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Introduction 

Adenocarcinoma	 accounts	 for	 more	 than	 40%	 of	 lung	 malignancy,	 and	 microscopic	 pathology	 evaluation	 is	
indispensable	 for	 its	diagnosis1.	However,	how	histopathology	 findings	 relate	 to	molecular	abnormalities	 remains	
largely	 unknown2.	 With	 the	 advancement	 of	 transcriptomics	 and	 proteomics	 profiling	 technologies,	 there	 is	 the	
potential	for	understanding	the	molecular	biology	of	histological	phenotypes	by	integrating	omics	and	morphological	
features	 of	 the	 tumor	 cells.	 In	 this	 study,	 we	 identified	 the	 molecular	 mechanisms	 underlying	 histopathology	
aberrations	 in	 lung	 adenocarcinoma	 and	 established	 integrative	 models	 for	 prognosis	 prediction,	 which	 will	
contribute	to	personalizing	cancer	treatment	plans.	

Methods 

We	 obtained	 hematoxylin	 and	 eosin	 stained	 whole-slide	 histopathology	 images,	 pathology	 grade,	 stage,	 RNA-
sequencing,	and	proteomics	data	of	538	lung	adenocarcinoma	patients	from	The	Cancer	Genome	Atlas	(TCGA).	To	
reduce	the	impact	of	inter-observer	disagreement,	pathology	grades	were	binarized	into	a	higher-grade	group	(poorly	
differentiated	 or	moderately-to-poorly	 differentiated)	 or	 a	 lower-grade	 group	 (well	 differentiated	 or	moderately	
differentiated).	 Breiman’s	 random	 forest,	 which	 can	 model	 non-linear	 relationship,	 was	 used	 to	 correlate	
transcriptomics	and	proteomics	profiles	with	pathology	grade.	Information	gain	ratio	was	employed	to	select	the	top	
features	using	the	data	in	the	training	set.	KEGG	pathway	analysis	was	performed	to	identify	the	biological	pathway	
associated	with	the	selected	features.	The	model	was	trained	on	80%	of	the	cases	and	tested	on	the	untouched	20%.	
To	 build	 survival	 models	 for	 stage	 I	 patients,	 LASSO-Cox	 proportional	 hazards	 models	 were	 employed.	 Current	
prognostic	methods,	including	tumor	stage,	grade,	and	a	previously-reported	gene	expression	signature3	were	used	
as	 the	 baseline	 for	 comparison.	 Integrative	 LASSO-Cox	 models	 were	 built	 using	 the	 previously-reported	 gene	
expression	 signature,	 pathology	 grades,	 and	patient	 age.	 Leave-one-out	 cross-validation	was	used	 to	 evaluate	 the	
performance	of	our	prediction	models	in	the	TCGA	cohort.	An	independent	cohort	from	Mayo	Clinic	(n=27)	was	used	
to	further	validate	the	survival	model4.	The	same	procedure	described	above	was	used	to	predict	patients’	survival	
outcomes	in	this	validation	set5.	

Results 

We	found	that	the	expression	profiles	of	15	genes	predicted	the	histopathology	grade	in	the	held-out	test	set	with	an	
area	under	the	receiver	operating	characteristic	curve	(AUC)	of	0.80±0.0067	(Figure	1A).	Similarly,	we	identified	a	
proteomic	 signature	 that	 attained	AUCs	 approximately	 0.81±0.0071	 in	 predicting	 the	 tumor	 grade	 in	 the	 test	 set	
(Figure	1B).	Enrichment	analysis	revealed	that	proteins	predictive	of	tumor	grade	were	enriched	in	cancer	signaling	
pathways	and	regulation	of	cell	development,	pointing	to	the	regulatory	mechanisms	related	to	tumor	differentiation	
at	the	protein	level.		

We	further	integrated	omics	and	histopathology	data	to	build	regularized	Cox	proportional	hazards	models	to	predict	
stage	I	patients’	survival.	Neither	the	distinction	between	stage	IA	and	stage	IB	(P=0.878)	nor	grade	(P=0.158)	could	
accurately	distinguish	patients	with	different	survival	outcomes.	A	previously	reported	gene	set	could	not	reliably	
predict	the	survival	outcomes	of	stage	I	patients	in	either	the	TCGA	or	the	Mayo	Clinic	cohort	(P=0.1097±0.0096	and	
P=0.0560±0.0108	 respectively,	 adjusted	 for	 patient	 age).	 We	 built	 an	 integrative	 histopathology-transcriptomics	
model	to	generate	better	prognostic	predictions	(P=0.0182±0.0021;	Figure	2A)	compared	with	gene	expression	or	
histopathology	studies	alone,	and	the	results	were	validated	in	the	Mayo	Clinic	cohort	(P=0.0220±0.0070;	Figure	2B)5.	
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Figure 1. Functional	omics	profiles	predicted	the	dedifferentiation	levels	of	lung	adenocarcinoma.	(A)	The	expression	
levels	of	 fifteen	genes	 (CCNA2,	CDC20,	CDCA8,	CENPW,	CYB5R1,	FAM72A,	 INCENP,	KIF1A,	KIF18B,	MYBL2,	RFC4,	
SPAG5,	TACC3,	TTK,	UBE2C)	 selected	by	 information	gain	 ratio	predicted	pathology	grade	with	an	AUC	of	0.80	±	
0.0067.	(B)	Fifteen	proteomics	features	predicted	pathology	grade	with	an	AUC	of	0.81	±	0.0071.	

	

	

 

 

 

 

 

 
 

Figure 2. (A) Integrative	models	with	 gene	 expression	 profiles	 and	 pathology	 information	 predicted	 the	 survival	
outcomes	of	stage	 I	 lung	adenocarcinoma	patients	 in	 the	TCGA	cohort	 (P=0.0182±0.0021,	n=222).	 (B)	The	results	
were	 validated	 in	 the	Mayo	 Clinic	 stage	 I	 lung	 adenocarcinoma	 cohort	 (P=0.0220±0.0070,	 n=27).	 There	 is	 some	
overlap	in	the	survival	curves	after	65	months.	Red	asterisks	indicated	censored	data.	 

Discussion 

Our	results	demonstrated	promising	biological	applications	and	prognostic	utilities	of	considering	both	omics	and	
histopathology	features.	Pathway	analyses	on	these	transcriptomics	and	proteomics	patterns	suggested	that	the	level	
of	 cancer	 cell	 differentiation	 was	 related	 to	 mitosis	 and	 cell	 division	 pathways,	 which	 were	 consistent	 with	 the	
observation	that	higher-grade	tumors	generally	have	more	atypical	mitosis6.	In	addition,	an	integrative	model	using	
gene	expression,	pathology,	and	clinical	data	performed	better	than	each	of	the	components	individually,	indicating	
the	utility	of	multi-modality	data	integration	in	building	survival	models.	Further	studies	are	needed	to	compare	the	
performance	of	different	machine	learning	models	and	validate	the	results	in	large	cohorts.	Our	developed	algorithms	
are	likely	extensible	to	other	tumor	types	or	complex	diseases.	
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