quantify functional redundancy in each region of the
gastrointestinal tract, we compared the variability of genus
abundances across the 37 host individuals to the variability
of CAZyme abundances across the same 37 host individuals.
We expect functional redundancy to keep CAZyme variability
lower than genus variability, with a larger difference between

the taxonomic and functional variability indicating stronger
functional redundancy. We quantified genus-level taxonomic
variability in each of 10 gastrointestinal regions by computing
FAVA across vectors of genus abundances sampled from the 37
host individuals, irrespective of host species. This computation
resulted in 10 values of FAVA, one per gastrointestinal region
(Fig. 2D, navy). We repeated this computation with CAZyme
abundances in place of genus abundances in order to quantify
CAZyme variability across host species in each gastrointestinal
region (Fig. 2D, green). We used bootstrapping across abundance
vectors to compare variability values between pairs of regions (see
Materials and Methods for details).

We see in Fig. 2D that values of FAVA for functional data
(CAZyme, green) are about one-tenth those of taxonomic data
(genus, navy), confirming that functional redundancy in the
ruminant microbiome leads to much lower functional than
taxonomic variability across host species. We established above
that the compositional variability of genus abundances across all
host individuals was lowest in the large intestine; by contrast, in
Fig. 2 D, Inset, the variability of CAZyme abundances is as low
in the stomach (blue labels) as in the large intestine (red labels)
(pairwise bootstrap comparisons between regions in the stomach
and regions in the large intestine, one-sided P > 0.1 for each
of 12 pairs). This comparison might suggest that there is more
functional redundancy in the stomach than in the large intestine,
in the sense that similar levels of CAZyme variability are obtained
from a much greater taxonomic variability in the stomach.

In summary, through our analyses of ruminant microbiomes,
FAVA allows us to capture the variability of high-dimensional
data in a single number that can be easily compared across regions,
species, or data types. The analysis finds that within each host
species, both taxonomic and CAZyme community composition
are most variable across host individuals in the small intestine.

DefiningWeighted FAVA. Our initial definition of FAVA (Eq. 4)
does not account for 1) differential weighting of rows (e.g.,
weighting based on time or distance between samples) or
2) similarities between columns (e.g., phylogenetic similarity
between taxa). We now introduce a weighted version that allows
for both uneven weighting of samples and for incorporation
of information about the relatedness of taxonomic categories
(Fig. 3).

First, sample weights are desirable when there is an uneven
spatial or temporal distribution of samples, for example, if the
experimental design includes some weekly samples and some
daily samples. In this case, incorporating sample weights allows
for greater emphasis on weekly samples, which inform the
composition during a seven-day window, than on daily samples
(e.g., Fig. 3C ). Second, incorporating similarity among columns
is valuable when the data include some taxa that are closely related
and others that are more distant. This weighting helps make the
measure more biologically informed, leading to higher weighted
FAVA when the taxa that vary in abundance between samples
are more distantly related.

We address row weights by incorporating into FAVA a
weighting vector w = (w1, w2, . . . , wI ) that allows for varying
emphasis of different samples (Fig. 3 A–C ). Each entry wi
determines the weight placed on sample i in the computation of
weighted FAVA, and allwi sum to 1. The default weighting vector
assigns identical weight to each sample (Fig. 3 B, Top example).
Uneven weights change the emphasis on the different rows; those
with larger values contribute more to the diversity calculation
(Fig. 3 B, Middle and Bottom example). When analyzing time
series data, with each sample i corresponding to a time ti between
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Fig. 3. The FAVA framework can account for both uneven sample weights and information about the relatedness of taxa. (A) FAVA can be weighted by
incorporating a normalized weighting vector (w). (B) Changing the weighting vector, w, changes the emphasis placed on each sample by FAVA. The bar plots on
the Right-hand side represent how FAVA sees the original data under each weighting vector. (C) An OTU table with a column representing the collection time
of each sample (Top) can be visualized as a stacked bar plot, with each bar corresponding to one sample (Middle). We can account for uneven sampling times
by incorporating a weight vector w (Bottom) computed using Eqs. 5 and 6. The Bottom bar plot represents how FAVA sees these data when this weight vector is
used. (D) FAVA can also incorporate a similarity matrix (S) that represents the relatedness of each pair of taxa. Values can range between 0 and 1, equaling 0
if two taxa are unrelated and 1 if they are identical. (E) The coloring of the bar plots on the Right-hand side represents how FAVA sees the samples when they
are weighted by each similarity matrix. Taxa 2 and 3 are treated as identical in the Middle example. In the Bottom example, taxa 1 and 2, and taxa 3 and 4 are
considered identical. Although we use only zeroes and ones in this schematic, fractional values can be used to represent intermediate levels of similarity.

the start, t1, and the end, tI , a natural choice is to weight each
sample i by half the distance between the previous sampling
time (ti−1) and the subsequent sampling time (ti+1) (Eq. 5),
normalized by the study duration (T = tI − t1) so that the
weights sum to 1 (Eq. 6). We provide an example of such weights
derived from time series data in Fig. 3C.

We address similarities among columns by incorporating a
similarity matrix, S (Fig. 3D). For each pair of taxa, this matrix
contains a similarity scaled from 0 to 1. Entry sk,` of the similarity
matrix S represents the similarity of taxa k and `: sk,` = 0 if taxa
k and ` are totally dissimilar, sk,` = 1 if taxa k and ` are identical,
and intermediate values represent partial similarity. The diagonal
elements of S all equal 1, because each taxon is identical to itself.
The default similarity matrix is the identity matrix, which has
zeroes for all off-diagonal elements (Fig. 3 E, Top example).
When ones are placed in off-diagonal elements of the matrix, the
corresponding pair of taxa are treated as identical. For example,
in the Middle example of Fig. 3E, taxa 2 and 3 are considered
identical, as reflected in the coloring of taxa in the vertical bars to
the Right. The similarity can be chosen to represent any relevant
similarity concept, such as phylogenetic, genetic, or functional
similarity.

We explain in Materials and Methods how we incorporate
both wi and S into equations for ΔS and ΔT (Eqs. 9 and 10),
resulting in an expression for weighted FAVA that considers both
uneven row weights and nontrivial column similarities (Eq. 11).
Weighted FAVA (Eq. 11) reduces to unweighted FAVA (Eq. 4)
when wi = 1

I and S = IK , a matrix with all K diagonal elements
equal to 1 and all off-diagonal elements equal to 0 (Top examples
of Fig. 3 B and E, respectively).

Temporal Variability and Antibiotic Perturbation in theHuman
Gut Microbiome. To demonstrate weighted FAVA as a measure
of temporal microbiome variability, we apply it to data from a
longitudinal study of gut microbiome composition after antibi-
otic perturbation (43). Among 48 subjects, we focused on 22 who

took a course of the antibiotic ciprofloxacin midway through the
study. For these subjects, stool samples were collected at 26 time
points—weekly samples for nine weeks, as well as daily samples
for the three weeks surrounding the antibiotic course (Fig. 4A).
Xue et al. (43) inferred the relative abundances of bacterial species
over time by shotgun metagenomic sequencing of each sample
(Fig. 4B, for three of the 22 subjects). We use weighted FAVA
to quantify both the impact of the antibiotic perturbation on
temporal microbiome variability and the duration of this impact.
To account for both the nonuniform sampling timeline and the
broad taxonomic diversity of the sampled species, we weight
FAVA by both the time intervals between stool samples and the
phylogenetic similarity among species. We derive the phyloge-
netic similarity matrix from an established phylogenetic tree of
bacterial species (44), as discussed in Materials and Methods.

We first explored how the temporal variability of the gut
microbiome changes after an antibiotic perturbation. We find
that weighted FAVA is significantly higher after the perturbation
than before (Wilcoxon signed-rank test comparing postantibiotic
to preantibiotic weighted FAVA values across 22 subjects, one-
sided P < 10−4), suggesting that microbiome composition is
more temporally variable after antibiotic perturbation (Fig. 4E).
This result is robust to variability across subjects in the numbers
of samples collected in the pre- and postantibiotic periods
(SI Appendix, Fig. S3).

We explored temporal variability at smaller timescales by
computing weighted FAVA in sliding windows across the study
period. This increased granularity allowed us to quantify changes
in temporal variability over the course of the study. Fig. 4D
shows weighted FAVA in sliding windows six samples wide,
with a median of 20 (overlapping) windows per subject. The
sliding window analysis allows us to characterize the timeline of
the antibiotic perturbation. We find that, for most subjects, the
antibiotic perturbation results in a lasting increase in microbiome
variability: Across the 30 d following completion of the antibiotic,
only 8 of the 22 subjects returned to their initial variability level
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Fig. 4. Weighted FAVA quantifies changes in the temporal variability of human gut microbiomes following an antibiotic perturbation. (A) Sampling timeline.
Points correspond to sampling days. Samples are collected weekly for nine weeks, with daily sampling for three weeks beginning one week before antibiotics.
Gold points denote days 0 to 4, during which the subjects took the antibiotic ciprofloxacin. (B) Selected relative abundance plots. Each three-letter code refers
to one of 22 subjects. Abundances between sampling times are interpolated by drawing straight lines between abundances for adjacent time points. Colors
denote bacterial families and black lines delineate bacterial species. All 22 subjects and the color legend for bacterial families are shown in SI Appendix, Fig.
S2. (C) Sliding windows of weighted FAVA for selected subjects. For each subject, we generate sliding windows six samples wide (horizontal bars). The vertical
position of each bar is determined by the value of weighted FAVA computed across the six samples in that window. The horizontal breadth of each bar
encompasses the time during which the six samples were collected. The vertical gray bar denotes the time during which the subjects were taking antibiotics.
The red curve is a smoothing spline fit to all data points with 12 degrees of freedom. Low values of weighted FAVA suggest community composition is stable in
a window, whereas high values of weighted FAVA imply temporal variability. (D) Sliding windows of weighted FAVA for all subjects. We compute weighted FAVA
in six-sample sliding windows for each of the 22 subjects. The red curve is a smoothing spline fit to all data points with 12 degrees of freedom. (E) Weighted
FAVA increases after antibiotic perturbation. We compute weighted FAVA for each subject either before (days −28 to −1) or after antibiotic perturbation (days
5 to 35), excluding the period during which subjects were taking antibiotics. FAVA is weighted based on both phylogenetic similarity among bacterial species
and time between samples. Lines connect values of weighted FAVA for the same subject before and after antibiotic perturbation. Lines are colored according
to the difference in weighted FAVA (after minus before). Across all subjects, weighted FAVA increases significantly after antibiotic perturbation (Wilcoxon signed
rank test, one-sided P < 10−4).

(Fig. 4D). However, high levels of variability tend to last for
only one or two weeks postantibiotic: While all subjects began
with sub-0.05 values of weighted FAVA and 18 of the 22 subjects
exceeded 0.05 during the antibiotic period, 11 of these 18 subjects
returned to weighted FAVA levels below 0.05 beginning one week
postantibiotic, and 16 of these 18 had sub-0.05 weighted FAVA
levels by their final sliding window.

Finally, our sliding window approach allows us to characterize
temporal dynamics based on local temporal variability alone.
For example, consider subjects XDA, XJA, and XMA, whose
variability dynamics are highlighted in Fig. 4C. The microbiome
of subject XJA does not stabilize postantibiotic, remaining highly
variable through the end of the study period. Subjects XDA and
XMA, on the other hand, both return to low variability levels
within seven days of the conclusion of antibiotics. However,
Fig. 4B reveals that these subjects represent two different
responses to the antibiotic perturbation. Whereas XMA returns to
the original compositional state after the antibiotic perturbation,
XDA settles at a compositional state very different from the
initial microbial community. This example highlights that, by
computing (weighted) FAVA on small windows, we can identify
periods of temporal stability in microbiome composition, even
when the microbiome has stabilized at a compositional state
different from its initial state.

R Package. We have implemented the FAVA framework in
an R package, titled FAVA, which is available for download
from CRAN, the standard public repository of R packages.

Details on the installation and usage of FAVA are available
on the package website, MaikeMorrison.github.io/FAVA. The
package contains a function that can compute FAVA, weighted
FAVA, and FAVA normalized by the upper bound given the
abundance of the most abundant taxon. It also has functions
to compute these three versions of FAVA in sliding windows
and to visualize sliding window results in plots such as those in
Fig. 4 C and D. The FAVA package can also visualize relative
abundance data in stacked bar plots, and it can statistically
compare groups of samples with bootstrapping. The FAVA
R package is accompanied by a tutorial for its application
to microbiome data. The tutorial is available at MaikeMorri-
son.github.io/FAVA/articles/microbiome_tutorial.html.

Discussion

We have introduced an index to quantify variability across
samples of microbiome composition. We defined the measure
through an analogy with the population-genetic statistic FST ,
considering microbiome samples in place of populations and
microbial taxa in place of alleles. FAVA equals 0 if and only if
all microbiome samples are identical, and 1 if and only if each
sample contains only a single taxon and more than one taxon
is present across all samples (Fig. 1). FAVA can be used as a
measure of compositional variability across time points, spatial
sampling locations, host individuals, or replicates, quantifying
the temporal variability, spatial heterogeneity, or replicability of
microbial communities. Because FAVA takes values between 0
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and 1 irrespective of the number of sampled taxa, we can compare
FAVA values between very different datasets, such as data on
abundances of different taxonomic categories.

To demonstrate the FAVA framework’s performance as a
measure of microbiome variability across many samples, we
analyzed two microbiome datasets: an investigation of ruminant
microbiome composition along the gastrointestinal tract (38),
and a longitudinal study of human gut microbiome compo-
sition before and after an antibiotic perturbation (43). In the
ruminant data, we found that compositional variability across
individuals—either within a host species or across host species—
was consistently lower at the end of the gastrointestinal tract than
in the middle, supporting the view that substantial interindividual
heterogeneity is missed when microbiomes are monitored by fecal
sampling alone (Fig. 2 B and D) (18, 36). We found that, in all
gastrointestinal regions, taxonomic abundances were much more
variable across individuals than were functional abundances,
a result that corroborates observations of microbial functional
redundancy in the gastrointestinal tract (Fig. 2D) (39).

In the human microbiome data, we found that antibiotic
perturbations destabilize microbial communities, resulting in
elevated temporal variability following an antibiotic (Fig. 4E).
Computing weighted FAVA in sliding windows across temporal
samples for each subject increased the granularity of this analysis.
Although elevated variability lasted for only one to two weeks
postantibiotic on average, few subjects returned to preantibiotic
variability levels during the study duration (Fig. 4 C and
D). We also highlighted the FAVA framework’s ability to
quantify temporal variability separate from compositional state
by focusing on subjects XDA and XMA, who returned to their
preantibiotic variability levels (Fig. 4C ) even though only XMA
returned to the original composition (SI Appendix, Fig. S4).

We introduced two extensions of FAVA: weighted FAVA
(Eq. 11), which can incorporate both similarity among taxa and
distance between samples into the computation, and normalized
FAVA, which accounts for the abundance of the most abundant
taxon, allowing for more meaningful measurement of variability
across small numbers of samples. In our analysis of human gut
microbiome data over time (43), the use of weighted FAVA
helped to account for both the combination of weekly and daily
samples and the broad range of species appearing in the data.

FAVA values can be influenced by the choice of weights.
For example, SI Appendix, Fig. S5 presents two hypothetical
OTU tables with a large difference in FAVA when weighted by
taxonomic similarity, despite having identical unweighted FAVA
values. Nevertheless, in our analysis of human microbiome data,
although individual FAVA values shift with the incorporation
of weights, FAVA values computed across postantibiotic samples
are consistently higher than those computed across preantibiotic
samples, irrespective of weighting by sampling times, taxonomic
similarity, or both (SI Appendix, Fig. S6).

Analyzing a higher taxonomic level can be viewed as a special
case of weighting by taxonomic similarity. For example, to analyze
family abundances in place of species abundances, we would
define each entry sk,` of the species similarity matrix to equal 1 if
species k and ` belong to the same family, and 0 otherwise.
The taxonomic similarity matrix considered in SI Appendix,
Fig. S5, for example, is equivalent to supposing that taxa I
and K are each in separate families, whereas taxa J and L are
in the same family. The result of this figure can consequently
be interpreted to mean that matrix 1 has higher FAVA when
computed using species (unweighted) rather than family abun-
dances (weighted), while matrix 2 has lower FAVA when com-

puted using species (unweighted) rather than family abundances
(weighted).

We observe a similar composition-dependent relationship
between taxonomic level and FAVA results in the data from
Xue et al. (43) (SI Appendix, Fig. S7A). We computed FAVA
across all samples from each antibiotic-taking subject from Xue
et al. (43) using relative abundances of either bacterial families
or species. Considering all subjects together, we do not observe
a significant difference in FAVA values between the two levels of
analysis (Wilcoxon signed rank test, P = 0.17). However, many
individuals exhibit sizeable changes in FAVA values depending
on the taxonomic level analyzed. SI Appendix, Fig. S7B highlights
the compositions of the three subjects with the largest difference
(XAA), smallest difference (XDA), and nearest difference to
zero (XGA), comparing FAVA values computed using species
and family abundances. Subject XAA’s higher species-level than
family-level FAVA value is driven by large shifts in species
composition within a single family whose abundance remains
relatively constant, similar to matrix 1 in SI Appendix, Fig.
S5. Subject XDA’s higher family-level than species-level FAVA
value is a result of a large shift in abundances of families
containing many component species, each with only small shifts
in abundance—similar to matrix 2 in SI Appendix, Fig. S5.
Finally, the species and family abundances in subject XGA follow
very similar trajectories, producing similar species and family-
level FAVA values.

We emphasize that comparisons of FAVA values between
datasets with different numbers of categories, such as between
species and family abundances (SI Appendix, Fig. S7), or bet-
ween taxonomic and functional abundances (Fig. 2D), are
enabled by the mathematical design of the FAVA measure. Under
a Dirichlet model describing abundances in a set of categories,
FAVA depends on the Dirichlet variance but does not otherwise
depend on the abundances themselves; simulation of OTU tables
in two scenarios, with 3 and 99 taxa, illustrates an identical, linear
relationship with Dirichlet variances used for the simulations,
irrespective of the number of taxa (SI Appendix, Fig. S1A). As
an alternative to FAVA, the variability among a set of samples
can also be measured with the mean of a pairwise statistic across
all pairs of samples; in the same simulations of SI Appendix,
Fig. S1A, computing one such statistic, the mean Bray–Curtis
dissimilarity across pairs of samples, we observe in SI Appendix,
Fig. S1B a strong dependence of the statistic on the number of
taxa in the OTU table, so that it cannot be straightforwardly used
to compare variability between tables with different numbers of
categories.

We note that in the human microbiome analysis, we might
have expected FAVA values to depend on data quality, as
measured by the number of sequence reads used to estimate
the relative abundances of bacterial taxa in microbiome samples.
Variation in sequencing depth across samples could lead to
varying accuracy in the estimation of abundances of bacterial
taxa across samples, potentially shaping results of the FAVA
framework. However, when subsampling reads from each mi-
crobiome sample and recomputing FAVA on the subsampled
datasets, we find that FAVA values are largely unchanged, so
that the sequencing depth is likely sufficient for their accurate
estimation (SI Appendix, Fig. S8).

Our framework, which we have implemented in an R package,
contributes to a large body of methods for the analysis of
microbiome relative abundance data (30, 31). We emphasize,
however, that the FAVA framework is a multisample com-
positional variability measure, setting it apart from the many

8 of 11 https://doi.org/10.1073/pnas.2413211122 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 S
T

A
N

FO
R

D
 U

N
IV

E
R

SI
T

Y
 o

n 
M

ar
ch

 1
0,

 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
17

1.
66

.1
61

.2
00

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2413211122#supplementary-materials


existing measures of pairwise compositional similarity, such as
Unifrac, Bray–Curtis dissimilarity, and the Jensen–Shannon
divergence (Fig. 1A) (26, 27, 45). For example, two separate
collections of microbiome samples can have identical values of
FAVA, but wildly different mean compositions (e.g., Fig. 4
B and C ). Similar results in the FAVA framework therefore
reflect similarities in the spatial or temporal dynamics shaping
variability, not compositional similarity. The FAVA framework
complements diversity statistics such as the Gini-Simpson index,
which summarize the diversity of taxa present in each sample
rather than the variability of taxa across samples. For example,
in the ruminant analysis, the Gini-Simpson diversity generally
increases from the beginning to the end of the gastrointestinal
tract, whereas FAVA peaks in the small intestine (SI Appendix,
Fig. S9). The FAVA framework builds on a rich literature of
frameworks for hierarchical partitioning of genetic, taxonomic,
and phylogenetic diversity across individuals and communities
(46–50); indeed, FST has sometimes been used as a measure of
compositional variability in ecological contexts (51).

Future applications of the FAVA framework can span the range
of questions that researchers pose about compositional variability,
from understanding temporal variability in infant microbiomes
(52, 53) to quantifying the repeatability of community assembly
across experimental replicates to identifying the timing of
compositional stability in serial passaging experiments (9, 12).
Because the FAVA framework measures a fundamentally dif-
ferent phenomenon relative to existing methods for microbiome
analysis, it can facilitate studies of previously challenging research
questions relating to temporal stability, individual heterogeneity,
spatial variability, and replicability.

Materials and Methods
Notation. Q denotes an OTU table with I rows, each representing a microbiome
sample, and K columns, each representing a microbial species, OTU, genus,
functional unit, or other such category. Entry qi,k represents the relative
abundance of taxon k in sample i. Each row must sum to 1. We use “sample i”
to refer to row i of Q (qi,∗).

Bootstrapping Protocol. We use bootstrapping (54) to determine whether two
values of unweighted, weighted, or normalized FAVA are significantly different.
Consider two OTU tables, A with n rows and B with m rows. The observed
difference in (unweighted, weighted, or normalized) FAVA values between these
two matrices is Dobs = FST (A,w, S)− FST (B,w, S). Our null hypothesis is that
there is no difference in (unweighted, weighted, or normalized) FAVA values
between the communities sampled to form tables A and B.

To test this hypothesis, we first merge the two OTU tables into a single matrix,
Qnull, which hasn+m samples corresponding to the samples inAandB. We then
randomly draw n or m rows with replacement from Qnull to generate bootstrap
replicates for A and B, Aboot and Bboot respectively. Finally, we compute the
difference in (unweighted, weighted, or normalized) FAVA values between these
bootstrap replicate matrices, Dboot = FST (Aboot,w, S) − FST (Bboot,w, S).
Repeating this procedure many times (e.g., 1,000 times) to generate many
values of Dboot results in a bootstrap distribution of differences in (unweighted,
weighted, or normalized) FAVA values between A and B.

We test our null hypothesis that there is no difference in (unweighted,
weighted, or normalized) FAVA values between A and B by comparing the
observed difference,Dobs, to the bootstrap distribution of differences. We obtain
a one-sided P-value by computing the proportion of bootstrapped differences
Dboot that are either greater than or less than the observed difference Dobs. We
obtain a two-sided P-value by comparing |Dboot| to |Dobs|. A worked example
of this computation is available in the FAVA R package vignette.

Incorporating uneven sample weights. For each sample i = 1, 2, . . . , I,
we choose a weight wi ≥ 0 such that

∑I
i=1 wi = 1. To evenly weight all

samples, choose wi =
1
I for all i. Uneven weights wi can be chosen to account

for properties such as sample size or the spatial or temporal distance between
samples. If samples come from a time series, with ti representing the sampling
time of sample i, we recommend definingwi =

di
T (Eq. 6), where T = tI− t1 is

the study duration and di is half the time from the sample before i to the sample
after i (Eq. 5):

di =


ti+1−ti−1

2 , if 2 ≤ i ≤ I− 1
t2−t1

2 , if i = 1
tI−tI−1

2 , if i = I.

[5]

Because
∑I

i=1 di = T ,

wi =
di
T

[6]

is a weight that sums to 1 over all i and represents the proportion of the study
duration accounted for by sample i. Note that in the case of evenly spaced time
samples, under the weighting wi =

di
T , the first and last sample are given half

as much weight as the intermediate samples. This means that the uniform case
is similar to but not exactly equal to the original, unweighted definition of FST ,
which has wi =

1
I .

A standard definition for FST is FST = (ΔT − ΔS)/ΔT (Eq. 4), where ΔS
is the mean sample Gini-Simpson diversity and ΔT is the total Gini-Simpson
diversity (Eqs. 2 and 3):

ΔS(Q) = 1−
I∑

i=1

1
I

K∑
k=1

(
qi,k
)2

ΔT (Q) = 1−
K∑

k=1

 I∑
i=1

1
I
qi,k

2

.

We incorporate time information by replacing the uniform weights 1
I with

not necessarily uniform weights w = (w1, w2, . . . , wI):

ΔS(Q,w) = 1−
I∑

i=1

wi
K∑

k=1

(
qi,k
)2

ΔT (Q,w) = 1−
K∑

k=1

 I∑
i=1

wiqi,k

2

.

FST (Q,w) = (ΔT (Q,w)−ΔS(Q,w))/ΔT (Q,w) is thus a definition ofFST that
allows for uneven weighting of samples. Note that this weighting can account
for differences in spacing between samples, but not for differences in relative
ordering of samples.
Incorporating taxonomic similarity. In addition to incorporating uneven
sample weights, we may wish to account for the similarity between taxa. We
capture information about the similarity among allK taxa through the symmetric,
K × K similarity matrix S. The entry in row k and column ` of S, sk,`, represents
the similarity between taxon k and taxon `. Diagonal elements satisfy sk,k = 1
because each taxon is identical to itself, and we define the similarity between
identical taxa to be 1. Off-diagonal elements take values in [0, 1], equaling 0
if two taxa are minimally similar, and 1 if they are identical. If S is the identity
matrix (i.e., sk,` = 0 for all k 6= `), then all distinct taxa are treated as minimally
similar and our weighted version of FST must reduce to its original, unweighted
definition (Eq. 4).

In order to incorporate S into the definition of FST , we first introduce Leinster
and Cobbold’s (55) idea of “mean ordinariness” across taxa in a microbiome
sample. The “ordinariness” of taxon k in sample i is the mean similarity
between that taxon and every other taxon in the sample, weighted by the
taxon abundances. It is computed for each taxon by multiplying the similarity
matrix (S) by the vector for sample i (qi,∗). This computation produces a vector
whose kth entry, q̃i,k , represents the mean similarity between species k and a
random taxon from sample i:
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q̃i,k = (SqTi,∗)k =

K∑
`=1

sk,`qi,`

= qi,k +

K∑
`=1
` 6=k

sk,`qi,`

≥ qi,k.

In other words, q̃i,k measures the ordinariness of taxon k within sample i. On
one extreme,

q̃i,k =

K∑
`=1

1 · qi,` = 1

if taxon k is identical to all other taxa in sample i. In this case, taxon k is maximally
ordinary in relation to the other taxa in the sample. On the other extreme,

q̃i,k = 1 · qi,k +

K∑
`=1
` 6=k

0 · qi,` = qi,k

if taxon k has similarity 0 to all other taxa in sample i. In this case, taxon k
is minimally ordinary in relation to the other sampled taxa. The mean taxon
ordinariness across all taxa in sample i, weighted by their abundances, is

K∑
k=1

qi,k · q̃i,k. [7]

This quantity has been explored in previous work on ecological diversity
indices (55). It is large (i.e., approaching or equal to 1) if the sample is
concentrated in a few very similar taxa, whereas it is small (i.e., approaching 0) if
the sample is spread across many unrelated taxa. If S is the identity matrix, with
ones along the diagonal and zeroes for off-diagonal elements, then q̃i,k = qi,k
for all k and Eq.7 reduces to the mean taxon abundance across all taxa in sample
i,
∑K

k=1
(
qi,k
)2

.

We proceed by extending this idea of mean ordinariness into the framework
of FST . First, recall the original definition of the Gini-Simpson index (Eq.1), which
can be interpreted as one minus the mean taxon abundance across all taxa in a
sample:

Δ(qi,∗) = Δ(qi,1, qi,2, . . . , qi,K) = 1−
K∑

k=1

qi,k · qi,k.

We incorporate the similarity matrix S into the Gini-Simpson index by rep-
lacing the mean abundance across taxa,

∑K
k=1 q

2
i,k , with the mean ordinariness

across taxa,
∑K

k=1 qi,k · q̃i,k , giving the following definition:

Δ(qi,∗, S) = 1−
K∑

k=1

qi,k · q̃i,k

= 1−
K∑

k=1

qi,k · (Sq
T
i,∗)k.

[8]

Eq. 8 reduces to Eq. 1 if S is the identity matrix. In this case, each taxon is
considered extraordinary, with similarity 0 to all other taxa. However, if S has
nonzero off-diagonal elements, Eq. 8 is able to account for the similarity among
taxa in its computation of diversity.

Finally, we extend Eq. 8 to define versions of ΔS and ΔT :

ΔS(Q, S) = 1−
1
I

I∑
i=1

K∑
k=1

qi,k · (Sq
T
i,∗)k

ΔT (Q, S) = 1−
K∑

k=1

(
1
I

I∑
i=1

qi,k

)
·

(
1
I

I∑
i=1

(SqTi,∗)k

)
.

Using these extensions of ΔS and ΔT in a computation of FST yields
a compositional variability measure that accounts for taxonomic similarity:
FST (Q, S) = (ΔT (Q, S)− ΔS(Q, S))/ΔT (Q, S).
Simultaneously incorporatinguneven rowweightsand taxonomic similarity.
We simultaneously incorporate both S and w into equations for ΔS and ΔT in
order to develop a compositional variability statistic that accounts for both
weighting of samples and similarity among taxa (Eqs. 9–11):

ΔS(Q,w, S) = 1−
I∑

i=1

wi
K∑

k=1

qi,k · (Sq
T
i,∗)k [9]

ΔT (Q,w, S) = 1−
K∑

k=1

( I∑
i=1

wiqi,k

)
·

( I∑
i=1

wi(Sqi,·)k

)
[10]

FST (Q,w, S) =
ΔT (Q,w, S)− ΔS(Q,w, S)

ΔT (Q,w, S)
. [11]

If wi = 1/I for all i, and S is the identity matrix, this weighted definition of FST
(Eq. 11) reduces to the unweighted version of FST (Eq. 4).

Computing the Phylogenetic Similarity Matrix. In our analysis of human
microbiome data (Fig. 4), we chose to weight FAVA by the phylogenetic
similarity among the sampled bacterial species. We computed the phylogenetic
similarity matrix through a two-step process. First, we computed the patristic
distance between each pair of sampled bacterial species based on a microbial
phylogeny from Nayfach et al. (44). We performed this computation with the
“cophenetic.phylo” function in the ape R package (56). Second, we transformed
the pairwise patristic distances, which range from 0 for identical species to
∼3.7 for very distantly related species, to similarities, which range from 0 for
very distantly related species to 1 for identical species. We chose to convert the
patristic distance between species k and ` (dk,`) to a similarity (sk,`) using the
exponential transformation sk,` = exp (−dk,`).

Different transformations of distances to similarities result in different
distributions of similarity values. In our case, the similarity matrix computed
with the exponential transformation had a median value of 0.087, with first and
third quartiles [0.067, 0.119]. Other transformations are defensible as well. The
linear difference transformation (sk,` = 1−dk,`/ max dk,`), for example, yields
a mean value of 0.716, with first and third quartiles [0.685, 0.752]. We note
that the main results of Fig. 4 do not depend on the choice of transformation. In
particular, irrespectiveof thetransformationused,weightedFAVAvaluesincrease
during the antibiotic perturbation and are significantly higher postantibiotic than
preantibiotic (SI Appendix, Fig. S10).

Datasets.
Ruminant data. In our first data example, we analyzed genus and CAZyme
abundances inferred from metagenomic sequencing of samples collected
at 10 gastrointestinal regions from 37 ruminant host individuals represent-
ing 7 host species. This dataset was collected and published by Xie et
al. (38). We downloaded the data from http://rummeta.njau.edu.cn/rumment/
resource/metagenomicsPage. The genus abundances were found in the file
“RGMGC.genus.profile.txt” which was available for download under the heading
“Genusprofile(genusabundanceprofiletable for370GITsamples).”TheCAZyme
abundances were found in the file “RGMGC.cazy.profile.family.txt,” which was
available for download under the heading “Cazy profile (Cazy abundance profile
table for 370 GIT samples).” For both genera and CAZymes, the published data
contained absolute abundances. We converted absolute abundances to relative
abundances before performing our analyses.
Human microbiome data. In our second data example, we analyzed data
generated by Xue et al. (43).

Data, Materials, and Software Availability. Previously published data were
used for this work (38, 43).
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