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Abstract—The purpose of the work described here was to determine if the diagnostic performance of point and
2-D shear wave elastography (pSWE; 2-DSWE) using shear wave velocity (SWV) with a new machine learning
(ML) technique applied to systems from different vendors is comparable to that of magnetic resonance elastogra-
phy (MRE) in distinguishing non-significant (<F2) from significant (�F2) fibrosis. We included two patient
groups with liver disease: (i) 144 patients undergoing pSWE (Siemens) and MRE; and (ii) 60 patients undergoing
2-DSWE (Philips) and MRE. Four ML algorithms using 10 SWV measurements as inputs were trained with
MRE. Results were validated using twofold cross-validation. The performance of median SWV in binary grading
of fibrosis was moderate for pSWE (area under the curve [AUC]: 0.76) and 2-DSWE (0.84); the ML algorithm
support vector machine (SVM) performed particularly well (pSWE: 0.96, 2-DSWE: 0.99). The results suggest
that the multivendor ML-based algorithm SVM can binarily grade liver fibrosis using ultrasound elastography
with excellent diagnostic performance, comparable to that of MRE. (E-mail: dlrubin@stanford.edu) © 2019
World Federation for Ultrasound in Medicine & Biology. All rights reserved.
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INTRODUCTION

Chronic liver disease, caused by hepatic injury of various

etiologies, is a crucial global health problem with rising

incidence. Precise disease staging is paramount for patient

management, treatment recommendations and accurate

prognosis (Ferraioli et al. 2015). Liver biopsy has classi-

cally been the gold standard for fibrosis staging; however,

non-invasive imaging methods, such as transient elastog-

raphy (Fibroscan), point shear wave elastography

(pSWE), 2-D shear wave elastography (2-DSWE) and

magnetic resonance elastography (MRE), have been

reported to be at least as accurate with fewer complica-

tions (Afdhal et al. 2015; Lurie et al. 2015; Zhang et al.

2019). Two-dimensional SWE and pSWE provide liver

stiffness information using acoustic radiation force

impulses (Friedrich-Rust et al. 2012), and MRE uses an
ddress correspondence to: Daniel L. Rubin, Department of
ogy, School of Medicine, Stanford University, 1265 Welch
oom X-335, MC 5464, Stanford, CA 94305-5621. E-mail:
@stanford.edu

26
external passive driver to generate hepatic shear waves

that are imaged by MRE pulse sequences (Trout et al.

2016). MRE has been reported to be highly reproducible

and accurate for liver stiffness measurement (Cui et al.

2016), as has ultrasound elastography (D’Onofrio et al.

2010; Rizzo et al. 2011; Bota et al. 2012), although with

somewhat lower accuracy: (area under the curve [AUC]:

pSWE 0.81; 2-DSWE 0.88 [Sigrist et al. 2017]; MRE

>0.9 [Shi et al. 2014]). Ultrasound elastography is

cheaper than MRE and widely used in clinics; nonethe-

less, it lacks an ideal sensitivity and specificity in grading

liver fibrosis (Sigrist et al. 2017), which can negatively

influence patient care. Furthermore, ultrasound elastogra-

phy cutoff values for grading liver fibrosis based on veloc-

ity or stiffness values vary among manufacturers (Sigrist

et al. 2017; Ferraioli et al. 2019); thus, results are not

interchangeable from one system to another. In addition,

studies with the necessary population size to define or

improve these cutoff values are becoming harder to con-

duct because of the lack of gold standard biopsies being

performed. There is a critical need for robust cutoff values
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Table 1. Distribution of diseases between the two data sets

Diagnosis pSWE +MRE 2-DSWE +MRE

Hepatitis B 50 4
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for standardized hepatic fibrosis grading that can be

applied to all systems and diseases (Dietrich et al. 2017).

This important unaddressed concern has been raised in

the literature (Sigrist et al. 2017).

In recent years, machine learning (ML) approaches in

diagnostic radiology have emerged and gained prominence

(Erickson et al. 2017). Prior studies incorporating machine

or deep learning algorithms sought to improve liver fibrosis

grading with ultrasound elastography (Stoean et al. 2011;

Fujimoto et al. 2013; Chen et al. 2017; Gatos et al. 2017).

Nonetheless, there is no published study that has assessed an

ML technology for characterizing liver fibrosis using ultra-

sound elastography velocity measurements obtained with

pSWE and 2-DSWE to train and validate a scoring system

that is comparable to MRE for grading liver fibrosis, which

can also be applied to systems from different vendors.

Therefore, the purpose of this study was to deter-

mine if the diagnostic performance of pSWE and

2-DSWE for grading liver fibrosis using shear wave

velocity (SWV) with a new ML technique is comparable

to that of MRE in distinguishing non-significant (<F2)

from significant (�F2) fibrosis and can be applied to

ultrasound systems from different vendors.

METHODS

This HIPPA-compliant retrospective study was

approved by the institutional review board of our institu-

tion, and the requirement for written consent was waived

for all participating patients. Exclusion criteria were non-

diagnostic MRE and unreliable ultrasound elastography

with an interquartile ratio (IQR) divided by the median

(IQR/median>0.3). Figure 1 summarizes the study design.

Patient population

Group 1. From April 2014 to February 2017, 169

ultrasound elastography exams (pSWE) were performed

(86 men—mean age: 53.8 y, range: 23�75 y; 80

women—mean age: 56.9 y, range: 22�80 y) in patients
Fig. 1. Flow diagram of the enrollment process in this retro-
spective study. IQR = interquartile ratio; MRE =magnetic reso-
nance elastography; pSWE = point shear wave elastography; 2-

DSWE = 2-D shear wave elastography.
who also underwent an MRE examination within 12 mo

(this time frame was chosen based on discussions with

hepatologists from our institution as well as evidence in

the literature (Pan et al. 2018). Twenty-five of 169

patients (14.8%) were excluded because of unreliable

exams. All enrolled patients (144/144, 100%) had known

chronic liver disease or elevated liver enzymes (Table 1).

Group 2. From February 2016 to October 2017,

63 ultrasound elastography exams (2-DSWE) were per-

formed (39 men: mean age: 53.9 y, range: 23�79 y; 24

women: mean age: 55.4 y, range: 22�73 y) in patients

who underwent an MRE examination (median interval:

0 d, mean interval: 1 d). Three of 63 patients (4.8%)

were excluded because of a non-diagnostic MRE exam.

Chronic liver disease was known to be present in 58 of

60 enrolled patients (96.7%) (Table 1).

Ultrasound elastography image acquisition

Point SWE was performed in patients in group 1 in

the Virtual Touch Tissue Quantification (VTTQ) mode

on a clinical ultrasound scanner (Acuson S2000, Sie-

mens Medical Solutions, Mountain View, CA, USA)

coupled to a curved array transducer (6 C1 HD, Siemens

Medical Solutions). Philips 2-DSWE (group 2) was per-

formed using the prototype ElastQ software on an Epiq7

system coupled to a curved array transducer (C5-1, Phi-

lips Healthcare, Amsterdam, Netherlands).

Patients were asked to fast for at least 4 h before ultra-

sound imaging. SWV measurements of the liver were per-

formed in group 1 by one of three sonographers with

dedicated training in pSWE and in group 2 by one sonogra-

pher with dedicated training in 2-DSWE. Patients were
Hepatitis C 41 10
Non-alcoholic fatty liver disease
or steatohepatitis

19 23

Abnormal liver function studies 13 4
Alcohol abuse and alcoholic
cirrhosis

7 7

Primary biliary cholangitis 6 1
Hemochromatosis cirrhosis 3 3
Cryptogenic cirrhosis 2 2
Autoimmune hepatitis 1
Drug-induced hepatitis 2
Budd�Chiari syndrome 1
Morbus Wilson cirrhosis 1
Cardiac cirrhosis 1
Portal/mesenteric vein
thrombosis

1

No known chronic liver disease 2

2-DSWE = 2-D shear wave elastography; MRE =magnetic reso-
nance elastography; pSWE = point shear wave elastography.
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placed in the supine position, and the right arm was ele-

vated above the shoulder to widen the intercostal space.

The regions of interest (ROIs; Siemens: 10£ 6 mm, Phi-

lips: 0.785 cm2) were placed in liver segment 8 (Fig. 2).

Ten consecutive SWV measurements (in m/s) were

obtained from approximately the same location within

2 cm of Glisson’s capsule and perpendicular to the liver

capsule, without including large vessels or dilated bile

ducts. Patients were asked to maintain breath-holding at a

neutral position during measurements.

The results of all 10 measurements were automati-

cally displayed by the systems at the end of the exam

and either saved into the clinical picture archiving and

communication system (PACS; Centricity; GE; group 1)

or on an external hard drive disk (group 2).
Fig. 2. Ultrasound elastography images of the liver in segment
8 (transverse plane) obtained in the two different groups. (a)
Point shear wave elastography (pSWE) on a Siemens scanner
in group 1 (51-y-old female patient with abnormal liver func-
tion studies). (b) Two-dimensional shear wave elastography (2-
DSWE) on a Philips scanner in group 2 (42-y-old male patient

with chronic hepatitis B).
Magnetic resonance elastography imaging acquisition

Patients were instructed to fast for 4 h before the

MRE examination. All magnetic resonance (MR) elas-

tography examinations were performed on a 3-T MR

magnet (GE750, GE Healthcare, Waukesha, WI, USA)

using a 32-channel torso phased-array receive coil, with

a passive driver placed on the patient’s right upper abdo-

men to allow the transmission of 60-Hz vibrations into

the liver and a 2-D phase-sensitive echo-planar MR elas-

tography sequence (MR-Touch, GE Healthcare). The

sequence was acquired in a single expiratory breath hold

(»20 s) with the passive driver activated. A direct inver-

sion algorithm automatically created shear wave images

and stiffness maps from the acquired data. Radiologists

drew an ROI encompassing areas of the right hepatic

lobe assessed to have reliable signal, measuring liver

stiffness (complex shear modulus) in kilopascals.

Shear wave velocity-based grading and statistical

analysis

When the 10 SWV measurements had an IQR

divided by the median (IQR/median) >0.3, they were

considered unreliable and excluded from the study

(Ferraioli et al. 2015): group 1, 25 of 169 (14.8%); and

group 2, 0 of 63 (0%). Non-diagnostic MREs were

excluded from the study (group 1, n = 0; group 2, n = 3).

Liver fibrosis was binarily classified as clinically non-sig-

nificant (<F2) or significant (�F2) based on stiffness val-

ues for MRE with a published cutoff of 3.5 kPa

(Venkatesh and Ehman 2014); and for ultrasound elastog-

raphy based on median SWV using a cutoff value for Sie-

mens of 1.34 m/s (Friedrich-Rust et al. 2012). At the time

the present study was performed, Philips has not yet pro-

vided a published reference table for the just recently

released ElastQ software to grade fibrosis.

For Siemens data, the accuracy of median SWV using

the published cutoff value of 1.34 m/s with respect to MRE-

based fibrosis grading was calculated. Essentially, median

SWV from US elastography (USE) using a cutoff value of

1.34 m/s for Siemens divides the data set into clinically sig-

nificant and clinically non-significant fibrosis, whereas for

MRE, using a cutoff of 3.5 kPa also divides the data set into

clinically significant and clinically non-significant fibrosis,

and the accuracy of USE was compared with that of MRE

for this determination. However, as Philips does not yet

have a published cutoff value for clinically significant fibro-

sis, for both groups (Siemens and Philips) the performance

of median SWV velocity measurements with respect to

MRE-based binary fibrosis grades (true labels) was per-

formed using a receiver operating characteristic (ROC)

curve analysis. Hence, for both groups (in a technique that

thus does not rely on a published cutoff value), median

SWV measurements and MRE-based binary fibrosis grades

were input to the MATLAB perfcurve function to generate
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a receiver operating characteristic curve and calculate the

area under the curve (AUC).
Machine learning-based grading and statistical analysis

Figure 3 summarizes the ML approach to binary

hepatic fibrosis grading using the two groups:

pSWE+MRE and 2-DSWE+MRE. Four supervised ML

algorithms common in the literature (Erickson et al. 2017)

were applied: generalized linear regression model (Dobson

1990), naı̈ve Bayes (Hastie et al. 2009), quadratic discrimi-

nant analysis (Guo et al. 2007) and a non-linear support

vector machine (SVM) (Sch€olkopf and Smola 2002).

Logistic regression, which falls under the category of

generalized linear models, is a commonly used statistical

technique that can be used to predict a categorical outcome

value, most commonly binary, given a set of predictor values.

If the positive event is coded as “1” and the negative event is

coded as “0,” then binary logistic regression provides the log

odds of the outcome being positive given the predictor val-

ues. It uses the logit or sigmoid function, f(t) = 1/(1 + et),

which represents the log odds of observing the positive event.

In this case, t ¼ b0 þ b1X1 þ . . .þ bkXk, where the values

b represent the model parameters to be optimized and the

vector X represents the input data (Dobson 1990; Erickson

et al. 2017).

A naı̈ve Bayes classifier uses the idea of prior or

previous probabilities, derived from previous outcomes,

and applies the Bayes theorem, which determines the

probability of an event occurring taking advantage of

these known prior probabilities. The classifier takes each

outcome, such as “1” versus “0” in the binary case, and

selects the one with the highest probability (Hastie et al.

2009; Erickson et al. 2017).

Linear discriminant analysis, in practical terms,

seeks to discriminate between two groups. It does this by

minimizing the distance between data points from the
Fig. 3. Proposed multimodel framework for machine learning
(ML)-based fibrosis staging. This approach will provide a
fibrosis staging between 0 and 100 regardless of vendor. In this
work we only tested ultrasound elastography shear wave veloc-
ity (USE SWV) measurements obtained using Siemens and
Philips scanners, with magnetic resonance elastography (MRE)
as ground truth. However, in the future this model could be
extended to other vendors after additional training and valida-

tion on those data sets.
same class, while maximizing the distance between data

points from different classes. Quadratic discriminant

analysis is a variation of the aforementioned technique,

in which a “pseudo-quadratic” transformation is applied

to the data. While linear discriminant analysis naturally

allows a linear decision boundary between classes, qua-

dratic discriminant analysis allows quadratic equations

to represent that decision boundary. Hence, while qua-

dratic discriminant analysis allows for greater flexibility

in the decision boundary, it requires more parameters to

be calculated (Guo et al. 2007; Erickson et al. 2017).

A SVM seeks to discriminate between classes by

mapping each data point into a higher-dimensional space

and creating an optimal separating hyperplane that maxi-

mizes the distance between each data point and that

hyperplane, maximizing the differentiation between

each class. This mapping into higher-dimensional space

is accomplished by a kernel, and the particular kernel

used in this study was the Gaussian radial basis kernel,

which performs well with high-dimensional data

(Sch€olkopf and Smola 2002; Erickson et al. 2017). We

also used auto scaling with a box constraint of 1.

The 10 measurements of shear wave velocity

served as inputs to these ML algorithms, and their

accuracy for binary hepatic fibrosis grading was

assessed. Twofold cross-validation was performed,

that is, half of the data for training and half for testing

and vice versa (Hastie et al. 2009). During each run,

the group 1 training data set was used to train model 1

with MRE (Siemens-Model; Fig. 3), and the MAT-

LAB predict function applied this model to the vali-

dation data and output a score representing the

likelihood that the label came from each class, either

clinically non-significant or significant fibrosis. The

MATLAB perfcurve function then used these scores

and true class labels (from all data) to generate ROC

curves to calculate AUC, sensitivity, specificity, posi-

tive and negative predictive values and accuracy.

Next, the group 2 data set (Philips) was similarly used

to train the Philips model with MRE.

To determine if the improvement in AUC between

the ML algorithm and median SWV was statistically sig-

nificant, we performed the DeLong test.

All statistical analyses were performed in MAT-

LAB R2015 b (MathWorks, Natick, MA).
RESULTS

Using the current clinically established standard of

care (SOC) cutoff value for binary fibrosis grading for

Siemens pSWE (group 1), median SWV measurements

performed only fair compared with MRE with 60.4%

accuracy (Table 2). Note that SOC versus MRE analysis

was not performed in group 2 because of the lack of a



Table 2. Performance of median shear wave velocity of 10
measurements in predicting clinically non-significant versus

significant fibrosis using a SOC cutoff value of 1.34 m/s for the
pSWE data set (Friedrich-Rust et al. 2012) compared with the
reference standard MRE, as well as ML-based staging (MRE

equivalent) for group 1

pSWE SOC versus MRE SOC versus ML

Sensitivity 81.6 82.5
Specificity 49.5 47.1
Negative predictive value 83.9 87.5
Positive predictive value 45.5 37.5
Accuracy 60.4 56.9

ML =machine learning; MRE =magnetic resonance elastography;
pSWE = point shear wave elastography; SOC = standard of care cutoff
value.

30 Ultrasound in Medicine & Biology Volume 46, Number 1, 2020
published cutoff table for Philips 2-DSWE. Next, using

the median of 10 consecutive SWV measurements in an

analysis employing an ROC curve for both groups, the

performance of binary fibrosis grading was moderate for

the pSWE (AUC 0.76) and 2-DSWE (AUC 0.84) data

sets (Tables 3 and 4, Fig. 4).

Next, performance was assessed using the four ML

algorithms, with shear wave velocity measurements as

inputs and binary fibrosis grading as determined by MRE

as the gold standard (Tables 3 and 4, Fig. 4): the SVM

had the highest level of performance of the ML algorithms

in binary fibrosis grading, with an AUC of 0.96 for the
Table 3. Performance of each machine learning algorithm as well as m
versus significant fibrosis in the

Classifier Sensitivity Specificity NPV

Median SWV 71.4 71.6 82.9
GLRM 77.1 70.5 85.9
Bayesian 71.4 76.8 83.9
QDA 77.1 70.5 85.9
SVM 81.3 94.7 90.9

Sensitivity and specificity represent different points on the receiver operat
coxon rank-sum test.

GLRM = generalized linear regression model; NPV = negative predictive
QDA = quadratic discriminant analysis; SVM = support vector machine; SWV

Table 4. Performance of each machine learning algorithm as well as m
clinically non-significant versus significant fib

Classifier Sensitivity Specificity NPV

Median SWV 73.7 100.0 89.1
GLRM 84.2 75.6 91.2
Bayesian 78.9 80.5 89.2
QDA 78.9 80.5 89.2
SVM 89.5 100.0 95.4

Sensitivity and specificity represent different points on the receiver operat
coxon rank-sum test.

AUC = area-under-the-curve; GLRM= generalized linear regression mode
QDA = quadratic discriminant analysis; SVM = support vector machine; SWV
pSWE data set and 0.99 for the 2-DSWE data set. For the

2-DSWE data sets, quadratic discriminant analysis

yielded an AUC of 0.88. The other ML-based algorithms

either reached the same or slightly higher AUC values

than median SWV in both data sets.

Most notably, the difference in AUC between

median shear wave velocity and SVM was statistically

significant for both Siemens and Philips, although the

p value was better for Siemens as it had a larger sample

size (Table 5).

In the analysis of score separation between non-

significant and significant hepatic fibrosis, median SWV

exhibited worse score separation between the two classes

(Fig. 5). With the ML-based algorithms, especially sup-

port vector machines, there was improved binary score

separation for both data sets (Fig. 5).
DISCUSSION

In our study, the ML algorithm SVM outperformed

median SWV in distinguishing between non-significant

and significant hepatic fibrosis, with a diagnostic perfor-

mance similar to that of MRE-based fibrosis grading.

The ML-based algorithm SVM had excellent diagnostic

performance in data sets acquired from Siemens and Phi-

lips systems, despite the fact that these two vendors used

different elastography techniques.
edian shear wave velocity in predicting clinically non-significant
group 1 data set (pSWE)

PPV Accuracy AUC p Value

56.5 71.5 0.760 3.36E-07
56.9 72.7 0.808 1.87E-09
61.4 75.0 0.776 5.88E-08
56.9 72.7 0.821 4.16E-10
88.6 90.2 0.962 1.93E-19

ing characteristic (ROC) curve. p Values were calculated using a Wil-

value, PPV = positive predictive value, AUC = area under the curve;
= shear wave velocity.

edian shear wave velocity (without cut-off value) in predicting
rosis in the group 2 data set (2-DSWE)

PPV Accuracy AUC p value

100.0 91.7 0.841 2.54 E-05
61.5 78.3 0.858 1.16 E-05
65.2 80.0 0.886 1.60 E-06
65.2 80.0 0.881 2.55 E-06
100.0 96.7 0.987 1.61 E-09

ing characteristic (ROC) curve. p Values were calculated using a Wil-

l; NPV = negative predictive value; PPV = positive predictive value;
= shear wave velocity.



Fig. 4. Receiver operating characteristic (ROC) curves compare the performance of each machine learning (ML) algorithm and
the baseline technique using median shear wave velocity to predict clinically non-significant versus significant liver fibrosis, as
determined by magnetic resonance elastography (MRE) as gold standard. Support vector machines (blue) had the highest perfor-
mance of all ML algorithms in both groups. pSWE= point shear wave elastography; 2-DSWE= 2-D shear wave elastography.

Table 5. Differences in areas under the curve between the ML
algorithm, SVM and median SWV

P Value Significantly
different

Siemens
Median SWV versus SVM 4.95E-05 Yes
Median SWV versus QDA 0.19098 No
Median SWV versus Bayesian 0.46593 No
Median SWV versus GLRM 0.19098 No

Philips
Median SWV versus SVM 0.036085 Yes
Median SWV versus QDA 0.32787 No
Median SWV versus Bayesian 0.22957 No
Median SWV versus GLRM 0.71877 No

Difference in areas under the curve between the ML algorithm, SVM
and median SWV was statistically significant for both groups.

AUC = area-under-the-curve; GLRM = generalized linear regression
model; QDA = quadratic discriminant analysis; SVM = support vector
machine; SWV = shear wave velocity.

Significantly different = p-value <0.05.
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We used ML in elastography by analyzing 10 shear

wave velocity measurements obtained with systems

from two different vendors as inputs and then training

the algorithm with MRE; our study is the first to assess

ML for characterization of liver fibrosis using pSWE

and 2-DSWE data from different vendors.

A known issue with ultrasound elastography exams

is the variability of the 10 measurements that might be

owing to tissue properties (the higher the liver damage,

the higher is the variability), operator performance and/or

device precision. Currently, median shear wave velocity

is used to grade liver fibrosis (Dietrich et al. 2017). One

advantage of ML is that it is able to capture information

on the data beyond just the median. Future studies need to

be conducted to use ML to analyze data from spatial sam-

ples (elasticity maps from 2-DSWE) versus temporal
samples (10 consecutive measurements, as in our present

study). Analyzing spatial data from a single elasticity map

would minimize operator dependency, by decreasing the

number of maps to be acquired, and reduce scanning

time; this would also better account for the heterogeneity

of the liver tissue, especially in fibrotic/cirrhotic patients.

In recent years, ML has been further developed and

used increasingly for imaging data analysis, including

liver elastography. A prior study performed automatic

fibrosis staging in hepatitis C patients using multivariate

linear regression that characterized texture features

derived from color maps from real-time elastography

(Fujimoto et al. 2013). There is also published literature

on ML approaches using elastography in other organs,

such as the breast in cancer diagnosis (Zhang et al. 2016).

Our study has several limitations. First, the sample size

was small and differed between the groups; nonetheless, we

confirmed that the difference in AUC between the ML algo-

rithm SVM and median SWV was statistically significant;

future studies with more patients are warranted. Second, we

trained, tested and validated the ML-based algorithm on

systems from only two vendors; systems from other vendors

need to be addressed in future studies. Third, our “study

gold standard” was MRE; ideally our results will be con-

firmed in a study with a pathology-trained ML algorithm,

although this would be challenging given the small number

of patients who undergo liver biopsy at most institutions.
CONCLUSIONS

The new machine learning-based algorithm for grad-

ing liver fibrosis into clinically non-significant and signifi-

cant categories with two different ultrasound elastography

techniques from two vendors was found to have excellent

diagnostic performance, comparable to that of MR



Fig. 5. Scores for non-significant and significant fibrosis separation using median shear wave velocity (SWV) as well as
the new machine learning (ML) algorithms in data set 1, (a) pSWE, and data set 2, (b) 2-DSWE. The different scores
reflect the likelihood that the label came from each class (non-significant or significant fibrosis). Boxplots reveal excel-
lent score separation in both data sets when a support vector machine (SVM) is used to perform classification, compared
with worse score separation with median SWV. Note that ML scores differ between systems from different vendors as
well as for the different ML algorithms. MRE =magnetic resonance elastography; GLRM = generalized linear regression
model; QDA = quadratic discriminant analysis. The ends of the box are the upper and lower quartiles; the vertical line

inside the box represents the median; and the whiskers extend to the highest and lowest values.
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elastography. The ML algorithm—support vector

machines—outperformed median shear wave velocity.

With additional validation in larger studies, this ML-based

algorithm, along with a scoring system, might ultimately

be included in routine ultrasound screening protocols for
the liver for improved liver fibrosis grading, especially in

the large patient population with chronic liver disease,

without extending the acquisition time. The algorithm,

along with a scoring system, could be integrated into the

software of clinically established ultrasound elastography
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systems from different vendors after being trained and vali-

dated for each of these vendors. The scoring system would

have the same cutoff for differentiating non-significant

from significant fibrosis in systems from all vendors and

would provide comparable fibrosis staging, thus abrogating

the need for establishing and implementing a different ref-

erence table for each vendor.
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