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Natural Language Generation Model for
Mammography Reports Simulation

Assaf Hoogi , Arjun Mishra, Francisco Gimenez, Jeffrey Dong, and Daniel Rubin

Abstract—Extending the size of labeled corpora of medi-
cal reports is a major step towards a successful training of
machine learning algorithms. Simulating new text reports
is a key solution for reports augmentation, which extends
the cohort size. However, text generation in the medical
domain is challenging because it needs to preserve both
content and style that are typical for real reports, without
risking the patients’ privacy. In this paper, we present a
conditioned LSTM-RNN architecture for simulating realistic
mammography reports. We evaluated the performance by
analyzing the characteristics of the simulated reports and
classifying them into benign and malignant classes. An
average classification AUC was calculated over two dis-
tinct test sets. A qualitative analysis was also performed
in which a masked radiologist classified 0.75 of the simu-
lated reports as real reports, showing that both the style
and content of the simulated reports were similar to real
reports. Finally, we compared our RNN-LSTM generative
model with Markov Random Fields. The RNN-LSTM pro-
vided significantly better and more stable performance than
MRFs (p < 0.01, Wilcoxon).

Index Terms—Natural language generation, mammo-
graphy reports, RNN-LSTM, simulation.

I. INTRODUCTION

U SING machine-learning tools for medical applications has
become very popular over the last few years, but progress

towards models that are useful in practice has been hindered
by a dearth of annotated clinical data. Obtaining annotated
data is often challenging, time consuming and expert-dependent
as well. Generation of medical text reports is highly valuable
because annotated medical data is not commonly available. In
addition, if our small cohort of real reports is de-identified,
then using it as a training set and generating many other de-
identified reports will enrich the data while minimizing the risk
for the patient privacy. Several works contribute to large-scale
de-identification of datasets using techniques such as general-
ization, suppression (removal), or permutation and swapping of
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certain data values [1], [3], [4], [8], [13], [16], [18], [32], [37].
In the medical informatics community, there are many efforts
to de-identify medical text documents, dealing with HIPAA
identifiers [19], or Protected Health Information (PHI) [26].
Szarvas et al. developed a model for anonymizing Protected
Health Information (PHI) while Shweta et al. presents another
method for de-identifying medical records using an Recurrent
Neural Network (RNN) [30]. However, Sweeney et al. shows
that de-identified datasets are nonetheless subject to the risk of
re-identification of those patients [29], by tracing back to the
imaging machine. Therefore, rather than using de-identification
procedure, generation of simulated data could be an optimal
alternative strategy for extending medical datasets. This can be
used for training machine learning algorithms or radiologists
trainees in a manner that provides the important statistical prop-
erties of actual data without risking patient privacy.

II. RELATED WORK

Many works to date have used machine-learning techniques
for text generation over different domains, such as speech-to-
text applications and image captioning (image-to-text). Natu-
ral Language Generation (NLG) models, either rule-based or
corpus-based, can be used for these goals. Rudnicky and Oh,
for instance, proposed an n-gram language model approach [23]
while Mairesse and Young proposed a phrase-based NLG sys-
tem based on factored language models that can learn from a
semantically aligned corpus [20]. Karpathy et al., on the other
hand, presented a technique for captioning different regions
in images [15]. Their approach leverages datasets of images
combined with their text descriptions to learn about the inter-
modal correspondences between natural language and visual
data. Their model is based on a combination of Convolutional
Neural Networks over image regions, bidirectional Recurrent
Neural Networks over sentences, and a structured objective
approach that aligns the two modalities through a multimodal
embedding. Socher et al. [27] further studied the image-text
correlation to annotate different parts of images. Several works
generate image captions by using fixed templates that are filled
based on the content of the image [11], [17], [33], [34], but this
approach limits the variety of possible outputs. In recent work,
Dong et al. propose a new training method called Image-Text-
Image that integrates text-to-image and image-to-text synthe-
sis to improve the performance of text-to-image synthesis [7].
However, despite the substantial focus on text generation across
multiple domains, there are only a few works that focus on
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generative models for text-to-text simulation. By extending an
Long Short-Term Memory (LSTM) network to be both deep in
space and time, Graves shows that the resulting network can be
used to synthesize handwriting indistinguishable from that of a
human [10]. Zhang and Lapata use RNNs to generate Chinese
poetry [35]. In [36], Zhang et al. present an automatic drawing
of Chinese characters by using an LSTM conditional generative
model. Their technique was used to model Chinese handwriting,
allowing the method to generate new handwritten characters
by sampling from the probability distribution associated with
the RNN [36]. A two-component method was proposed by Cho
et al. [5] and Sutskever et al. [28] to encode a variable-length
source sentence into a fixed-length vector and to decode the
vector into a variable-length target sentence. Encoding to a
fixed-length vector has its limitations; thus, Bahdanau et al.
proposed a modified method without this constraint [2]. Despite
the advances of prior works within the text generation domain,
a key challenge for text-text generation is the simulation of new
text that not only preserves the style of the original text, but
also the meaningful content of the text. For example, Karpathy
demonstrated a character-level RNN architecture for generating
Shakespeare text. The RNN architecture did well in replicating
the typical Shakespeare style, but the system had substantial
difficulties in generating content with reasonable meaning. On
contrary, the challenge of generating new text reports, preserv-
ing the style-content characteristics of real ones, is extremely
relevant in the medical domain.

This paper presents several key contributions.
� We propose a Natural Language Generation model for

text-to-text simulations. This model preserves the content-
style characteristics of the original text. The reports’ simu-
lation is important for data enrichment task, which extends
the training set by adding PHI protected reports. To our
knowledge, a successful content-style NLG model has not
previously been reported.

� This is the first method that was developed for generation
and augmentation of medical text reports, and specifically
for radiology reports. The medical domain has unique
NLG challenges: the generated report must satisfy the
constraints of grammaticality (relevant subsections, lan-
guage style and punctuations), meaningfulness (sentences
meaning, clinical diagnosis) and reasonableness in a med-
ical sense (i.e., a medical report must exhibit features
that distinguish it from non-medical text). In addition,
there is an inherent diversity of medical reports, as each
clinician has their own particular way of describing the
same diagnosis, spelling or grammar errors are common,
and there inevitably exist misdiagnoses or incomplete
interpretations in any clinical report corpus each of these
should be handled by a robust text generation technique.

� We present a comparison of the LSTM model with an
alternative approach for generating simulated reports with
a Markov Random Field (MRF) approach, and we quan-
titatively and qualitatively evaluate performance of each
technique.

The paper is organized as follows. Section II introduces
the NLG model for end-to-end simulation of mammogram

Fig. 1. Our RNN-LSTM architecture for text-to-text report generation.

reports. Section III describes the experimental dataset, Sec-
tion IV presents the results, and Section V draws the concluding
remarks about the quality of the presented method.

III. THE PROPOSED METHOD

In this work, we use a 3-layer RNN-LSTM architecture as
a NLG tool for text-to-text simulation (Fig. 1). RNN-LSTM-
based generative models are commonly used for both uncon-
ditional [12], [14] and conditional text [31] generation. These
models represent a class of autoregressive models that generate
outputs sequentially, where the next predicted element is condi-
tioned or unconditioned on the previous generated elements [25].
For our model, we chose the conditional text generation ap-
proach.

A. Conditional Generative Text-to-Text RNN-LSTM
Model

Text-to-text generation aims to directly model the conditional
probabilityp(y|x)of mapping an input sequence (x1, .., xT ) into
an output sequence y1, .., yT ′ whose length T

′
may be different

than T. We compute the conditional probability by first obtaining
the fixed dimensional representation of the input sequence, given
by the last hidden layer of the LSTM, and then compute the
probability of the output with a standard LSTM formulation by
the following

p(y1, .., yT ′ , x1, .., xT ) =

T
′

∏

t=1

−(yt|η, y1.y(t−1)) (1)
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Let the memory cells (h1, .., hT ) in the LSTM layer produce
a representation sequence. This representation sequence is then
averaged over all time steps resulting in representation h. Let
(Ct) be a candidate for the states of a memory cell at time t,

C̃t = tanh(Wcxt + Uch(t−1) + bc) (2)

where Wc is the input-to-hidden weight matrix, Uc is the state-
to-state recurrent weight matrix, and bc is the bias vector. Then,
the memory cells new state can be computed by:

Ct = it ⊗ C̃t + ft ⊗ C(t−1) (3)

where the operation ⊗ denotes the element-wise vector product.
Output gates (o1, .., oT ) can then be calculated as follows:

ot = σ(W0xt + U0h(t−1) + V0Ct + b0) (4)

tanh is used to update the sequence hT that is represented as:

ht = ot ⊗ tanh(Ct) (5)

The forget gates of the LSTM that we use in this work are
controlled by the sigmoid function:

ft = σ(Wfxt + Ufh(t−1) + bf ) (6)

We use a dropout step after each LSTM layer as well as the
RMSPROP optimizer [6]; we also utilized the Softmax function
over all output vectors together.

B. Word Embedding

Word embedding methods have the powerful capability to
capture both semantic and syntactic variations of words [21]. In
this work, we use GloVe (Global Vectors for Word Represen-
tation) model [24] that is an unsupervised learning algorithm
for obtaining vector representations. We train the GloVe on
Wikipedia text and the iterative learning is done through sam-
pling the word co-occurrence distribution. Training is performed
on aggregated global word-word co-occurrence statistics from
a corpus, and the resulting representations showcase interesting
linear substructures of the word vector space. We use a skip-gram
with a negative sampling in our model [9], [22]. As long as
the underlying dataset is being bootstrapped from is PHI pro-
tected real reports, there are no PHI concerns in the simulated
data. Therefore while the actual GloVe embeddings from the
Wikipedia corpus may contain arbitrary names, as a result of
the underlying training data they will never be encoded.

C. Model Training

Our LSTM architecture was trained by using the whole MCW
cohort (see Experimental Dataset section). In order to best learn
the statistics of each type of reports (benign/malignant), we de-
signed two parallel word-level LSTM architectures, for benign
and malignant cases separately, with three layers each. The main
reason for separating the reports is the size of each dataset.
The malignant cohort is significantly smaller than the benign
one, and as a result the architecture hyper-parameters must be
different in order to obtain optimal performance. By learning
the statistics of the benign and malignant reports separately, we
can utilize the entire cohort without explicitly addressing class

imbalance within the model construction. Hyper-parameters
of the architecture were optimized by applying a grid search,
wherein different combinations of parameters have been tested
and the best one was chosen. As a result of the difference in the
benign and the malignant cohort sizes, we selected 600 neurons
and batch size of 100 in each LSTM layer for the benign subset
and 200 neurons and batch size of 20 in each LSTM layer for
the malignant reports architecture. We set the learning rate to
0.002 and use an adaptive learning rate method, RMSProp, with
a decay rate of 0.97. A dropout of 0.2 to reduce over-fitting was
applied.

D. Reports Evaluation

To evaluate the quality of the simulated reports, we used both
qualitative and quantitative analyses.

E. Qualitative Analysis

For the qualitative analysis, 30 different reports were ran-
domly selected. Fourteen reports were real, 16 were simulated.
Fiftheen were malignant and others (15) were benign. A radiol-
ogist who was unaware of the type of each report (simulated or
real) was asked to classify the reports into these two classes –
this procedure was performed in order to assess how similar
the simulated reports were to the real ones with respect to
both content and style. Each report has two separate sections:
the findings section that records the imaging observations
and the impression section that records the overall conclu-
sion/diagnosis. The radiologist made his decision by exploring
the findings consistency and their fit to the final report’s con-
clusion. The radiologist checked the grammar (relevant subsec-
tions, language style and punctuations), the meaning (sentences
meaning, clinical diagnosis) and its reasonableness in a medical
sense.

F. Quantitative Analysis

1) Report Classification Using Bayesian Network: We
first extracted the imaging findings from the free-text simulated
reports. The extracted observations were input into a Bayesian
Network (BN) that was used to classify the simulated reports into
benign and malignant cases by predicting the likely diagnosis
based on the input imaging findings. We then compared the
concluded diagnosis reported in the impression section of each
simulated report against the most likely diagnoses that we de-
rived from the BN model. This was done to evaluate the internal
consistency of the simulated reports and the correlation between
the findings and the impression sections in each report. In
this work, the BN model was used for reports’ evaluation only.
A key reason for choosing BN is that its degrees of freedom
are relatively small. Therefore, a variation between two Bayes
Nets is presumably due to the data rather than any variation in
the Bayes Nets. This is because the Bayes Net is just learning
Conditional Probability Tables which are inherently related to
the data, it does not learn other parameters. The training of the
BN model was done by using the MCW dataset, from which
we generated a subset of 984 cases (492 from each class). We
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Fig. 2. Training and validation Mean Squared Error for both (a) benign
and (b) malignant cases.

then used 20-fold cross-validation and measured the area under
the curve (AUC) and Gini coefficient. Gini coefficient applies
to binary classification and requires a classifier that can in some
way rank examples according to the likelihood of being in a
positive class. Both AUC and Gini coefficient were computed
using the BN probability of a lesion being malignant or benign
compared to the actual lesion type that was obtained by the
impression section in the reports.

2) Exploring Over-Fitting: Because we did not have many
malignant cases, over-fitting is a possibility. In order to reduce
the chance of over-fitting, our architecture 1) includes both batch
normalization and dropout regularization, 2) uses training and
testing subsets that were chosen from different data sources
(MCW/Stanford), to prevent any over-fitting to a specific dataset,
3) is relatively shallow, which decreases the risk of over-fitting.
Encouragingly, we observed that both training and testing errors
were comparable (Fig. 2). For the malignant cases, we can see

that 1) there is a slight difference between the training and
the validation loss, 2) the validation loss is a bit noisy. This
finding is reasonable considering the small number of malignant
reports that we had. However, this difference is not significant
(Wilcoxon text, p > 0.05), and this is not considered to be an
instance of over-fitting.

3) Contribution of Simulated Reports as a Data Augmen-
tation Tool: As was mentioned, the Bayesian Network is not
an integrative part of the NLG model. In this work, it was
used only as an evaluation tool for two different purposes:
1) to evaluate internal consistency and accuracy of the report
generation, and 2) to evaluate the contribution of the simulated
reports as a data augmentation approach. We conducted two
different experiments. First, we used a varied total number of
training examples. We explored the value of adding a varied
number of simulated reports (0, 30, 50, 100) to a fixed number
of 50 real reports. The BN was then used to classify a separate test
set of real reports into benign and malignant classes. Second, we
used a fixed total number of training examples. Then, we changed
the percentage of the real and the simulated reports within the
whole cohort - 1) real reports only, 2) 50% real reports and 50%
simulated ones, and 3) 25% real reports and 75% simulated ones.

4) Comparison With Markov Random Field Generative
Model: We compared our RNN-LSTM generative model with
a Markov Random Fields (MRF) generative one, a computa-
tionally efficient technique that can be used for text genera-
tion. MRFs do not require significant computational resources,
however, they are unable to capture long-range dependencies in
the same manner as RNN-based architectures [34]. To compare
these two approaches, we explored the classification accuracy
of the generated reports by training the BN classifier with 1)
the original data only, and 2) a combined dataset of both real
and simulated reports. Gini coefficient and AUC values were
calculated between the automated classification and the ground
truth (impression section in the reports) for each method in order
to evaluate the classification accuracy.

IV. EXPERIMENTAL DATASET

We used a large cohort of mammography narrative reports
that includes two different subsets 1) the Medical College of
Wisconsin (MCW) subset and 2) the Stanford mammography
subset. The MCW dataset was used to train the LSTM architec-
ture during the report generation phase as well as to train and test
the Bayesian Network used for evaluation of the test reports. The
Stanford dataset was used only as a test set for the Bayesian Net-
work. In that way, we were able to explore overfitting to a specific
dataset. The MCW subset includes reports from patients col-
lected at the Froedtert Memorial Hospital and Medical College
in Milwaukee. The reports are based on consecutive screened
and diagnostic mammography reports in 18,269 patients. There
are a total of 61,684 reports in our MCW subset, 492 of which
are classified as malignancies. This subset includes reports from
all 6 BIRADS diagnostic categories. The Stanford subset is
based on patients observed at Stanford Hospital via consecutive
screened and diagnostic mammography reports. This dataset
contains a total of 107 malignant cases and 37,570 benign cases.
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Fig. 3. Examples for real report (upper) and simulated one (lower) for a benign mammogram finding.

The Stanford subset includes only four BIRADS categories -
1,2,5 and 6, for which there is a higher confidence associated
with the lesion type (malignant or benign). Each report in both
subsets has two separate sections: the findings section that
records the imaging observations (Fig. 3) and the impression
section that records the overall conclusion/diagnosis. The latter
is the clinicians interpretation given the imaging findings. The
observations in the findings section should be consistent with
the overall impression reported in the impression section.

V. RESULTS

A. Qualitative Analysis

A masked radiologist reviewed and classified 30 reports (Re-
ports evaluation subsection) that were randomly selected for
qualitative evaluation. Among these, 0.857 of the real reports
were classified correctly by the radiologist and 0.75 of our
simulated reports were also classified as real. These results
support the high quality of the simulated reports, as most of
them were classified by the radiologist as being real. While 0.75
of the RNN-simulated reports were considered by the radiologist
to be real reports, only 0.25 of the simulated reports generated
by the MRF model (we compared with) were classified as real.
These results demonstrate the superiority of this LSTM-based
technique over the alternative MRF approach.

B. Quantitative Results

1) Style Statistics of the Simulated Reports: We analyzed
the multi-level style characteristics of the simulated reports
and compared them to the equivalent characteristics of the real
reports. It can be seen in Table I that the style statistics are
similar in both real and our simulated reports. Wilcoxon paired

TABLE I
REPORTS’ STYLE - MULTI LEVEL STATISTICS OF MAMMOGRAPHY REPORTS

test showed that the similarity between the real and the simulated
reports of these characteristics is not significant (p > 0.05). In
addition, we compared the most frequent keywords each report.
The 27 most frequent keywords were selected for each report.
Among those, 24 keywords were identical between the real and
the simulated reports (0.889 of the frequent words).

2) Contribution of Simulated Reports as Data Augmen-
tation Tool: Table II demonstrates the significance of the sim-
ulated reports as a data augmentation tool. It shows the contri-
bution of adding simulated data to a limited-sized collection of
annotated real data by using 50 real Stanford reports and a varied
number of simulated reports (0, 30, 50, 100). The BN was then
used to classify the remaining (real) MCW and Stanford reports
into benign and malignant classes. Fig. 4 goes even further. It
shows the contribution of the additional simulated dataset to the
benign and the malignant reports classification, separately.

Taking a fixed number of training examples for the BN
classifier and changing only the percentage of the real and
the simulated reports within the training examples, shows that
the simulated reports supply a comparable BN classification
accuracy, comparing to train it with real reports only (0.943
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TABLE II
CLASSIFICATION ACCURACY (GINI COEFFICIENT, *p < 0.01, **p < 0.05)

Fig. 4. The effect of using different amounts of simulated data on the
accuracy of real report classification (benign(top) /malignant (bottom)).

Vs. 0.935, p > 0.05). Means, the simulated reports are a decent
replacement to the real ones.

C. Comparison of RNN-LSTM and MRF Generative
Models

Table II also shows a comparison between our RNN-LSTM ar-
chitecture supplied and the MRF. A significant improvement was

obtained by using our method (p < 0.05, p < 0.01, Wilcoxon),
in addition to having more robust classification over different
datasets.

VI. DISCUSSION

In this work, we developed a method for generating simulated
clinical reports, to be used as a data augmentation tool for
training machine learning algorithms. In case that the training set
is de-identified, we have another added value - simulating reports
without risking patients’ privacy. We explored the effect of
leveraging this simulated data to improve training of a machine
learning classifier over the original reports by augmenting the
original training set. The results showed that the additional simu-
lated data significantly enhances the end classification accuracy.
We evaluated our method in several ways. First, a qualitative
analysis showed that our simulated reports were realistic in
terms of both content and style, since 75% of them were judged
by a radiologist to be real reports. The fact that only 25% of
the simulated reports generated by the MRF were classified as
real by a radiologist supports this conclusion, and demonstrates
the superiority of our LSTM-based architecture for this type of
text-to-text generation task when both content and style are of
utmost importance. Second, a quantitative analysis showed that
adding a varying number of simulated reports to a training set
for learning a machine learning classifier is beneficial; using our
LSTM architecture, it is clear that adding larger numbers of sim-
ulated reports increased the classification accuracy of new test
cases, suggesting that generating simulated reports could add
value in training machine learning models. Statistically, our re-
sults demonstrate that the LSTM-based method consistently and
significantly outperforms the MRF-based method (Wilcoxon).

A limitation of this study is the relatively low diversity of
data that was available for our work. Future work will include
several directions. We will analyze a other cohorts, including
cases from additional different institutions, which would capture
more diverse data statistics. We will also explore the training of a
word vector embedding model on RadLex, a Radiology-specific
ontology that could supply better results if used for training word
embeddings. Finally, it will be also interesting to investigate the
ability of the method in simulating other types of reports besides
mammography; we intend to explore both MRI and CT clinical
reports, as their substantial intra-class and inter-class variability
make these much more challenging targets for text-to-text gen-
eration when compared with highly structured mammography
reports.
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VII. CONCLUSION

There is a paucity of labeled training data in the medical
domain, and we have showed in the mammography domain
that using an LSTM-based technique for simulating text re-
ports can improve performance of machine learning methods
trained on datasets comprised of those reports. Our approach
was proved to be a useful data augmentation technique when a
large amount of labeled data is not available. Towards this end,
we have specifically proposed and validated a novel technique
that enables generating text-to-text simulations and preserves
the content-style characteristics of the original text. To our
knowledge, this kind of text-to-text generation framework has
not been yet developed, nor has the benefit of using it as a data
augmentation strategy been previously demonstrated. Accord-
ing to the presented results, we are confident that our method can
have an added value in improving the classification accuracy of
a variety of machine learning models that require large amounts
of clinical text as their major input.
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