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Medical image biomarkers of cancer promise improvements in patient care through advances in precision
medicine. Compared to genomic biomarkers, image biomarkers provide the advantages of being non-
invasive, and characterizing a heterogeneous tumor in its entirety, as opposed to limited tissue available via
biopsy. We developed a unique radiogenomic dataset from a Non-Small Cell Lung Cancer (NSCLC) cohort
of 211 subjects. The dataset comprises Computed Tomography (CT), Positron Emission Tomography (PET)/
CT images, semantic annotations of the tumors as observed on the medical images using a controlled
vocabulary, and segmentation maps of tumors in the CT scans. Imaging data are also paired with results of
gene mutation analyses, gene expression microarrays and RNA sequencing data from samples of surgically
excised tumor tissue, and clinical data, including survival outcomes. This dataset was created to facilitate
the discovery of the underlying relationship between tumor molecular and medical image features, as well
as the development and evaluation of prognostic medical image biomarkers.

Design Type(s)
database creation objective • data integration objective • disease state
design • image analysis objective

Measurement Type(s) non-small cell lung carcinoma • transcription profiling assay

Technology Type(s) computed tomography scanner • microarray • RNA sequencing

Factor Type(s)
ethnic group • histology • tumor grading • age at diagnosis • smoking
status measurement

Sample Characteristic(s) Homo sapiens • lung
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Background and Summary
Advances in high-throughput molecular technologies hold great promise for the development of genomic
biomarkers that enable precision medicine tailored to specific patients. These molecular biomarkers
deliver powerful diagnostic information, as well as high prognostic significance. Similarly, medical
imaging technologies provide tools for measuring the structural, functional and physiologic properties of
tissue. Identifying image-based properties of tumors through medical images is a standard part of
diagnosis, clinical staging, and treatment planning. Because image interpretation can be subjective, for
medical imaging to have a role in personalized medicine, the development of robust, standardized image
features that can be used to predict molecular properties, prognosis and/or treatment response, is
required. These standardized features can be in the form of semantic annotations acquired from human
observers, or radiomic features, i.e. quantitative image features computed from the image pixels.
Quantitative image features include tumor size and shape, image intensity distributions, and image
texture. While the adoption of molecular technologies can be limited by cost and the invasiveness of the
procedure, medical imaging is, more commonly, part of the standard of care1. Moreover, in comparison
to molecular profiling, radiomic characterization provides a more comprehensive representation of the
tumor. Since molecular profiling is restricted to the region of the biopsy, it results in an incomplete
representation of the heterogeneous tissue of the tumor. On the other hand, molecular technologies allow
profiling of genes expressed in the tissue sample. This complementary relationship suggests that
combining the use of molecular and imaging biomarkers has the potential to improve patient care and to
provide insight into how molecular mechanisms give rise to imaging phenotypes.

The prognostic power of medical image features and their link to molecular properties has only been
recently investigated for certain cancer types2–20. An important challenge in such radiogenomic studies is
the scarcity of large data sets containing medical images, extracted image features, gene expression
profiles, and clinical data with survival outcomes. Specifically, for NSCLC, which is the leading cause of
cancer death21, there is a dearth of available datasets that contain medical images, molecular features, and
associated clinical data. In NSCLC, CT and PET/CT are the investigation tools of choice for diagnosis,
staging and monitoring of response to treatment. From these scans, one can compute a large number of
quantitative image features for associations with tumor molecular features and clinical outcomes.
Molecular profiles of tumors can be obtained through needle biopsies or samples of surgically-excised
tumors. Clinical data and outcomes can be obtained from standard medical follow-up. While large
molecular datasets with clinical data are readily available22–25, there are fewer public medical imaging
datasets combined with clinical and molecular data. For example, while five independent NSCLC datasets
containing collectively 788 subjects were used in a radiogenomics study7, only 89 subjects had imaging,
molecular and clinical data. Moreover, that dataset included CT scans but did not contain PET/CT data.
It is important to continue to create large integrated databases available for discovery and validation of
biomarkers, and so we created this dataset to allow researchers to investigate the relationships between
image features, tumor molecular phenotype, and survival outcomes.

Between 2008 and 2012, we collected clinical and imaging data for 211 subjects referred for surgical
treatment and obtained tissue samples from the excised tumors, where available. Tissue samples were
analyzed to produce molecular phenotypes using gene microarrays, RNA sequencing technology, or both,
in addition to standard-of-care NSCLC mutational testing. We also collected clinical data, such as: age,
gender, weight, ethnicity, smoking status, TNM stage, histopathological grade. In addition, we included
3D tumor segmentations of the CT studies that were used for computation of 3D quantitative image
features. Not all data are available for all subjects due to limitations in resources; out of the 211 subjects,
116 have all data types expect for micro-array (the data type with the smallest number of subjects),
130 have clinical, imaging (CT and PET/CT), and molecular (RNA-Seq) as detailed in Tables 1 and 2.

Methods
Subject Demographics and Clinical Data
With approval of our respective Institutional Review Boards (IRB), we recruited a total of 211 subjects for
the following two cohorts: (1) The R01 cohort consisted of 162 NSCLC subjects (38 females, 124 males,
age at scan: mean 68, range 42–86) from Stanford University School of Medicine (69) and Palo Alto
Veterans Affairs Healthcare System (93). Subjects were recruited between April 7th, 2008 and September
15th, 2012. Subjects signed written consent forms according to the guidelines of institutions’ IRBs. The
subjects were selected from a pool of early stage NSCLC patients, referred for surgical treatment with
preoperative CT and PET/CT performed prior to surgical procedures. Samples of excised tissues were
later used to obtain mutation data and gene expression data using gene expression microarrays, or RNA
sequencing, or both. Identifiers for this set of 162 subjects are in the format R01-XXXXXX. (2) The AMC
cohort, consisting of 49 additional subjects (33 females, 16 males, age at scan: mean 67, range 24–80), was
retrospectively collected from Stanford University School of Medicine based on the same criteria in
addition to the availability of the following clinical mutational test results: Epidermal Growth Factor
Receptor (EGFR), Kirsten Rat Sarcoma viral oncogene homolog (KRAS), and Anaplastic Lymphoma
Kinase (ALK). Identifiers for this set of 49 subjects are in the format AMC-XXXXXX. For both cohorts,
clinical data included, where available, smoking history (211), survival (211), recurrence status (210),
histology (211), histopathological grading (162) and Pathological TNM staging (161). There were 172
adenocarcinomas and 35 squamous cell carcinomas and 4 not otherwise specified with grades ranging
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from poorly to well-differentiated. Clinical date features (e.g. recurrence date and scan dates) are shifted
for anonymization purposes and are chronologically ordered relative to each other. Table 3 summarizes
clinical data of the cohorts, and Table 4 lists all clinical features.

Imaging Data
Subjects received preoperative CT and PET/CT scans at Stanford University Medical Center and Palo
Alto Veterans Affairs Healthcare System prior to surgical treatment as part of their care. Different
scanners were used depending on the institution and physician choice and scanning protocols also varied.

De-Identification of Imaging Data. All imaging data were de-identified prior to analysis at Stanford.
For subjects from Stanford, we de-identified the imaging data using the Medical Imaging Resource Center
(MIRC) Clinical Trial Processor (CTP) (RSNA, Oakbrook, IL). The MIRC CTP is a software tool
designed to Anonymize DICOM objects to remove protected health information. Medical image data
from VA subjects were de-identified using PACSGEAR (Perceptive Software, Pleasanton, CA).

Prior to making the data available on The Cancer Imaging Archive (TCIA)26, we performed a second
round of de-identification using CTP, further assuring complete removal of any identifying information.
TCIA complies with HIPAA de-identification standards using the Safe Harbor Method as defined in
section 164.514(b)(2) of the HIPPA Privacy Rule. This is done by incorporating the “Basic Application
Confidentiality Profile” which is amended by inclusion of the following profile options: Clean Pixel Data
Option, Clean Descriptors Option, Retain Longitudinal with Modified Dates Option, Retain Patient
Characteristics Option, Retain Device Identity Option, and Retain Safe Private Option. The de-
identification rules applied to each object are recorded by TCIA in the DICOM sequence Method Code
Sequence [0012,0063] by entering the Code Value, Coding Scheme Designator, and Code Meaning for
each profile and option that were applied to the DICOM object during de-identification27.

CT Data. CT images in DICOM format28 are available from 211 subjects. Since this is a retrospectively
collected dataset, different subjects were scanned using different scanners, scanning protocols and
scanning parameters: slice thickness of 0.625–3 mm (median: 1.5 mm) and an X-ray tube current of
124–699 mA (mean 220 mA) at 80–140 kVp (mean 120 kVp). Detailed scanning parameters, including
scanner make and model are specified in the DICOM headers. Scans were acquired with subjects in
supine position with arms at sides, from the apex of the lung to the adrenal gland within a single breath-
hold. Table 5 summarizes the ranges of CT parameters used for our cohort.

PET/CT Data. Fasting Fluorodeoxyglucose 18F-FDG PET/CT data are available for 201 subjects. A GE
Discovery D690 PET/CT was used for PET/CT scanning at Stanford University Medical Center, while the
Palo Alto VA employed a GE Discovery PET/CT scanner. (The exact model of PET/CT scanners are
specified DICOM image headers.) FDG Dose and uptake time were 138.90–572.25 MBq (mean 309.26
MBq) and 23.08–128.90 min (mean 66.58 minutes), respectively. PET images were generated at both sites
using a similar protocol. Specifically, CT-based attenuation correction was utilized with iterative Ordered
Subset Expectation Maximization (OSEM) reconstruction. Image acquisition included routine coverage
of base-of-skull to mid-thigh with additional spot views where necessary. Each bed position was
1–5-minute acquisition, dependent on su weight. Table 6 summarizes ranges of scan parameters used to
obtain PET/CT images. This PET/CT data set was used to identify tumor PET-FDG uptake features
associated with gene expression signatures and survival29.

CT and PET/CT acquisition protocols. It has been recognized that the results of quantitative analyses
(including e.g., radiomics) of images will vary as a function of image acquisition and reconstruction
protocol30–38. However, we note that the imaging datasets reported here were acquired over several years
and from several institutions, and not as part of a prospective trial. For these reasons there was no
attempt to harmonize the acquisition and reconstruction protocols.

Data Type Number of subjects

Clinical Data 211

CT 211

CT Tumor Segmentations 144

CT Semantic Annotations 190

PET/CT 201

RNA-Seq 130

Gene expression Microarrays 26

Table 1. Summary of the major collected data types and the corresponding number of subjects with
available data.
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Feature Number of Subjects

Sex

Female 76

Male 135

Ethnicity

African-American 6

Asian 24

Caucasian 123

Hispanic/Latino 6

Native Hawaiian/Pacific Islander 3

Not Recorded 49

Histology

Adenocarcinoma 172

Squamous cell carcinoma 35

Not otherwise specified 4

Pathological T stage

T0 0

Tis 6

T1a 40

T1b 31

T1nos 0

T2a 47

T2b 10

T2nos 0

T3 21

T4 7

TX 0

Not Collected 49

Pathological N stage

N0 129

N1 15

N2 18

N3 0

NX 0

Not Collected 49

Pathological M stage

M0 157

M1a 1

M1b 4

Not Collected 49

Histopathological Grade

G1 Well differentiated 32

G2 Moderately differentiated 76

G3 Poorly differentiated 33

Other, Type I: Well to moderately differentiated 9

Other, Type II: Moderately to poorly differentiated 12

Not Collected 49

Table 3. Summary of demographic (sex and ethnicity) and clinical cohort characteristics (histology,
pathological TNM stage and histopathological grade).
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Semantic Annotations. Semantic annotations are available for axial CT series of 190 subjects. The
template of semantic terms was developed in consensus by two academic thoracic radiologists (A.N.C.L.
and D.A.) with expertise and interest in lung cancer imaging. The template was developed for nodules as
they are the most common manifestation of lung cancer. As a result, we provide no semantic annotations

Clinical Features Number of Patients

Subject affiliation 211

Age at Histological Diagnosis 211

Weight (lbs) 152

Gender 211

Ethnicity 162

Smoking status 211

Pack Years 203

Quit Smoking Year 194

Ground Glass 146

Tumor Location 211

Histology 211

Pathological T stage 162

Pathological N stage 162

Pathological M stage 162

Histopathological Grade 162

Lymphovascular invasion 154

Pleural invasion (elastic, visceral, parietal) 154

EGFR mutation status 206

KRAS mutation status 205

ALK translocation status 196

Adjuvant Treatment 210

Chemotherapy 210

Radiation 210

Recurrence 210

Recurrence Location 210

Date of Recurrence 210

Date of Last Known Alive 211

Survival Status 211

Date of Death 211

CT Date 211

Days between CT and surgery 211

PET Date 162

Table 4. List of clinical features collected from subject medical records for our cohort of 211 subjects
and corresponding number of patients with filled information for each feature.

Parameter Value No. of Subjects

Peak kilovoltage (kVp) 100–120 See DICOM image headers for individual scans

X-ray Tube Current (mA) 28–749 See DICOM image headers for individual scans

0.625 12

1 64

Slice Thickness (mm) 1.5 114

2 2

2.5 15

3 4

Table 5. Summary of key CT scanning parameters in our cohort.
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for cancers of other manifestations, e.g., central obstructive tumors or "pneumonic tumors”. The template
contains 28 nodule analysis features and parenchymal features comprising conventional and newly
developed features used for diagnosis and staging using the CT images. Nodule features describe anatomy
location, geometry, internal features and other associated findings of the nodules.

Parenchymal features characterize lung emphysema, bronchi and lumen. The selected terms are in
common usage in radiology clinical practice and are derived from descriptions in the radiology literature;
definitions of some of these, such as “nodule” are found in the Fleischner Society: Glossary of Terms for
Thoracic Imaging39. Table 7 (available online only) describes the semantic features included in the
template. The ePAD template that we developed forces complete annotation for each nodule, resulting in
all applicable features being collected. There are some features whose presence are conditioned upon
other features being present. For example, the primary emphysema pattern feature is not collected when
emphysema is not present in the lung. ePAD creates annotations in the Annotation and Image Mark-up
(AIM) file format using a controlled vocabulary. The AIM information model is designed to be
semantically inoperable. Information such as annotator identity, annotation date, and a reference to the
annotated image, complement information on anatomic entities and imaging observation characteristics
of the referenced image. AIM files supplement DICOM and other image formats which do not contain
information on the meaning of the pixels in the image40,41. One radiologist (A.N.L.) with more than 20
years of experience ascribed the semantic annotations for all subjects’ CT scans using ePAD, an open-
source and freely available web-based quantitative imaging informatics platform41. While we
acknowledge that semantic annotations are subjective and subject to intra-and inter-reader variability,
these were used in several studies, e.g., to predict EGFR and KRAS mutation status42, and to create a
radiogenomic map linking semantic features to gene expression profiles generated by RNA sequencing13.

Segmentations. Initial segmentations for 144 subjects were obtained from an axial CT image series
using an unpublished automatic segmentation algorithm. All of these segmentations were viewed by a
thoracic radiologist (M.K.) with more than 5 years of experience and edited as necessary using ePAD.
Final segmentations were reviewed by an additional thoracic radiologist (A.N.L.); disagreements in tumor
boundaries were discussed and edited as appropriate, with final approval by A.N.L. All segmentations are
stored as DICOM Segmentation Objects28.

Molecular Data
Tumor Preparation. All tumor samples were collected from treatment-naïve subjects during surgical
procedure. Following excision, the surgeon cut a 3–5-mm-thick slice along the longest axis of the excised
tissue, which was frozen within 30 minutes of excision. It was later retrieved for RNA extraction.
Molecular data are available from EGFR, KRAS, ALK mutational testing, gene expression microarrays,
and RNA sequencing. Tumors from 17 subjects were analyzed using both gene expression microarrays
and RNA sequencing.

Mutational testing. EGFR, KRAS and ALK mutation status are available from clinical records in 206,
205, and 196 subjects, respectively. Single nucleotide mutation detection was performed using SNaPshot
technology based on dideoxy single-base extension of oligonucleotide primers after multiplex polymerase
chain reaction (PCR). Exons 18, 19, 20 and 21 were tested for EGFR mutations. Exon 2 Positions 12 and
13 were tested for missense KRAS mutations with amino acid substitution. Mutation results were a
combination of mutation at any location of the tested exons. For ALK, EML4-ALK translocation
detection test was performed using fluorescence in situ hybridization (FISH).

Gene Expression Microarray Data. Gene expression microarray data was collected for the subset of 26
subjects, who underwent surgical treatment between April 7, 2008 and May 21, 2010. RNA was processed
at the Stanford Functional Genomics Facility using Illumina Whole Genome Bead Chips (Human HT-12;
Illumina, San Diego, CA). These data were preprocessed as follows: First, we filtered the microarray
probes on the basis of a significant detection call in at least 60% of the samples. Next, we log transformed
the microarray data and used quantile normalization to normalize between arrays. These data, along with
the corresponding CT images, were used to describe associations between image features, gene
expression, and survival10,29.

RNA Sequencing Data. Based on availability and quality of available tissue, RNA sequencing was
performed on samples from 130 subjects (17 of which intersect with the gene expression microarray
dataset described in the previous section). We excluded RNASeq for tissue samples with RNA integrity

Parameter Value

FDG Dose (MBq) 138.90–572.25

FDG uptake time (min) 23.08–128.90

Table 6. Summary of key PET/CT parameters in our cohort.
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number (RIN) below 2.5. Total RNA was extracted from the tissue samples and converted into a library
for paired-end sequencing on Illumina Hiseq according to the protocol for the Illumina TruSeq Sample
preparation kit (Centrillion Biosciences, Palo Alto, CA). Briefly, total RNA quality and quantity were
measured by BioAnalyzer (Agilent). For library preparation, the TruSeq Total Stranded RNA with Ribo-
Zero Reduction (Illumina) was used following manufacturer’s instructions. This method includes a Ribo-
Zero rRNA depletion step, followed by fragmentation and cDNA synthesis using SuperScript II (Life
Technologies). The cDNA was A-tailed, ligated and amplified using the materials in the TruSeq Total
Stranded RNA with Ribo-Zero Reduction kit. Quality was confirmed using the BioAnalyzer and finally
the concentration evaluated by KAPA qPCR (KAPA Biosystems). Prior to sequencing, samples were
diluted to 4 nmol and pooled. Pooled libraries were clustered via the cBOT and sequenced on the HiSeq
2500 (illumina) following manufacturer’s instructions. The set of 130 tissue samples was sequenced in
three batches of sizes 16, 66, 48.

Data processing was performed by Centrillion Biosciences as follows: reads were aligned to the human
genome (hg19) using the alignment algorithm STAR43 version 2.3 with 91 bases of splice junction
overhangs. Next, Cufflinks version 2.0.244 was used to determine the expression calls in each sample
using Fragments Per Kilobase of transcript per Million mapped reads (FPKM).

Data Records
Subject Identifiers
A unique identifier for each subject is identical in all four public data records in this dataset. Subject ID’s
are 6-digit numbers in the form of R01-XXXXXX or AMC-XXXXXX.

Data Record 1. Clinical, image, semantic data for all subjects are stored in The Cancer Imaging
Archive (TCIA) (Data Citation 1). One comma-delimited file contains clinical data for all subjects with
unique subject identifiers. Semantic features for each subject are stored in Annotation and Image Markup
(AIM) files45. CT and PET/CT Images are in DICOM format. Where available, segmentations are
provided as DICOM Segmentation Objects.

Data Record 2. Image data of 26 subjects had been previously deposited in the TCIA repository (Data
Citation 2). These images were given new subject names in the form R01-XXXXXX as part of the new
dataset described in this work.

Data Record 3. Gene expression microarray data, available for 26 subjects, were deposited in National
Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO)46 (Data Citation 3). The
subject identifiers are identical to subject names in Data Record 2. Processed gene clusters were deposited
in tab-delimited files with column values corresponding to microarray ID, log2 transformed quantile
normalized and probe selection detection-p-value, respectively. This data record also contains raw
expression data, as well as matrix data obtained prior to normalization.

Data Record 4. Raw and processed sequencing data obtained from RNASeq for 130 subjects are
available at NCBI GEO (Data Citation 4). The subject IDs are identical to subject names in Data
Record 1.

Technical Validation
All CT and PET/CT data were collected as part of patient care and therefore all quality assurance was
performed by the institution that collected the data.

Usage Notes
All data are freely available to browse, download, and use for commercial, scientific and educational
purposes as outlined in the Creative Commons Attribution 3.0 Unported License. Users should properly
cite this source for any work based on this dataset.
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