
CLUMPP 1:

CLUster Matching and Permutation Program

Version 1.1.2

Mattias Jakobsson2

Center for Computational Medicine and Biology

Department of Human Genetics

University of Michigan

Noah A. Rosenberg

Center for Computational Medicine and Biology

Department of Human Genetics

University of Michigan

October 10, 2007

(version 1.1.2 May 31, 2009)

The CLUMPP software is available at

http://rosenberglab.bioinformatics.med.umich.edu/clumpp.html3

1Jakobsson, M. & Rosenberg, N. A. (2007) CLUMPP : a cluster matching and permutation
program for dealing with label switching and multimodality in analysis of population structure.
Bioinformatics 23: 1801-1806.

2Comments on CLUMPP can be sent to mjakob@umich.edu
3CLUMPP software and manual copyright c© 2007 Mattias Jakobsson and Noah Rosenberg,
University of Michigan. This software is distributed “as is” without warranty of any kind.

Contents

1 Introduction 2

2 Algorithms 3

3 Getting started 9

3.1 Availability . 9

3.2 Installing CLUMPP . 9

3.3 Running CLUMPP . 9

4 Input files 11

4.1 paramfile . 11

4.2 indfile . 11

4.3 popfile . 12

4.4 permutationfile . 13

5 Usage options 14

5.1 Main parameters . 14

5.2 Additional parameters for the Greedy and LargeKGreedy algorithms 15

5.3 Optional outputs . 16

5.4 Advanced options . 17

5.5 Command-line arguments . 17

6 Output files 19

6.1 outfile . 19

6.2 miscfile . 19

6.3 permuted datafile . 21

6.4 every permfile . 21

6.5 random inputorderfile . 22

7 Examples 23

7.1 Using CLUMPP for small numbers of runs and clusters 23

7.2 Using CLUMPP for large numbers of runs and clusters 24

8 Version changes 27

8.1 Version 1.0 (Dec 22, 2006) . 27

8.2 Version 1.1 (May 1, 2007) . 27

8.3 Version 1.1.1 (Oct 10, 2007) . 27

8.4 Version 1.1.2 (May 31, 2009) . 27

Acknowledgments 27

References 29

1

1 Introduction

A variety of population-genetic applications – such as association mapping, molecular eco-

logical studies, and studies of human evolution – make use of the clustering of individual

multilocus genotypes into populations. Many clustering algorithms have now been developed

for employing population-genetic data to assign individuals – and fractions of individuals –

to clusters (Pritchard et al., 2000; Dawson & Belkhir, 2001; Anderson & Thompson, 2002;

Corander et al., 2003; Falush et al., 2003; Chen et al., 2006; Corander et al., 2004; Coran-

der & Marttinen, 2006; François et al., 2006; Pella & Masuda, 2006). The result of a single

cluster analysis is typically given as a matrix, where each individual is given a “membership

coefficient” for each cluster – interpreted as a probability of membership, or as a fraction of

the genome with membership in the cluster, depending on the setting – with membership

coefficients summing to 1 across K clusters. The number of clusters is predefined by the user

for some methods, and for others it is inferred.

Because clustering algorithms may incorporate stochastic simulation as part of the infer-

ence, independent analyses of the same data may result in several distinct outcomes, even

though the same initial conditions were used. The main differences across replicates are of

two types: “label switching” and “genuine multimodality.” “Label switching” refers to a sce-

nario in which different replicates obtain the same membership coefficient estimates, except

with a different permutation of the cluster labels (Stephens, 2000; Jasra et al., 2005). In unsu-

pervised cluster analyses, because the meaning of each cluster label is not known in advance,

a clustering algorithm may be equally likely to reach any of K! permutations of the same

collection of estimated membership coefficients.

It is also possible that replicate cluster analyses arrive at truly distinct solutions that are

not equivalent up to permutation. This “genuine multimodality” may result from difficulties

in searching the space of possible membership coefficients, or from real biological factors that

cause multiple parts of this space to provide similarly appropriate explanations for the data.

Regardless of the source of differences in clustering outcomes, some method is needed for

handling the results from replicate analyses. We develop three algorithms for finding optimal

alignments of R replicate cluster analyses of the same data (Jakobsson & Rosenberg, 2007),

which we have implemented in the computer program CLUMPP. Our program takes as input

the estimated cluster membership coefficient matrices of multiple runs of a clustering program,

for any number of clusters. It outputs these same matrices, permuted so that all replicates

have as close a match as possible. CLUMPP also outputs a mean of the permuted matrices

across replicates. The input file for CLUMPP is a file similar to the output from structure

(Pritchard et al., 2000; Falush et al., 2003), and the output from CLUMPP can be used

directly as input by the cluster visualization program distruct (Rosenberg, 2004).

2

2 Algorithms

We refer to the C ×K matrix of membership coefficients for a single cluster analysis as the

Q-matrix, with the C rows corresponding to individuals (or populations) and the K columns

corresponding to clusters. CLUMPP attempts to maximize a measure of similarity of the

Q-matrices of R replicates over all (K!)R−1 possible alignments of the replicates.

Consider a pair of Q-matrices, Qi and Qj for runs i and j, where the value in the cth row

and kth column of Qi is the membership coefficient for individual c in cluster k as inferred in

run i. Each matrix consists of nonnegative entries, and the sum of the entries in any row is 1.

We define the pairwise similarity of matrices Qi and Qj as follows:

G(Qi, Qj) = 1− ‖Qi −Qj‖F√‖Qi −W‖F‖Qj −W‖F

. (1)

In this equation, W is a C × K matrix with all elements equal to 1/K and ‖ · ‖F is the

Frobenius matrix norm (Golub & Van Loan, 1996)

‖A‖F =

√√√√
C∑

c=1

K∑

k=1

a2
ck, (2)

where C and K respectively denote the numbers of rows and columns of A, and ack is the

value in row c and column k.

Using G to measure similarity, the optimal alignment of matrices Qi and Qj is defined as

the permutation of the columns of Qj that maximizes the similarity G over all permutations

P in the set SK of permutations of K clusters. The maximum value, or

SSC(Qi, Qj) = max
P∈SK

G(Qi, P (Qj)), (3)

is the quantity named by Nordborg et al. (2005) the “symmetric similarity coefficient” (SSC)

of the pair of runs (see also Rosenberg et al. (2002) for an earlier statistic). The SSC for

two runs is bounded above by 1 — which it equals if the Q-matrices are identical up to a

permutation of the clusters — and it decreases as the similarity of the Q-matrices decreases.

The SSC statistic is generally expected to be positive if nontrivial clustering patterns are

present in Qi and Qj, although it is possible for it to be negative.

For a collection of R replicates, the average pairwise similarity is defined as

H(Q1, Q2, . . . , QR) =
2

R(R− 1)

R−1∑
i=1

R∑
j>i

G(Qi, Qj). (4)

3

To find the optimal alignment of R replicates, we search for the vector of permutations that

maximizes this average pairwise similarity:

SSCR(Q1, Q2, . . . , QR) = max
(P1,P2,...,PR)∈SR

K

H(P1(Q1), P2(Q2), . . . , PR(QR)). (5)

Without loss of generality, we take P1 to be the identity permutation I, so that the clusters of

runs 2, . . . , R are permuted to align with the clusters of run 1. As SK contains K! permutations,

with P1 set to equal I, the maximum in eq. 5 is taken over (K!)R−1 vectors.

We make use of three algorithms for attempting to find the optimal alignment of R repli-

cates. In decreasing order of the extent of the search, and in increasing order of computational

speed, these algorithms are termed FullSearch, Greedy and LargeKGreedy. These algorithms

supersede earlier methods that we described in Nordborg et al. (2005).

Note that our approach can proceed analogously using alternative functions to measure

similarity in place of G. Although it is undefined when one of the two matrices equals W , G is

designed to have large negative values when one of the two runs reflects substantial population

structure and the other has relatively little structure (that is, little difference from W). We

can define a second similarity function G′, which is guaranteed to lie in [0, 1]:

G′(Qi, Qj) = 1− ‖Qi −Qj‖F√
2C

. (6)

The normalization constant
√

2C, which guarantees that G′ lies in [0, 1], arises from the

definition of the Frobenius norm:

‖A−B‖F =

√√√√
C∑

c=1

(K∑

k=1

a2
ck + b2

ck − 2ackbck

)
.

If A and B have nonnegative entries and row sums of 1, then −2ackbck ≤ 0 and
∑K

k=1 a2
ck =

(
∑K

k=1 ack)
2 − 2

∑K−1
k=1

∑K
`>k ackac` = 1− 2

∑K−1
k=1

∑K
`>k ackac` ≤ 1. Similarly,

∑K
k=1 b2

ck ≤ 1. It

then follows that ‖A−B‖F ≤
√

2C.

The quantities SSC′, H ′, and SSC′
R can then be defined by replacing G in eqs. 3, 4, and 5

with G′. We proceed to describe our algorithms using the G statistic to measure similarity;

to instead use G′, the approach is analogous with G′, SSC′, H ′, and SSC′
R in place of G, SSC,

H, and SSCR.

FullSearch

The FullSearch algorithm computes H for each of the (K!)R−1 alignments of the K clusters in

R replicates. Considering all possible vectors of permutations (I, P2, P3, . . . , PR), the algorithm

4

Table 1: Example of two (R = 2) Q-matrices (left), that is, two replicate cluster analyses,
that have been permuted (right) in order to align the clusters (columns). The leftmost column
indicates the population labels (C = 95), the following 3 columns indicate the membership
coefficient of each population in 3 clusters (K = 3), and the last column indicates the number
of individuals in each population.

1: 0.315 0.002 0.683 10 1: 0.315 0.002 0.683 10
2: 0.475 0.014 0.511 1 2: 0.475 0.014 0.511 1
3: 0.090 0.005 0.905 1 3: 0.090 0.005 0.905 1
...

...
...

...
...

...
...

...
...

...
94: 0.004 0.003 0.993 1 94: 0.004 0.003 0.993 1
95: 0.004 0.010 0.985 1 95: 0.004 0.010 0.985 1

1: 0.687 0.002 0.310 10 1: 0.310 0.002 0.687 10
2: 0.490 0.011 0.500 1 2: 0.500 0.011 0.490 1
3: 0.898 0.007 0.095 1 3: 0.095 0.007 0.898 1
...

...
...

...
...

...
...

...
...

...
94: 0.993 0.004 0.003 1 94: 0.003 0.004 0.993 1
95: 0.987 0.008 0.005 1 95: 0.005 0.008 0.987 1

computes H(I(Q1), P2(Q2), P3(Q3), . . . , PR(QR)) and returns the vector of permutations that

maximizes SSCR. As the number of possible vectors grows quickly with K and R, however,

even for moderate values of K and R, it is unrealistic to test every alignment. The FullSearch

algorithm runs in time proportional to TFullSearch = (K!)R−1[R(R − 1)/2]KC: the number of

permutation vectors is (K!)R−1, the number of computations of G in each evaluation of eq. 4 is

R(R−1)/2, and the time required for each computation of G is proportional to KC. Although

it proceeds slowly, unlike our other algorithms, the FullSearch algorithm is guaranteed to find

the optimal alignment of clusters across multiple runs.

Greedy

The Greedy algorithm employed by CLUMPP proceeds as follows:

1. Choose one run, Q1.

2. Choose a second run, Q2, and fix the permutation, P2, that maximizes G(P1(Q1), P (Q2))

over all possible permutations P (where P1 is the identity permutation).

3. Continue sequentially with each remaining run, Qx, where x = 3, ..., R, and fix the

permutation, Px of Qx, that maximizes the average similarity with the previously fixed

x− 1 runs, or

J(P1(Q1), P2(Q2), . . . , Px−1(Qx−1), P (Qx)) =
1

x− 1

x−1∑

`=1

G(P`(Q`), P (Qx)), (7)

5

over all permutations P .

This algorithm runs in time proportional to TGreedy = (K!)[R(R − 1)/2]KC. The number of

permutations tested for each run from 2 to R is K!. For run r (r ranging from 2 to R), the

number of computations of G performed for each permutation is r − 1. Thus, considering all

runs from 2 to R, the total number of computations of G performed is (K!)[R(R−1)]/2. Each

computation of G runs in time proportional to KC.

Because the order in which the runs are considered can affect the result, several different

sequences of runs should be tested. CLUMPP offers three options for testing different se-

quences: test all possible sequences of runs, test a pre-defined number of random sequences,

and test a specific set of user-defined sequences.

LargeKGreedy

When K & 15, the number of permutations, K!, is very large, and it may not be possible to

calculate G for all permutations of a particular pair of Q-matrices. Instead of testing every

permutation as in the Greedy algorithm, the LargeKGreedy algorithm proceeds as follows:

1. Choose one run, Q1.

2a. Choose a second run, Q2. Compute G for all pairs of columns, one from Q1 and one from

Q2. This computation is simply the value of G for two columns – hence no permutations

of Q2 are computed, unlike in step 2 for the Greedy algorithm.

2b. Pick the pair of columns Q1,y1 and Q2,z1 with highest G-value and fix these columns

(Q1,y1 refers to column y1 of matrix Q1). Then pick the pairs of columns Q1,y2 and

Q2,z2 with the next highest G-value, ignoring all G-values of pairs containing either of

the previously chosen columns Q1,y1 and Q2,z1 . Repeat this procedure until K pairs of

columns, one each from Q1 and Q2, have been picked, and fix the permutation of Q2

that matches up these pairs of columns, or P2(Q2).

3a. Continue sequentially with each remaining run, Qx, where x = 3, ..., R. For each y and

z from 1 to K, compute the average similarity,

J(P1,y(Q1), . . . , Px−1,y(Qx−1), Qx,z)) =
1

x− 1

x−1∑

`=1

G(P`,y(Q`), Qx,z)), (8)

where P`,y denotes column y of the permuted matrix P`(Q`). This quantity is the similar-

ity of column z of Qx to column y of each of the previously fixed permutations, averaged

across all runs previously considered. No permutations of Qx are computed, unlike in

step 3 for the Greedy algorithm.

6

3b. Pick the pair of columns y1 of P1(Q1), P2(Q2), . . . , Px−1(Qx−1) and z1 of Qx with highest

average similarity in eq. 8. Then pick the columns y2 and z2 with the next highest

similarity in eq. 8, ignoring similarity scores of pairs containing either of the previously

chosen columns y1 and z1. Repeat this procedure until K pairs of columns, one for

the matrices P1(Q1), P2(Q2), . . . , Px−1(Qx−1) and one for Qx, have been picked. Fix the

permutation of Qx that matches up these pairs of columns, or Px(Qx).

A candidate for the vector of permutations of the R runs that maximizes H across all possible

vectors has now been constructed. This algorithm runs in time proportional to TLargeKGreedy =

[R(R − 1)/2]K2C. The number of pairs of columns, one from the run under consideration

and one from the previously fixed runs, is K2. For run r (r ranging from 2 to R), the number

of computations of G performed for each pair of columns is r − 1. Considering all runs from

2 to R, the total number of computations of G performed is (K!)[R(R − 1)]/2. Since G is

computed only for columns rather than for whole matrices, the time of computation of G is

proportional only to C rather than to KC, as in the other algorithms.

As is true for the Greedy algorithm, the order in which the runs are considered can affect the

result. For the LargeKGreedy algorithm CLUMPP offers the same three options for selecting

the input sequence of runs as it provides for the Greedy algorithm.

To get an idea of which algorithm to use, we have found it useful to compute the quantity

D = TCN for each algorithm, where T is a quantity proportional to the time required by

an algorithm (as described above), C is the number of individuals, and N is the number

of input sequences to be tested (for FullSearch, N = 1). If D . 1013 for FullSearch, then

this algorithm is fast enough and is preferred; otherwise the Greedy algorithm can be used. If

D & 1013 for the Greedy algorithm, then this algorithm is probably also too slow. In that case,

the LargeKGreedy algorithm should be used, as it can handle K > 20, R > 100, and C > 1000

in reasonable time. We recommend testing at least 100 input sequences for the Greedy and

LargeKGreedy algorithms – and preferably many more – to find the approximately highest

SSCR value.

Table 2 shows all possible combinations of the options M and GREEDY OPTION used by

CLUMPP. Table 3 gives some guidelines of when to use the different algorithms and options.

Generally, these choices are a balance between the extent of the search and the speed of the

search.

7

Table 2: All possible combinations of the options M and GREEDY OPTION.

GREEDY OPTION

M 1 2 3

1 All possible permutations of the runs are tested. GREEDY OPTION does not matter.

The best permutation is constructed The best permutation is constructed The best permutation is constructed

by greedily aligning runs. All possible by greedily aligning runs. A number by greedily aligning runs. A number

2 input orders for the list of permuta- of input orders specified by REPEATS of input orders specified by the per-

tions are tested and the one that are tested and the one that produces mutations in the permutationfile are

produces the highest H (or H′) is the highest H (or H′) is taken. tested and the one that produces the

taken. highest H (or H′) is taken.

The best permutation is constructed The best permutation is constructed The best permutation is constructed

by greedily aligning clusters. All by greedily aligning clusters. A by greedily aligning clusters. A num-

3 possible input orders for the list number of input orders specified by ber of input orders specified by the

of permutations are tested and the REPEATS are tested and the one that permutations in the permutationfile

one that produces the highest H produces the highest H (or H′) is are tested and the one that produces

(or H′) is taken. taken. the highest H (or H′) is taken.

Table 3: Recommended use of algorithms and GREEDY OPTION.
GREEDY OPTION

M 1 2 3

1 This is the gold standard of searching, which one should strive to use, but it can often be too slow. When D . 1013

for FullSearch, then this algorithm is fast enough and should be preferred.

For this option, every input order This option has reasonable run-times This option has reasonable run-times

is tested, which will cause rather for large R, but not if K becomes for large R, but not if K becomes

long run-times. For some choices large. The user can specify the run- large. The user can specify the input

2 of K and R this option can be time by changing the number of random orders to be tested in the

slower than the FullSearch. This input orders to be tested (REPEATS). permutationfile.

option can be used to test accu-

racy of non-exhaustive searches.

For this option, every input order This option has short run-times even This option has short run-times even

3 is tested, which may cause rather for large values of R and K. The for large values of R and K. The

long run-times. This option can user can specify the number of user can specify the input orders to

by used to test accuracy of non- random input orders to be tested be tested in the permutationfile.

exhaustive searches. (REPEATS).

8

3 Getting started

We distribute executables for CLUMPP to run under Linux, MacOS X and Windows. The

program is written in C++, and if you would like to compile the source code on your own

favorite platform please email mjakob@umich.edu and we will send you the source code.

3.1 Availability

Pre-compiled executables for Linux/Unix, MacOS X, and Windows are available at:

http://rosenberglab.bioinformatics.med.umich.edu/CLUMPP.html

When using CLUMPP, please cite:

Jakobsson, M. and Rosenberg, N. A. (2007). CLUMPP : a cluster matching and permutation

program for dealing with label switching and multimodality in analysis of population struc-

ture. Bioinformatics 23: 1801-1806.

The structure software is available at: http://pritch.bsd.uchicago.edu. The appropriate

citations for structure are Pritchard et al. (2000) and Falush et al. (2003). The distruct software

is available at http://rosenberglab.bioinformatics.med.umich.edu/distruct.html. The

appropriate citation for distruct is Rosenberg (2004).

3.2 Installing CLUMPP

The executable comes in a gzipped tar file. In Unix/Linux (and in MacOS X, from a command

prompt), extract the appropriate .tar.gz file by typing: gunzip CLUMPP Linux.xx.tar.gz,

and then typing: tar -xvf CLUMPP Linux.xx.tar, where xx is the version number. This

will create a new directory called CLUMPP Linux.xx.

In Windows, extract the file CLUMPP Windows.xx.zip. This will create a directory called

CLUMPP Windows.xx.

3.3 Running CLUMPP

In Unix (and in MacOS X, from a command prompt), the program is executed by typing

./CLUMPP paramfile , where paramfile is the name of the parameter file. If no paramfile is

given after typing ./CLUMPP, the program will search for a paramfile called “paramfile”, and

if this file is not found, CLUMPP will exit with an error message. The paramfile should

be located in the same directory as CLUMPP. If the paramfile is located elsewhere, the path

must be provided for it. If CLUMPP is executed from another directory, CLUMPP will search

for the files it needs in the current directory, and if paramfile, indfile or popfile, and possibly

9

permutationfile are located elsewhere, the path for these files must be specified (make sure to

not exceed the limit of 50 characters for paths and names specified in the paramfile).

In Windows, CLUMPP is run from a command prompt. In the command prompt (which

can be accessed by going to the START menu, clicking on Run, and typing cmd), move to

the directory where CLUMPP is located (by typing cd c:Program Files\CLUMPP on our

machine). The program is then executed by typing CLUMPP paramfile , where paramfile is

the name of the parameter file. If no paramfile is specified after typing CLUMPP, CLUMPP will

search for a paramfile called “paramfile”, and if this file is not found, CLUMPP will exit with

an error message. It is also possible to double-click on the CLUMPP icon to run the program;

CLUMPP will then use the parameters in the file called “paramfile”. All files that CLUMPP

needs must be located in the same directory as the program, or the path to these files must

be included in the paramfile.

10

4 Input files

CLUMPP reads the necessary parameters from a file (the paramfile). The program will also

read in a file containing the Q-matrices (the popfile or the indfile). In some cases, an additional

file of permutations of runs (the permutationfile) is required by CLUMPP.

CLUMPP can be used for any data that have population or individual membership coef-

ficients and for any number of clusters. In particular, CLUMPP can use a file that is similar

(but not quite identical) to the structure output file. The indfile and the popfile of CLUMPP

can easily be obtained from structure output files by, for example, cutting and pasting. If

another program is used to create the Q-matrices, these data need to be formatted to match

the CLUMPP indfile or popfile format (see below).

4.1 paramfile

CLUMPP reads a paramfile, which follows (separated by a space) after typing CLUMPP on

the command-line: ./CLUMPP paramfile in UNIX, and CLUMPP paramfile in Windows. (If

no paramfile is specified, CLUMPP will search for a file called “paramfile”. CLUMPP will

therefore run in Windows if the user double-clicks on the CLUMPP -icon and if a paramfile

with the name “paramfile” resides in the same directory as the program.) This paramfile can

have any name, but will hereafter be referred to as the paramfile. There are a number of

parameters that must be defined in the paramfile, and there are also additional parameters

that, in specific cases, must be defined (see Section 5). Some of the parameters of the paramfile

can be overridden by command-line arguments (see Section 5.5).

4.2 indfile

The cluster analyses may have been conducted for individuals or for populations. There

are some small differences in the format of the CLUMPP input data from individuals and

populations. If DATATYPE = 0, CLUMPP expects a file, the indfile, containing R sets

of individual Q-matrices. The indfile is specified in the paramfile by INDFILE. If C is the

number of predefined individuals, K is the number of predefined clusters and R is the number

of predefined runs, CLUMPP expects an indfile with C × R rows and K + 5 columns per

row. The file should be organized in such a way that the results from the first run (this is

an arbitrary choice) are followed (below the results of the first run) by the results from the

second run and so on. Blank lines and extra space are tolerated. Table 4 shows an example

when C = 95, K = 3 and R = 2. In Table 4, each row represents the membership coefficients

for an individual in a specific run. Row 1 represents the membership coefficients for individual

1 in run 1; row C + 1 (not counting blank lines) represents the membership coefficients for

individual 1 in run 2. Columns 1, 3, 4, and 5 are ignored by CLUMPP. Column 2 is an

11

integer that identifies the individual. The following K columns (column 6 to column K + 5)

are the membership coefficients for clusters 1, 2, ..., K (real numbers in [0,1]). The numbers

in the K columns for each individual should ideally sum to 1. CLUMPP will normalize

these numbers by their sum, and if the sum deviates too much from 1 (±0.02), CLUMPP

will produce a warning message. This warning can be automatically overridden by setting

OVERRIDE WARNINGS to 1. Note that the order of individuals must be the same in every

run; CLUMPP exits with an error otherwise. The format of the indfile is the same as the

format of the input file (INFILE INDIVQ) of distruct.

Table 4: Example of an indfile when C = 95, K = 3 and R = 2.

1 indnr (x) popnr : 0.315 0.002 0.683
2 indnr (x) popnr : 0.475 0.014 0.511
3 indnr (x) popnr : 0.090 0.005 0.905
...

...
...

...
...

...
...

...
94 indnr (x) popnr : 0.004 0.003 0.993
95 indnr (x) popnr : 0.004 0.010 0.985

1 indnr (x) popnr : 0.687 0.002 0.310
2 indnr (x) popnr : 0.490 0.011 0.500
3 indnr (x) popnr : 0.898 0.007 0.095
...

...
...

...
...

...
...

...
94 indnr (x) popnr : 0.993 0.004 0.003
95 indnr (x) popnr : 0.987 0.008 0.005

4.3 popfile

If DATATYPE = 1, CLUMPP expects a file, the popfile, which is specified in the paramfile

by POPFILE. The popfile should be organized in such a way that the results from the first

run (this is an arbitrary choice) are followed (below the results of the first run) by the results

from the second run and so on. The Q-matrices of the populations will be referred to as

the population Q-matrices. The popfile should contain C × R rows and K + 2 columns per

row. Blank lines and extra space are tolerated in the popfile. Table 5 shows an example when

C = 95, K = 3 and R = 2. In Table 5, each row represents the membership coefficients for

a population in a specific run. Row 1 represents the membership coefficients for population

1 in run 1; row C + 1 (not counting blank lines) represents the membership coefficients for

population 1 in run 2. The first column is an integer that identifies the population, and it is

followed by a colon. The following K columns are the membership coefficients for clusters 1,

2, ..., K (real numbers in [0,1]). The numbers in the K columns for each population should

ideally sum to 1. CLUMPP will normalize these numbers by their sum, and if the sum deviates

too much from 1 (±0.02), CLUMPP will produce a warning message. This warning can be

automatically overridden by setting OVERRIDE WARNINGS to 1. The final column gives

12

the number of individuals of each population. Note that the order of populations must be

the same in every run. The format of the popfile is the same as the format of the input file

(INFILE POPQ) of distruct.

Table 5: Example of a popfile when C = 95, K = 3 and R = 2.

1: 0.315 0.002 0.683 10
2: 0.475 0.014 0.511 1
3: 0.090 0.005 0.905 1
...

...
...

...
...

94: 0.004 0.003 0.993 1
95: 0.004 0.010 0.985 1

1: 0.687 0.002 0.310 10
2: 0.490 0.011 0.500 1
3: 0.898 0.007 0.095 1
...

...
...

...
...

94: 0.993 0.004 0.003 1
95: 0.987 0.008 0.005 1

4.4 permutationfile

The permutationfile contains pre-defined orders of runs. For the Greedy and the LargeKGreedy

algorithms, the input order of runs can have some effect on the value of H (or H ′), and the input

order may therefore have a small effect on the resulting alignment of the columns of the runs.

Each line in the permutationfile must be a permutation of the integers 1, 2, ..., R, indicating

the order of the runs in the indfile or popfile that CLUMPP will use. The integer in the first

position indicates which run to input first, the integer in the second position indicates which

run to input second, and so on. Table 6 shows an example of a permutationfile in which R = 10

and 5 different input orders will be tested by CLUMPP. Note that the parameter REPEATS

must be set to match the number of lines (excluding blank lines) in the permutationfile. The

permutationfile is expected by CLUMPP if the Greedy or the LargeKGreedy algorithm is

chosen (M = 2 or M = 3) at the same time as GREEDY OPTION = 3.

Table 6: Example of a permutationfile for 5 different user-defined input orders of runs when
R = 9. The second row indicates that the runs in the indfile or popfile will be used starting
with the 2nd run, then the 4th run, and so on.

1 2 3 4 5 6 7 8 9
2 4 6 8 1 3 5 7 9
5 4 3 2 1 9 8 7 6
1 9 2 8 3 7 4 6 5
9 8 7 6 5 4 3 2 1

13

5 Usage options

CLUMPP reads the parameters from the file that follows the program name. This file is

known as the paramfile, but can be given any name. Each parameter in the paramfile is

printed in capital letters followed by one or more blank spaces. The spaces are then followed

by the particular parameter value. Everything on a line after the symbol “#” is ignored; this

symbol is used for making comments about the parameters in the paramfile, such as what

type of value CLUMPP expects. “K 3 # Number of clusters” is an example that informs

CLUMPP to expect three clusters in the indfile or popfile. The parameter values used for a

run of CLUMPP are printed to the screen and to a “miscellaneous” output file (the miscfile)

that is specified in the paramfile. The program is insensitive to the order of the parameters

in the paramfile. Some options, such as the Greedy algorithm (M = 2), require additional

parameters to be specified. If an extra parameter is not expected by the program, it will

ignore the parameter regardless of whether or not the parameter is specified in the paramfile.

Several of the parameters can also be set by command-line arguments (see Section 5.5).

5.1 Main parameters

The main parameters concern the input datafile (indfile or popfile), the output files (outfile

and miscfile), and the choice of algorithm.

DATATYPE (int) Type of datafile to be used. If DATATYPE = 0, CLUMPP expects

to read the individual Q-matrices from an indfile (see Section 4.2), and if DATATYPE = 1,

CLUMPP expects to read the population Q-matrices from a popfile.

INDFILE (string) The name of the indfile (maximum length of 50 characters). This file

contains the individual Q-matrices for all runs (see Section 4.2 for more information on for-

matting the indfile). The indfile is required if DATATYPE = 0.

POPFILE (string) The name of the popfile (maximum length of 50 characters). This file

contains the population Q-matrices for all runs (see Section 4.3 for more information on for-

matting the popfile). The popfile is required if DATATYPE = 1.

OUTFILE (string) The name of the outfile (maximum length of 50 characters). This file

contains the mean Q-matrix over all runs after the “optimal” permutation has been identified

(see Section 6.1 for more information on the outfile). The outfile is always required.

MISCFILE (string) The name of miscfile (maximum length of 50 characters). This file

14

contains parameter settings for the current run of CLUMPP, the highest value of H (or H ′).

Note that for the FullSearch algorithm the highest H-value is guaranteed to equal SSCR. This

file also contains the corresponding permutation of the Q-matrices for each run (see Section

6.2 for more information on the miscfile). The miscfile is always required.

K (int) Number of clusters.

C (int) Number of populations.

R (int) Number of Q-matrices, or runs, to be aligned.

M (int) Algorithm to be used for aligning the runs. Valid choices are 1, 2 or 3: 1 to use

the FullSearch algorithm, 2 to use the Greedy algorithm and 3 to use the LargeKGreedy algo-

rithm (see Section 2 for more information about the algorithms).

W (boolean) If the user has data from populations that contain more than one individual

(indicated by the last column in the popfile), CLUMPP offers the option W of computing H

(or H ′) weighted by the number of individuals in each population. Choices for W are 1 to

weight the alignment procedure by the number of individuals in each population (indicated

in last column in popfile), and 0 to not weight, that is, to give each population equal weight

regardless of the number of individuals in the population. This option is only meaningful

if DATATYPE = 1 and the data are from populations. If DATATYPE = 0, this option is

automatically set to 0.

S (int) Pairwise matrix similarity statistic to be used. Valid choices are 1 or 2: 1 to use

the statistic G and 2 to use the statistic G′ (see Section 2 for more information about the G

and G′ statistics).

5.2 Additional parameters for the Greedy and LargeKGreedy al-

gorithms

If the Greedy or LargeKGreedy algorithm is chosen (M = 2 or M = 3), the user needs to

specify the additional parameter GREEDY OPTION.

GREEDY OPTION (int) Input order of runs to be tested. Valid choices are 1, 2 or 3:

1 to test all possible input orders of runs (note that this option increases the run-time sub-

stantially unless R is small), 2 to test a specified number of random input orders of runs, and

15

3 to use a pre-specified input order of runs (see Section 2 for more information on the input

order of runs). This option is required if M = 2 or M = 3.

REPEATS (int) The number of input orders of runs to be tested. If GREEDY OPTION

= 2, the parameter REPEATS specifies the number of random input orders of runs that will

be tested. If GREEDY OPTION = 3, REPEATS specifies the number of permutations of

runs (= lines) in the permutationfile. If GREEDY OPTION = 1, REPEATS is not expected

(and will be ignored even if it is defined; see Section 2 for more information on the input order

of runs). This option is required if M = 2 or M = 3 at the same time as GREEDY OPTION

= 2 or GREEDY OPTION = 3.

PERMUTATIONFILE (string) The name of the permutationfile (maximum length of 50

characters) that contains the permutations of the input order of runs to be tested. Note that

REPEATS must match the number of input orders of runs to be tested. This option is required

if M = 2 or M = 3 together with GREEDY OPTION = 3.

5.3 Optional outputs

The optional outputs allow the user to print additional results produced by CLUMPP.

PRINT PERMUTED DATA (int) Print each Q-matrix of the datafile that has been used

(either an indfile or a popfile) with the columns permuted according to the best alignment.

Valid choices are 0, 1 or 2: 0 to suppress printing, 1 to print the permuted Q-matrices to

one file, and 2 to print each permuted Q-matrix into a separate file (see Section 6.3 for more

information on the permuted datafile). This option is always required.

PERMUTED DATAFILE (string) The name of the permuted datafile (maximum length of

50 characters) where each permuted Q-matrix will be printed. If PRINT PERMUTED DATA

= 2, a file for each permuted Q-matrix will be created. These files will have an extension of

consecutive numbers, “permuted datafile X”, where X ranges from 1 to R. This file is required

if PRINT PERMUTED DATA = 1 or PRINT PERMUTED DATA = 2.

PRINT EVERY PERM (boolean) 1 to print every tested permutation of columns of the

Q-matrices and the corresponding H-value, 0 to not print this information. Note that turning

this option on may result in a very large every permfile (see Section 6.4 for more information

on every permfile). This option is always required.

EVERY PERMFILE (string) The name of the every permfile (maximum length of 50 char-

16

acters) to print every tested permutation of the columns in the Q-matrices. This file is required

if PRINT EVERY PERM = 1.

PRINT RANDOM INPUTORDER (boolean) 1 to print all random input orders of

runs generated by CLUMPP if GREEDY ORDER = 2, 0 to not print this information

(see Section 6.5 for more information on random inputorderfile). This option is required if

GREEDY ORDER = 2.

RANDOM INPUTORDERFILE (string) The name of the random inputorderfile (maxi-

mum length of 50 characters) in which to print all random input orders of runs generated by

CLUMPP if GREEDY ORDER = 2. This option is required if GREEDY ORDER = 2 and

PRINT RANDOM INPUTORDER = 1.

5.4 Advanced options

OVERRIDE WARNINGS (boolean) 1 to override non-critical warnings, 0 to print non-

critical warnings to the screen. These non-critical warnings may require input from the user.

This option is always required.

ORDER BY RUN (integer) Permute the clusters according to the cluster order of a specific

run. Set this parameter to a number r from 1 to R to order the clusters by run r from the

INDFILE or POPFILE; set to 0 to not specify a run. When M=1, setting ORDER BY RUN

to 0 will result in the clusters being ordered by run 1, and when M=2 or 3, the clusters will

be ordered by the first run in the first input sequence tested. Setting ORDER BY RUN to a

nonzero value allows the user to determine how the clusters of the Q-matrices will be ordered

after they have been aligned using CLUMPP. By reordering the aligned clusters of the runs

by the input from one specific run, this option is useful for assessing the consistency of the

results of the Greedy or LargeKGreedy algorithms across different input sequences of runs.

5.5 Command-line arguments

The command-line flags give the user the option to enter information from the command-line.

All command-line arguments will overwrite values specified in the paramfile. The command-

line flag in question is followed by a space and then the parameter-value. All command-line

flags and arguments are given after the name of the paramfile. The command-line arguments

can be given in any order. For example to change the number of clusters to 4, the appropriate

command, in Unix, would be:

./CLUMPP paramfile -k 4

17

and the appropriate command in Windows would be:

CLUMPP paramfile -k 4

-i (INDFILE) Read a different indfile from the one specified in paramfile.

-p (POPFILE) Read a different popfile from the one specified in paramfile.

-o (OUTFILE) Print to a different outfile from the one specified in paramfile.

-j (MISCFILE) Print to a different miscfile from the one specified in paramfile.

-k (K) Change the number of clusters.

-c (C) Change the number of populations.

-r (R) Change the number of runs.

-m (M) Change the choice of algorithm (1 = FullSearch, 2 = Greedy, 3 = LargeKGreedy).

-w (W) Change the procedure for weighting by the number of individuals (1 = weight by

number of individuals, 0 = weight each line equally). If DATATYPE = 0, this option is

automatically set to 0.

-s (S) Change the choice of pairwise matrix similarity statistic (1 for G and 2 for G′).

18

6 Output files

CLUMPP will always create two output files, outfile and miscfile. If the user desires, CLUMPP

can also print additional output files, every permfile, random inputorderfile, and a permuted datafile

(or several such files).

6.1 outfile

If DATATYPE = 0, the outfile will contain one Q-matrix with K+5 columns and C rows. The

first five columns are the same as for one of the runs in the indfile (these columns are identical

for all runs). The second column is the individual identifier (from the indfile). Columns 6 to

K + 5 are the mean individual Q-matrix. This individual Q-matrix of outfile is computed as

the mean over all individual Q-matrices after the columns have been aligned according the

permutation with the greatest H-value (that is, the ck element of the output Q-matrix is the

mean of the ck entries of the permuted Q-matrices, appropriately aligned).

Table 7: Example of an outfile for population data (DATATYPE = 1), when C = 95, K = 3
and R = 9.

1: 0.3103 0.0022 0.6874 10
2: 0.4898 0.0095 0.5008 1
3: 0.0837 0.0060 0.9103 1
...

...
...

...
...

94: 0.0032 0.0039 0.9929 1
95: 0.0049 0.0092 0.9856 1

If DATATYPE = 1, the outfile will contain one Q-matrix with K +2 columns and C rows.

The first column is the population identifier (from the popfile), the following K columns are

the Q-matrix, and the last column indicates the number of individuals in each population

(from the popfile). This population Q-matrix of outfile is computed as the mean over all Q-

matrices after the columns have been aligned according to the permutation with the greatest

H-value. Table 7 shows an example of an outfile of population data when C = 95, K = 3 and

R = 10. The program distruct can read the outfile as an input file.

6.2 miscfile

The miscfile contains the parameters that are used for a particular run of CLUMPP. The

program will also print the largest H- or H ′-value (equal to SSCR or SSC′
R for the FullSearch

algorithm) found and the corresponding permutation of columns for every run. Figure 1 shows

an example of a miscfile.

19

Figure 1: Example of a miscfile.

20

6.3 permuted datafile

If PRINT PERMUTED DATA = 1, the permuted datafile will contain the Q-matrices from

the datafile (indfile or popfile), with the only difference being that the columns of each Q-

matrix are permuted according to the permutation with the largest H-value (Table 8). The

order of the Q-matrices is the same as in the datafile. The permuted datafile has the same

format as the datafile that was read in by CLUMPP, that is, either the indfile or the popfile.

If PRINT PERMUTED DATA = 2, then the permuted Q-matrices will be printed to

individual files. The files will be named by adding an underscore and consecutive numbers to

the filename defined by parameter EVERY PERMFILE. These files have the same format as

the outfile (see Section 6.1) and can be used as input files by the program distruct.

Table 8: Example of a permuted datafile for population data (DATATYPE = 1), when C = 95,
K = 3 and R = 2.

1: 0.315 0.002 0.683 10
2: 0.475 0.014 0.511 1
3: 0.090 0.005 0.905 1
...

...
...

...
...

94: 0.004 0.003 0.993 1
95: 0.004 0.010 0.985 1

1: 0.310 0.002 0.687 10
2: 0.500 0.011 0.490 1
3: 0.095 0.007 0.898 1
...

...
...

...
...

94: 0.003 0.004 0.993 1
95: 0.005 0.008 0.987 1

6.4 every permfile

Every permutation of the columns of the Q-matrices that is considered by CLUMPP can

be written to every permfile. The value of H for a particular permutation will be written

directly above the permutation. This file can easily become very large for certain parameter

settings. The number of permutations (REPEATS) that will be considered is printed on the

screen when CLUMPP starts to run. Note that if more than 1000 permutations are about

to be written, a warning will appear and the user will be given an option to change his/her

mind. This warning can be automatically overridden by setting OVERRIDE WARNINGS to

1. Table 9 shows an example of an every permfile.

21

Table 9: Example of an every permfile when using the FullSearch algorithm (K = 3 and
R = 9) and using the H statistic.

-0.322805329280457
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3

-0.245668492940854
1 2 3
1 3 2
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3

...
0.969019617115145
1 2 3
3 2 1
2 3 1
1 2 3
1 3 2
3 1 2
2 3 1
2 3 1
1 2 3

...

6.5 random inputorderfile

CLUMPP will produce random input orders of runs if the Greedy orLargeKGreedy algorithms

are chosen (M = 2 or M = 3) at the same time as GREEDY OPTION = 2. Every random

order of runs generated by CLUMPP can be printed to random inputorderfile. Each line in

the random inputorderfile is a permutation of the integers 1, 2, ..., R, indicating the order

of the runs in the indfile or popfile that CLUMPP used. The integer in the first position

indicates which run was used first, the integer in the second position indicates which run was

used second, and so on. The number of input orders will match the parameter REPEATS.

It can sometimes be useful to re-run CLUMPP with the exact same input orders of runs.

This can be done by using the random inputorderfile as the permutationfile (and by setting

GREEDY OPTION to 3).

22

7 Examples

Supplied with the CLUMPP software and this manual is a folder containing examples. Be-

low follows a quick run-through of two examples. The first example contains 104 individual

Arabidopsis thaliana individuals from 95 populations (C = 95). The populations have been

assigned to 3 clusters in 9 repeated runs of structure (K = 3 and R = 9). The second example

is taken from Rosenberg et al. (2001), where 600 chickens from 20 breeds were assigned to 19

clusters using structure. There are 100 independent structure runs in this example.

7.1 Using CLUMPP for small numbers of runs and clusters

In the CLUMPP-folder, there are four files, paramfile, arabid.popfile and arabid.permutationfile

and arabid.outfile (copies of these files can also be found in the folder example/arabid/). The

arabid.popfile contains the results for 95 populations (one population containing 10 individu-

als and 94 populations containing 1 individual) when the number of clusters is set to 3. Nine

independent structure runs were used to assign populations to the 3 clusters. These data

are taken from Nordborg et al. (2005); some changes (9 runs instead of 10 runs, and popu-

lation 1 contains 10 individuals instead of 1 individual) have been made to the original data

in order to make the data more instructional as an example. The paramfile is pre-set to use

the FullSearch algorithm. If we run CLUMPP with these initial settings (in Unix: ./CLUMPP

arabid.paramfile; in Windows: CLUMPP arabid.paramfile) we will find, after a little while

(∼40 seconds on a 2.4 Ghz desktop running Linux), that the highest value of H (= SSCR)

equals 0.969019617... and that the permutation that corresponds to this value is:

1 2 3

3 2 1

2 3 1

1 2 3

1 3 2

3 1 2

2 3 1

2 3 1

1 2 3

This means that, keeping the first run unaltered, the second run will be permuted so that

the 1st and 3rd columns switch places and the 2nd column stays in the same place, and so on.

If we change the algorithm to the Greedy algorithm (M = 2) and run this algorithm

for 10,000 random input orders of runs (GREEDY OPTION = 2, REPEATS = 10000 in

23

the file paramfile), we find that the exact same permutation has the highest H-value, but

the program finishes in ∼4 seconds (on the same machine as above). The arabid.outfile can

be used with the program distruct to visualize the results (Fig. 2). To make it easiest to

visualize each run independently with distruct, set PRINT PERMUTED DATA = 2, and

the permuted Q-matrices for each run will be printed to the files arabid.perm datafile 1 to

arabid.perm datafile 9 (unless the PERMUTED DATAFILE option has been changed). If we

change the algorithm to the LargeKGreedy algorithm (M = 3) and run this algorithm for

10,000 random input orders of runs (GREEDY OPTION = 2, REPEATS = 10000), we find

that the exact same permutation as before has the highest H-value, and the algorithm finishes

in ∼ 1 second. By changing the options in the arabid.paramfile, the user can now explore

different settings and output options.

Run 1

Run 2

Run 3

Run 9

Run 8

Run 7

Run 6

Run 5

Run 4

A B

Run 1

Run 2

Run 3

Run 9

Run 8

Run 7

Run 6

Run 5

Run 4

Col-0

C
ape Verde

Libya

N
orw

ay

Japan

U
SA

U
K

W
estern Europ

e

Southern Europ
e

N
orthern Sw

ed
en

and
 Finland

South Sw
ed

en

C
entral Europ

e

Eastern Europ
e

C
entral A

sia

Col-0

C
ape Verde

Libya

N
orw

ay

Japan

U
SA

U
K

W
estern Europ

e

Southern Europ
e

N
orthern Sw

ed
en

and
 Finland

Southern Sw
ed

en

C
entral Europ

e

Eastern Europ
e

C
entral A

sia

Figure 2: The membership coefficients (Q-matrices) for 95 Arabidopsis thaliana individuals,
visualized using distruct. (A) Membership coefficients from nine independent runs of structure.
(B) The clusters of each run have been permuted, using CLUMPP, to match the configuration
in Run 1 (the membership coefficients are the same as in A).

7.2 Using CLUMPP for large numbers of runs and clusters

In the folder example/chicken/ there are two files, chicken.paramfile and chicken.indfile.

The chicken.indfile contains the results for 600 chickens when the number of clusters is set

24

to 19. One hundred independent structure runs were used to assign the chickens to the 19

clusters. These data are taken from Rosenberg et al. (2001). Figure 3A displays the cluster

membership estimates from 25 of these 100 replicates.

The chicken.paramfile is pre-set to use the LargeKGreedy algorithm and to test 100 random

orders of inputting the 100 runs. If we run CLUMPP with these initial settings (in Unix:

./CLUMPP chicken.paramfile; in Windows: CLUMPP chicken.paramfile) we find, after a

little while (∼5 minutes and 50 seconds on a 2.4 Ghz desktop running Linux), the highest

value of H (of 100 random input orders of runs) is likely to be in the range of 0.51 to 0.54

(and the highest value of H ′ is likely to be between 0.69 and 0.70). To (possibly) get a greater

H- or H ′-value, we need to increase the number of random input orders (REPEATS) in

the chicken.paramfile. Running the LargeKGreedy algorithm for 30,000 random input orders

(options PRINT EVERY PERM = 1 and ORDER BY RUN = 1), the highest H equals

0.5546. The highest-scoring input sequences tend to produce quite similar alignments of the

replicates. Excluding the input sequence that produced the highest H-value, the next 10

highest-scoring input sequences all produced H-values of at least 0.5441, and had on average

2.0% differences compared to the input sequence that led to the highest H. In other words,

considering the permuted position of a randomly chosen cluster (among 19) in a randomly

chosen run (among 100) based on the output of CLUMPP using a randomly chosen input

sequence (among the 10 highest-scoring sequences, excluding the one with the highest H-

value), the cluster had a 98.0% chance of being aligned in the same way that it was aligned

when using the highest-scoring of all input sequences. The permuted membership coefficients

of the 25 runs in Figure 3A for the input order among the 30,000 that leads to the highest H

are shown in Figure 3B.

When we consider the LargeKGreedy algorithm with 10,000 fixed input sequences (chosen

randomly among the 30,000 described above), for each of the 10,000 sequences, the alignment

of the replicates obtained by CLUMPP is identical regardless of which of two statistics — H

or H ′ — is used. The same input sequence that produces the highest H-value (H = 0.5508)

produces the highest H ′-value (H ′ = 0.7099). Excluding the input sequence that produced the

highest values of H and H ′, the next 10 highest-scoring input sequences — the same sequences

for both statistics — all produced H-values of at least 0.5392 and H ′-values of at least 0.7022,

and had on average 7.0% differences compared to the input sequence that led to the highest

H and H ′. These results suggest that although matrices can be constructed so that the two

statistics can lead to different alignments, in practice, their properties are extremely similar.

The larger number of differences for the highest-scoring input sequences from among 10,000

sequences compared to the the highest-scoring among the 30,000 sequences described above

highlights the importance of employing a large number of input sequences whenever possible.

25

Figure 3: The membership coefficients (Q-matrices) for 600 chickens, pre-CLUMPP and post-
CLUMPP. The matrices are visualized using DISTRUCT. (A) Membership coefficients from
the first 25 runs of STRUCTURE from a total of 100 runs performed by Rosenberg et al.
(2001). Each individual is represented by a vertical line partitioned into 19 colored segments
corresponding to its membership coefficients in 19 clusters. Each color represents a different
cluster, and black lines separate the individuals of different breeds. (B) The same membership
coefficients as in A, permuted using CLUMPP so that cluster labels match across runs.

26

8 Version changes

Changes from previous versions of the CLUMPP software are noted here.

8.1 Version 1.0 (Dec 22, 2006)

- Initial release of the CLUMPP software.

8.2 Version 1.1 (May 1, 2007)

- Addition of H ′- and G′-statistics (option S = 2) as optional similarity statistics instead

of the H- and the G-statistics (see Section 2).

- An option has been added to print the random orders of runs used.

- Some error messages have been improved.

8.3 Version 1.1.1 (Oct 10, 2007)

- Printing bug fixed. In version 1.1, when using the H ′- and G′-statistics (option S = 2),

the pairwise G′ values printed to the miscfile were really pairwise G values. This bug

only affected the printed values in the miscfile – all computations used the G′ values and

all H ′ values were printed correctly. Version 1.1.1 prints the pairwise G′ to the miscfile

when the option S is set to 2.

- When double-clicking on the CLUMPP executable in the windows version, the command

window will no longer close after the program finishes. The program will prompt the

user to press Return to close the command window.

- Very minor output file change (newline at the end of the outfile), but no format change.

8.4 Version 1.1.2 (May 31, 2009)

- Seg fault bug fixed. When the options DATAFILE = 1, W = 1, and S = 2 were used,

the program version 1.1.1 could potentially crash. Version 1.1.2 corrects this bug.

Acknowledgments

We thank Olivier François and Sijia Wang for testing the beta version of the software.

27

References

Anderson, E. C. and Thompson, E. A. 2002. A model-based method for identifying species

hybrids using multilocus genetic data, Genetics 160, 1217–1229.

Chen, C., Forbes, F., and François, O. 2006. FASTRUCT: model-based clustering made faster,

Mol. Ecol. Notes 6, 980–983.

Corander, J. and Marttinen, P. 2006. Bayesian identification of admixture events using mul-

tilocus molecular markers, Mol Ecol 15, 2833–2843.

Corander, J., Waldmann, P., Marttinen, P., and Sillanpää, M. J. 2004. BAPS 2: enhanced

possibilities for the analysis of genetic population structure, Bioinformatics 20, 2363–2369.

Corander, J., Waldmann, P., and Sillanpää, M. J. 2003. Bayesian analysis of genetic differen-

tiation between populations, Genetics 163, 367–374.

Dawson, K. J. and Belkhir, K. 2001. A Bayesian approach to the identification of panmictic

populations and the assignment of individuals, Genet. Res. 78, 59–77.

Falush, D., Stephens, M., and Pritchard, J. K. 2003. Inference of population structure using

multilocus genotype data: Linked loci and correlated allele frequencies, Genetics 164, 1567–

1587.

François, O., Ancelet, S., and Guillot, G. 2006. Bayesian clustering using hidden Markov

random fields in spatial population genetics, Genetics 174, 805–816.

Golub, G. H. and Van Loan, C. F. 1996. “Matrix Computations”, Johns Hopkins University

Press, Baltimore, 3rd edition.

Jakobsson, M. and Rosenberg, N. A. 2007. CLUMPP : a cluster matching and permutation

program for dealing with label switching and multimodality in analysis of population struc-

ture, Bioinformatics 23, 1801–1806.

Jasra, A., Holmes, C. C., and Stephens, D. A. 2005. Markov chain Monte Carlo methods and

the label switching problem in Bayesian mixture modeling, Statistical Science 20, 50–67.

Nordborg, M., Hu, T. T., Ishino, Y., Jhaveri, J., Toomajian, C., Zheng, H., Bakker, E.,

Calabrese, P., Gladstone, J., Goyal, R., Jakobsson, M., Kim, S., Morozov, Y., Padhukasa-

hasram, B., Plagnol, V., Rosenberg, N. A., Shah, C., Wall, J. D., Wang, J., Zhao, K.,

Kalbfleisch, T., Schulz, V., Kreitman, M., and Bergelson, J. 2005. The pattern of polymor-

phism in Arabidopsis thaliana, PLoS Biol. 3, 1289–1299.

28

Pella, J. and Masuda, M. 2006. The Gibbs and split-merge sampler for population mixture

analysis from genetic data with incomplete baselines, Can. J. Fish. Aquat. Sci. 63, 576–596.

Pritchard, J. K., Stephens, M., and Donnelly, P. 2000. Inference of population structure using

multilocus genotype data, Genetics 155, 945–959.

Rosenberg, N. A. 2004. Distruct: a program for the graphical display of population structure,

Mol. Ecol. Notes 4, 137–138.

Rosenberg, N. A., Burke, T., Elo, K., Feldman, M. W., Freidlin, P. J., Groenen, M. A. M.,

Hillel, J., Mäki-Tanila, A., Tixier-Boichard, M., Vignal, A., Wimmers, K., and Weigend, S.

2001. Empirical evaluation of genetic clustering methods using multilocus genotypes from

20 chicken breeds, Genetics 159, 699–713.

Rosenberg, N. A., Pritchard, J. K., Weber, J. L., Cann, H. M., Kidd, K. K., Zhivotovsky,

L. A., and Feldman, M. W. 2002. Genetic structure of human populations, Science 298,

2381–2385.

Stephens, M. 2000. Dealing with label switching in mixture models, J. R. Stat. Soc. B 62,

795–809.

29

