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ABSTRACT 

 

Geographic atrophy (GA) generally appears in the advanced 

stage of age-related macular degeneration (AMD). It is a 

principle cause of the severe central visual loss for elder 

adults with non-exudative AMD in developed countries. In 

this paper, a multi-scale deep convolutional neural network is 

proposed for the joint segmentation and prediction of GA. 

First, restricted summed-area projection (RSAP) technique 

was used to generate GA projection images from the SD-

OCT volumetric data. Then, GA projection images were sent 

to the multi-scale branches to acquire multi-scale feature 

maps. The final GA segmentation results were obtained by 

refining the multi-scale feature maps with a voting decision 

strategy. In the end, those multi-scale feature maps were 

cascaded with low-level features computed from the original 

images to predict the growth of the GA lesion. The segmented 

and predicted GA lesion in the tested scenarios resulted in a 

satisfying accuracy, comparing with the observed ground 

truth. 

 

Index Terms—geographic atrophy, segmentation, 

prediction, multi-scale, SD-OCT, neural network 

 

1. INTRODUCTION 

 

Age-related macular degeneration (AMD) is a leading cause 

of blindness among elderly individuals. Advanced AMD 

usually appears as a non-exudative form characterized by the 

presence of geographic atrophy (GA) [1-2]. The reduction in 

the worsening of atrophy is a well-known but crucial 

biomarker for estimating the effectiveness of the GA 

treatment [3]. Thus, automated GA segmentation and 

prediction, which could aid ophthalmologists in objectively 

measuring the regions of GA and forecasting the evolution of 

GA for further treatment decisions [4], is helpful for the 
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clinical diagnosis. Manual segmentation is time consuming, 

and may not produce reliable results especially for the masses 

of data. In addition, the artificial prediction may produce a 

great deal of uncertainty. Therefore, an automated, accurate 

and reliable segmentation and prediction technology is 

urgently needed in the advanced care of GA. 

The spectral-domain optical coherence tomography 

(SD-OCT) has proven successful in identifying the GA [5] 

and become a main imaging tool to capture the retinal 

structure these years. In recent years, several state-of-the-art 

algorithms were proposed for GA segmentation based on the 

SD-OCT images. [6-8]. Chen et al. [6] used geometric active 

contours to segment GA margin automatically. The 

performance of this model generally depend on the contour 

initializations. To further improve the segmentation accuracy 

and robustness, Niu et al. [7] proposed an automated GA 

segmentation method by using a Chan-Vese model via local 

similarity factor. Ji et al. [8] proposed a deep voting model 

for automated GA segmentation of SD-OCT images, which 

is capable of achieving high segmentation accuracy without 

layer segmentation. The segmentation methods mentioned 

above are time-consuming and of low efficiency. Until now, 

few literatures have focused on the automated growth 

prediction of GA in the field of computer science. Niu et al. 

[9] attempted to extract 19 comprehensive quantitative 

imaging features as the predictors for the future GA growth, 

and random forest classifier was selected for the prediction 

model, achieving preferable prediction accuracy. Similarly, it 

is fussy and time-consuming in elaborately designing the 

hand-crafted predictors. 

In order to segment and predict the GA lesion more 

efficiently, we proposed a multi-scale deep convolutional 

neural network for the joint segmentation and prediction of 

GA in this paper, which is capable of achieving high 

segmentation accuracy and prediction accuracy 

simultaneously. Multi-scale branches are constructed to 
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capture multi-scale feature maps and then the segmentation 

results are obtained by refining multi-scale feature maps with 

a voting decision strategy. Besides, multi-scale feature maps 

were cascaded with low-level features computed from the 

original images to predict the growth of the GA lesion. 

Experiment results indicated that our method can provide 

reliable segmentation and prediction for GA from SD-OCT 

images. 

 
Fig. 1. The integrated flow chart of the joint segmentation and 

prediction of GA. 

 

2. METHOD 

 

The integrated flow chart of the joint segmentation and 

prediction of GA is illustrated in Fig. 1. The input data 

comprises a series of SD-OCT images and the output data 

includes the GA segmentation at the current time and GA 

prediction at the next time.  

 

2.1. Pre-processing 

 

The restricted summed-area projection (RSAP) [10], which 

restricts the axial projection of an SD-OCT volume to the 

regions beneath the Bruch’s membrane (BM) and considers 

the choroidal vasculature’s influence, generated more distinct 

GA projection images compared with other projection 

techniques [11]. Besides, due to the displacements among 

OCT volumes captured at different time points for the same 

patient, sift flow method [12] was selected to register the 

projection images into the same coordinate to guarantee the 

prediction accuracy. Finally, several frequently-used data 

augment methods, including flipping, rotation, cropping and 

scaling, were used to increase the sample size. 

 
Fig. 2. The whole network architecture of the multi-scale 

deep convolutional nerual network. 

 

2.2. Network Architecture 

 

The whole network architecture of the proposed multi-scale 

deep convolutional neural network is illustrated in Fig. 2. In 

this network, branches used to capture the multi-scale 

features are arranged in parallel. The input GA projection 

images are sent to the multi-scale branches respectively. All 

branches share the same network structure, including the 

encoder part and the decoder part. For GA segmentation, a 

voting decision strategy was used to refine the multi-scale 

feature maps among branches. In addition, an extra path 

stacking four convolutional layers is constructed to extract 

the low-level features of the input image. Low-level features 

and multi-scale feature maps are cascaded together as the 

input of the prediction component of the network consisting 

of four convolutional layers to obtain the final GA prediction. 

Multi-scale Branches: The fully convolutional network 

(FCN) [13] is selected as the base architecture for each 

branch. Based on the architecture of FCN (Fig. 3), which is a 

popular framework for image semantic segmentation, we 

replaced the standard convolution by an atrous convolution 

with a sparse convolutional kernel [14]. The atrous 

convolution is a powerful tool with the capability to capture 

the multi-scale image information through explicitly 

controlling the resolution of features computed by deep 

convolutional neural networks and can adjust the field-of-

view of the convolutional kernel. Particularly, in the case of 

2D images, for each location 𝒊 on the output feature map 𝒚 

and the convolutional kernel 𝒘, atrous convolution is applied 

over the input feature map 𝒙 as follows: 

𝒚[𝒊] =  ∑ 𝒙[𝒊 + 𝑟 ∙ 𝒌]𝒘[𝒌]𝒌                      (1) 

where the atrous rate 𝑟 determines the stride with which we 

sample the input image, and 𝒌 is the size of the convolutional 

kernel. Note that when 𝑟 = 1, the atrous convolution can be 

regarded as a standard convolution. The field-of-view of the 

convolution kernel is adaptively modified by changing the 

rate 𝑟 . To boost the training against the curse of gradient 

vanishing and augment the information propagation, we 

introduced the concept of dense connection into each branch, 

namely the intra-branch connection. The intra-branch 

connection also has the advantages of encouraging the reuse 

of features, reducing the number of parameters and benefiting 

the network optimization. Finally, several convolutional 

layers are stacked after each up-sampling process to promote 

the fitting ability of the branch. Modified multi-scale 

branches are represented in Fig. 3. We considered that the 

different scale information is helpful for each independent 

branch with the purpose of further improvement, thus an 

inter-branch connection was also added to interact 

information among branches, as shown in Fig. 2. 

 
Fig. 3. The network architecture of each branch. 

 

Loss Function: The pixel-wise cross-entropy loss was 

applied to all the training processes for the network. For the 

i-th branch with the pixel-wise cross-entropy loss 𝐸𝑖, the loss 
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was computed as follows: 

𝐸𝑖 = ∑ 𝜔(𝒙) 𝑙𝑜𝑔 𝑝𝑙(𝒙)𝒙∈𝛺                         (2) 

where 𝑝𝑙(𝒙)  provides the estimated probability of pixel 𝒙 

belonging to class 𝑙, and 𝜔(𝒙) is the weight associated with 

pixel 𝒙. To address the class imbalance, we introduced the 

concept of focal loss [15] to the cross-entropy loss. Then 

equation (2) can be reshaped as follows: 

𝐸𝑖 = ∑ 𝜔(𝒙)(1 − 𝑝𝑙(𝒙))𝛾 𝑙𝑜𝑔 𝑝𝑙(𝒙)𝒙∈𝛺          (3) 

(1 − 𝑝𝑙(𝒙))𝛾 is a modulating factor which is able to reduce 

the loss contribution from distinguishable examples and can 

extend the range in which an example can receive a low loss. 

We found the proposed architecture performs the best when 

γ = 1 in our experiments.  

Implement Details: In our proposed network, each 

branch extracts feature maps in different scales. In this paper, 

the scale number was set to 3. The convolutional layers in 

each branch were composed of a 3×3 atrous convolution 

operation and a ReLU, followed by a dropout with the 

probability of 0.85. The rates of the atrous convolution of the 

multi-scale branch were set to 1, 2 and 4, respectively. The 

number of channels in each convolution layer was fixed to 

128. We conducted the voting strategy on the segmentation 

results from the three branches and considered the labels with 

the probability greater than 2/3 as the final label of the current 

pixel.  

In the training process, multi-scale branches were 

trained firstly for outputting the multi-scale feature maps. We 

set the GA segmentation label maps at the current time for 

supervision. GA label maps were annotated by experts 

manually. The loss function is represented as follows: 

𝐸 = ∑ 𝐸𝑖 + 𝑒𝑥𝑝 (−𝜇 ∗ 𝐺𝑖)                        (4) 

where 𝐸𝑖 denotes the loss of the i-th branch, 𝐺𝑖 denotes the 

sum of the boundary gradients for preserving the boundary of 

the segmentation, and 𝜇 controls the proportion of 𝐺𝑖 which 

was set to 0.001. Then, we froze the parameters of multi-scale 

branches and trained the remaining parameters for GA 

prediction. We set the GA label maps at the next time for 

prediction supervision. The loss function for prediction can 

be seen in equation (3). 

We used the gradient descent algorithm with the batch 

size of 20 to optimize the proposed network. The learning rate 

was set to 0.0001. The iterations in this network were set to 

50000. Our network was implemented with Tensorflow based 

on Python3.5.    

 

3. RESULTS 

 

SD-OCT volumes from 38 eyes in 29 patients at the Byers 

Eye Institute of Stanford University comprising a total of 118 

longitudinal SD-OCT examinations over a mean of 2.5 years 

were included in this study. The examinations were obtained 

from consecutive patients diagnosed with GA by an SD-OCT 

device (Cirrus OCT; Carl Zeiss Meditec, Inc., Dublin, CA). 

Each SD-OCT volume contains 1024×512×128 voxels with 

a corresponding trim size of 2mm×6mm×6mm.  

In this paper, we used two criteria to quantitatively 

evaluate the performances of each comparison method: the 

overlap ratio (OR) and the dice index (DI). 

 

3.1: Segmentation and Prediction of GA from Patient-

Dependent Testing 

 

Suppose each patient has n (n>2) volumes and the first 

n−2 volumes are used for training the network parameters to 

segment the n−1-th volume and predict the remaining n-th 

volume. In the training stage, the n − 1-th volume just 

provided the ground truth to validate the prediction of the 

n−2-th volume. In the testing stage, the n−1-th and the 

remaining n-th ground truth were used to validate the 

segmentation and prediction of the n − 1-th volume 

respectively. The evaluation comprised a total of 118 

volumes from 38 eyes of 29 patients, where 74 out of 118 

eyes were used for network training and only the eyes with 

more than 2 volumes were considered in the evaluation, 

which comprise 22 volumes from 22 eyes of 22 patients. 

 

Table 1. The mean overlap ratio (OR) and the dice index 

(DI) of GA segmentation results over 38 eyes. 
 OR DI 

Chen’s method [6] 0.73 0.84 
U-Net [16] 0.75 0.86 

Niu’s method [7] 0.81 0.89 

Ji’s method [8] 0.86 0.92 
The proposed method 0.84 0.91 

 

Table 2. The mean overlap ratio (OR) and the dice index 

(DI) of GA prediction results over 38 eyes. 
 OR DI 

Niu’s method [9] 0.68 0.81 
The proposed method  0.69 0.82 

 

GA segmentation results from our method were 

compared with Chen’s method [6], U-Net [16], Niu’s method 

[7] and Ji’s method [8] respectively, as listed in Table 1. We 

can find that the segmentation results from our proposed 

method are superior to U-Net, Chen’s and Niu’s method, but 

slightly lower than Ji’s method. That is because Ji utilized 

more complete information in the axial direction compared to 

the projection image. Besides, Ji’s method treated the 

semantic segmentation as the per-pixel classification and thus 

brought lower efficiency compared with our method. When 

testing a whole cube, the time cost of our method is 0.4s 

compared with the time cost in excess of 60s from Ji’s 

method. 

GA prediction results from our method were compared 

with Niu’s method [9], as listed in Table 2. Our automated 

prediction results are better than those of Niu’s method. 

Besides, our method is simpler than the traditional machine 

learning methods based on hand picked features. 

Fig. 4 shows the visualization of the joint segmentation 

and prediction results from our proposed method. First row 

shows the GA segmentation at the current time and the 

second row shows the GA prediction  at the next time. As it 
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can be seen from Fig. 4, high agreements can be achieved 

between our automated results and the ground truth. 

 
Fig. 4. Visualization of the joint segmentation and prediction 

results. The red indicates the ground truth and the green line 

indicates the automated results from our method. 

 

3.2: Segmentation and Prediction of GA from Patient-

Independent Testing 

 

To further verify the performance of our proposed model on 

patient-independent testing, some experiments were designed 

via leave-one-out cross-validation. The evaluation comprised 

a total of 118 volumes from 38 eyes of 29 patients, where the 

training data from m−1 (m=38) eyes were used to build the 

model and the testing data at the first time of the remaining 1 

eye were used for validation. Table 3 summarizes the average 

quantitative results with patient-independent testing. The 

performance of the segmentation and prediction algorithm 

from patient-independent testing declined approximately 4% 

and 3% respectively compared with the previous results. That 

is because the similarity between the training data and the 

testing data goes down. However, the quantitative results still 

keep relatively stable. 

 

Table 3. The summarizations of GA segmentation and 

prediction results from patient-independent testing. 
 OR DI 

Segmentation Accuracy 0.80 0.88 
Prediction Accuracy 0.66 0.79 

 

4. CONCLUSION 

 

In this paper, we presented a multi-scale deep convolutional 

neural network for the joint segmentation and prediction of 

GA more efficiently in SD-OCT images. Our experiments 

showed that the proposed architecture can achieve an 

outstanding performance by the multi-scale feature extraction 

and the training in stages. The comparison with the existing 

methods also demonstrated the potential applications of 

neural network techniques for medical image segmentation 

and prediction. In the future work, the network architecture 

for the joint segmentation and prediction will be extended to 

3D spaces based on the integrated SD-OCT volumetric data. 
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