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A B S T R A C T

Background: The majority of current medical CBIR systems perform retrieval based only on “imaging signatures”
generated by extracting pixel-level quantitative features, and only rarely has a feedback mechanism been in-
corporated to improve retrieval performance. In addition, current medical CBIR approaches do not routinely
incorporate semantic terms that model the user’s high-level expectations, and this can limit CBIR performance.
Method: We propose a retrieval framework that exploits a hybrid feature space (HFS) that is built by integrating
low-level image features and high-level semantic terms, through rounds of relevance feedback (RF) and performs
similarity-based retrieval to support semi-automatic image interpretation. The novelty of the proposed system is
that it can impute the semantic features of the query image by reformulating the query vector representation in
the HFS via user feedback. We implemented our framework as a prototype that performs the retrieval over a
database of 811 radiographic images that contains 69 unique types of bone tumors.
Results: We evaluated the system performance by conducting independent reading sessions with two sub-
specialist musculoskeletal radiologists. For the test set, the proposed retrieval system at fourth RF iteration of the
sessions conducted with both the radiologists achieved mean average precision (MAP) value ∼0.90 where the
initial MAP with baseline CBIR was 0.20. In addition, we also achieved high prediction accuracy (> 0.8) for the
majority of the semantic features automatically predicted by the system.
Conclusion: Our proposed framework addresses some limitations of existing CBIR systems by incorporating user
feedback and simultaneously predicting the semantic features of the query image. This obviates the need for the
user to provide those terms and makes CBIR search more efficient for inexperience users/trainees. Encouraging
results achieved in the current study highlight possible new directions in radiological image interpretation
employing semantic CBIR combined with relevance feedback of visual similarity.

1. Introduction

Medical information retrieval is important for research and poten-
tially for clinical care, but finding similar cases is largely an unassisted
and time-consuming process, and precision is established through many
years of training and experience. Even despite this training, substantial
inter-reader variation in determining case similarity is challenging.
Moreover, the volume of medical information is growing faster than the
ability of professionals to do this task themselves without the support of
computerized search mechanisms [28]. In radiology, image retrieval

has particular importance because the radiologist commonly confronts
rare abnormalities for which diagnosis is difficult. Finding similar
images from large imaging archives, such as picture archiving and
communication system (PACS), can potentially assist in suggesting di-
agnoses of many similar cases, and the evidence supplied by the similar
cases can assist the radiologist to improve interpretation of rare ab-
normalities and may help in determining diagnosis [18].

To serve this purpose, Medical content-based image retrieval (CBIR)
systems have been developed that typically operate by comparing the
query image to other images present in the imaging archives, based on
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comparing “imaging signatures” generated based only on the quantita-
tive features (radiomics features), such as shape and textures in the
image or within regions of the image [26]. While these quantitative
features describe the low-level pixel-based information in an automated
fashion, they are often not specific enough to capture high-level radi-
ological concepts (semantic features). Therefore, the performance of
medical CBIR systems is often constrained by the low-level properties of
medical images and cannot effectively model the user’s high-level ex-
pectations. Since this challenge remains unsolved, traditional CBIR
systems are not equipped to support the current advancement of cross-
sectional clinical studies with thousands of cases, and current CBIR
systems still require exhaustive manual filtering of the retrieval results.

Recently, as alternatives to traditional CBIR, some methods
[18,19,22], use a combination of quantitative features and qualitative
descriptive terms used by radiologists (“semantic image features”) to
serve as the imaging signatures for CBIR. The combination of high-level
and low-level image descriptions may improve performance of CBIR;
however, such hybrid CBIR systems are limited by two core constraints.
First, in order to use the semantic features, the end-user must annotate
query images with semantic terms, which is not only a tedious process
but also requires considerable domain expertise for inferring the ap-
propriate semantic characteristics of an abnormality [10]. This may
restrain the similarity-based diagnosis workflow only to the expert
radiologists and therefore diminishes its core purpose: evidence-based
diagnosis of rare/unseen abnormality (PDQ [24]). Some computerized
methods Banerjee et al. [2,6] have proposed to apply machine learning
techniques to predict semantic terms by utilizing the low-level pixel
data. However most of these studies were pursued on a narrow imaging
domain with limited expert-knowledge, and were validated on a rela-
tively small number of cases which limit their generalizability for other
domains. A second limitation is that often the retrieved images where
quantitative features are only measures for similarity, are of insufficient
resemblance to the query image to be clinically relevant. The radi-
ologist must therefore spend a large amount of time sifting through
irrelevant retrieved images to identify those that are semantically si-
milar to the query image according to the clinical task. Perhaps the
most important limitation is that the performance of current clinical
CBIR systems cannot be improved based on user feedback. This limits
the ability to customize retrievals to match individual reader’s ex-
pectations and for a given image database, puts an upper bound on the
accuracy of image retrieval.

A “Relevance feedback” mechanism has been proposed as a strategy
for clinical CBIR systems to improve with use and to add more flex-
ibility for personalizing the retrieval results [20]. The key idea is to
incorporate user feedback about the relevance of retrieved results
produced by an initial CBIR search (based on only semantic and/or
quantitative features) to refine subsequent search results. User feedback
can be gathered across multiple iterations of search, with the user
evaluating the quality each retrieved image to the query image in each
iteration [35]. Several approaches to relevance feedback in CBIR have
been reported [4,7,22,32] focusing on using various combinations of
quantitative image features, but to our knowledge, no prior systems
have leveraged integration between semantic and quantitative features.
Nonetheless, several retrospective studies [2,3,21] have advocated that
bridging the “semantic gap” between complex image features and the
human-perceived semantic features will enable construction of a single,
unified, and searchable data structure for automated reasoning on both
image content and their semantic descriptors. We hypothesized that an
efficient integration may also play a critical role in maximizing se-
mantic accuracy in a CBIR system for radiological images, yet no prior
study exists that can fully support our claim.

Our goal is to extend the traditional relevance feedback mechanism
by incorporating semantic information in a hybrid feature space (HFS)
along with the quantitative features to improve the retrieval outcome.
In addition, we seek to predict the semantic features of query images
with the implicit knowledge collected via the user feedback in the HFS,

which would reduce the need for radiologist annotation of images for
CBIR. We make two key research contributions:

First, we create a system that efficiently aggregates three levels of
information - quantitative image features, semantic features, and user
feedback, bridging the current “semantic gap” in medical image re-
trieval and simultaneously producing personalized search results.

Second, we propose an approach to predict automatically the se-
mantic features of the query image by exploiting the relevance feedback
and the quantitative features that have been computed from the raw
pixel data of the region-of-interest (ROI) draw by the user.

The remaining article is organized as follows: Section 2 describes
the database employed and the proposed methodology; Section 3 de-
scribes experimental results; and Section 4 presents a summary of the
work, highlights limitations, and provides some concluding remarks.

2. Material and methods

2.1. Data

The study was approved by our Institutional review board (IRB).
The requirement for informed consent was waived as this was a retro-
spective review of historical images and patient data. The data set is a
collection of 1664 radiographic cases of bone tumors at a tertiary-care
teaching hospital (Stanford medical center) that were collected by one
Professor approximately between the year 1955 and 2005. The original
images were hard copy (conventional X-ray film) radiographs, and a
transparency film scanner (Pacsgear – Lexmark, Pleasanton, CA) was
used to digitize all images at 600 dpi. A total of 22,864 images were
captured from the 1664 cases. Upon review by an experienced mus-
culoskeletal radiologist, cases were subjectively categorized into 124
low, 675 medium, and 865 high quality cases. High quality cases in-
cluded excellent representation of the bone lesion in terms of radio-
graphic exposure and resolution, as well as lack of extraneous markings
such as wax pencil or film labels. Low quality cases included under- or
over-exposed images that may have exhibited motion artifact or inter-
fering overlying markings. Taking the high quality and a selection of
the medium quality cases, a “top 1000” collection was constructed
which included the relevant radiographic projections that best shows
each lesion (see Fig. 1).

During an initial semantic annotation phase (“offline processing”)
prior to the current work and described further in Section 2.2.1a below,
189 cases were not annotated because of limited visibility of the lesions
or subjectively lower overall image quality. This curation process re-
sulted in 811 cases with 69 unique bone tumor diagnoses that were
either confirmed by histology or by pathognomonic features. In Table 1,
we present the distribution of the cases according to the bone tumor
diagnosis to demonstrate the heterogeneous nature of the dataset. For
creating the test image pool, we randomly selected 20 cases from the
first and second columns of Table 1 to make sure that the database
contains a significant number of images with same bone tumor diag-
nosis for the retrieval. The limited number of cases in the test image
pool is mainly influenced by the complexity and the size of the data-
base.

2.2. System architecture

In Fig. 2, we present the workflow of the system which is divided
into two core operating phases: (1) offline processing, and (2) online
operation. In the offline processing phase, with the help of radiologists,
we built our annotated database by identifying the regions-of-interest
(ROI) from the sample images, and recording the semantic (radiological
observations) and radiomics features. In the online processing, our
proposed system inputs a query image, and, based on refinement with
user feedback, retrieves ‘n’ similar images, where ‘n’ is specified by the
users. In addition, the system also predicts the pre-defined set of radi-
ological observations for the query images. In the following subsections,
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we illustrate each processing block of Fig. 2 in detail.

2.2.1. Offline processing

a. Manual annotation of ROI with semantic features

For each of the 801 known cases (excluding the 20 images in the test
pool), 1 image (single image with best visualization of the tumor) was
selected for annotation with the 18 clinical and qualitative features by
either of two experienced radiologists ([initials withheld], 22 years’
experience and [initials withheld], 6 years’ experience). An ROI was
also drawn to circumscribe the lesion. For consistent encoding, anno-
tations were performed using ePad [27], a freely available quantitative
imaging informatics platform, and stored in Annotation and Image
Markup (AIM) standard [26]. Attribute values for each field were de-
rived from RadLex, if possible [21], and supplemented by attributes
derived from clinical experience or literature descriptions of bone
tumor observations [8].

A total of 18 semantic features (2 clinical and 16 qualitative
radiographic features) were recorded for each case (see Table 2). The
semantic features used in this work were chosen by an expert muscu-
loskeletal radiologist having knowledge of radiologic observations. The
selections were made to highlight various visual image features con-
tributing to bone tumor diagnosis, such as lesion boundary, internal
texture, density, bony expansion or cortical erosion, bone location
(transverse and longitudinal), and patient age (in decades).

b. Radiomics feature extraction

Following the manual annotation process of drawing free-form ROIs
on images and recording semantic features of each lesion, an image
feature extraction module cropped the ROI from the whole image. In
order to capture boundary features of the lesion, the module padded the

ROI margin with 50 neighboring pixels external to the ROI. We chose
this sized margin empirically to capture enough boundary features of
the lesion. Radiomics features were then computed from raw pixel data
of the cropped images.

We considered two types of radiomics features: (i) photometric fea-
tures that capture statistics of intensity values and texture information
of the ROI and its adjacent region as well as quantifies the intensity
gradient along the contour, and (ii) geometric features that make use of
shape information of the ROI. We created a MATLAB module to extract
18 quantitative feature classes (see Table 3) from the images.

In addition to these standard radiomics features (Table 3, we also
implemented two sets of case-specific edge-based features that appear
to correlate well with the major complementary characteristics of bone
tumors – increased bone density and bone loss relative to surrounding
normal bone.

The first set of edge-based feature is calculated from the Sobel
gradient image, where the value at each point in the image is the result
of the corresponding gradient vector. The Sobel edge operator [14]
consists of a pair of 3×3 convolution kernels (Sobel G and Sobel G_ _x y)
where one kernel (Sobel G_ )y is simply the other Sobel G( _ )x rotated by
90°. These kernels are designed in a way to respond maximally to edges
running vertically and horizontally relative to the pixel grid. The ker-
nels (Sobel G and Sobel G_ _x y) are applied separately to the input crop
image A( ), to produce separate measurements of the gradient compo-
nent in each orientation x y( , ) as: = ∗G Sobel G A_x x and

= ∗G Sobel G A_y y . Finally, the measurements of gradient component are
combined to find the absolute magnitude of the gradient at each pixel i
of Sobel gradient image (Sobel G_ ) as: = +G G G| |i xi yi

2 2 .
In addition to Sobel operator, we applied another edge detection

operator - Laplacian of Gaussian (LoG), for simultaneously reducing the
sensitivity to noise and highlighting regions of intensity change in
vertical and horizontal directions. The 2-D LoG function centered on
zero and with Gaussian standard deviation σ has the form:

Fig. 1. Sample images of “top 1000” collection.
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2 2 . We designed a pair of discrete

10×10 kernels, where the first one approximates the LoG function
LoG G( _ )x and second one LoG G( _ )y is a transpose version of the original.
Because these kernels are approximating a second derivative mea-
surement on the image, they are very sensitive to noise. To counter this,
the image A( )is smoothed using Gaussian smoothing before applying
the Laplacian filter. This pre-processing step reduces the high frequency
noise components prior to the differentiation step. We convoluted the
Laplacian kernel into xand ydirection of the image A( ) separately as:

= ∗L LoG G A_x x and = ∗L LoG G A_y y . Finally, we combined them to
find the absolute magnitude of the gradient at each pixel i of Laplacian
gradient image (Laplacian G_ ) as: =Laplacian G| _ |i +LoG G LoG G_ _xi yi

2 2 .
Both Sobel and LoG operators take only the masked ROI region of a

single gray level image as input and produce another gray level gra-
dient magnitude map image as output. In Fig. 3, we present the Sobel
(Sobel G_ ) and Laplacian of Gaussian (Laplacian G_ ) magnitude map
image for various types of bone tumors which shows that the edge
operators were able to extract internal spatial arrangements of in-
tensities within the tumor, and may also be helpful in differentiating the
tumor characteristics.

We condensed the information of the magnitude map images
Sobel G_ and Laplacian G_ in the form of two statistical measures – (1)
total variational energy (TV) which is L1 norm of the gradient of the edge
image with 4-connected neighborhood that has been computed as:

= ∑ ∇TV Sobel G Sobel G x( _ ) || _ ( )||x 1 and =TV Laplacian G( _ )
∑ ∇Laplacian G x|| _ ( )||x 1, (2) entropy which measure the randomness of

the gradient edge image that has been computed as:
= − ∑ =

Entropy p plog ( ),k
K

k k1 2 where K is the number of gray level in the
magnitude map images Sobel G_ and Laplacian G_ and pkis the prob-
ability associated with the gray level k. Finally, we normalized the
statistical measures according to the area of the ROI region.

We merged all the radiomics feature vectors for our 801 cases into
one large feature matrix, normalized column-wise, to obtain zero means
and standard deviation one, resulting in a 496-dimensional feature
matrix. Finally, all the semantic and radiomics features together with
the images are stored in a database.

c. Hybrid Feature Space (HFS) formulation

During the initialization, the system (see Fig. 2) processes the se-
mantic and radiomics image features associated with all images in the
database and creates a single hybrid feature space. Among the original
18 semantic features available, we only consider 9 semantic features
that can be associated with the radiomics features computed from the
images (see Table 4). We discard the demographic (e.g. age, gender)
and any of the location dependent (e.g. longitudinal or transverse lo-
cation) information that cannot be characterized by the quantitative
modeling of pixel data because there is no intrinsic information in the
images that can represent these factors. We convert the 9 semantic
features into categorical variables with possible values 0/1, and create a
semantic feature matrix: ×S Matrix_ 801 9. We create radiomics feature
matrix: ×R Matrix_ 801 496by parsing the normalized radiomics features
resulting from the previous step. Finally, we augment ×S Matrix_ 801 9 and

×R Matrix_ 801 496 to create a larger feature matrix***:
← × ×γ R S[ | ],Matrix Matrix801 496 801 9 which is used to build an initial hybrid

feature space (HFS) model of the database, in which each image ( j) is
represented as a vector of 505 dimensions: = ⋯⋯γ γ γ γ( , , .., )j j j j,1 ,2 ,505 .

2.2.2. Online operations

a. Query image and ROI, Radiomics feature extraction, Inserting query
in HFS

We built a graphical UI that allows the user to load a query image as
a DICOM file and create a free-form ROI circumscribing the lesion with
mouse clicks. There is no need for the user to provide the semantic
features of the query image, since our system infers them via relevance
feedback in HFS (see Section 2.2.2c). Elimination of the need to an-
notate the query image with semantic features makes the initial query
formulation process reasonably simple and fast for the end-user.

The system calls the ‘Radiomics feature computation’ module (Section
2.2.1) for computing the radiomics features matrix: ×RMatrix query_ 1 496of
the ROI. The initial query vector is formulated as:

← × ×γ R S[ | ]query round Matrix query Matrix query_ 1 _ 1 496 _ 1 9 , where ×SMatrix query_ 1 9 is the
semantic feature matrix but it is only padded with zeros since no se-
mantic features are available yet for the query image. Thus, the initial
query vector is built only based on the quantitative information of the
ROI region. If multiple abnormalities are present, the system only
supports analysis of a single ROI that has been marked by the user.
Finally, the system embeds the initial query vector (γquery round_ 1) in the
HFS (see Fig. 3a).

b. Cosine distance computation, Ranked retrieval of top ‘n’ similar
images

In this module, the system measures the cosine similarity of the
database images with the query vector in the high dimensional HFS by
computing the Cosine Angle Distance between the feature vector of
database entities γand the query vector γquery. The cosine distance of two
vectors γquery and γi is defined as:

Table 1
Bone tumor diagnosis/classes (69 total) represented in the final 811 cases ac-
cording to the number of samples for each diagnosis.

Bone Tumor Diagnosis (# No. of Samples)
No. of Samples ≥20 No. of Samples ≥5 No. of Samples < 5
Osteosarcoma (83)

Enchondroma (65)
Metastasis (55)
Osteochondroma (46)
Aneurysmal bone cyst
(41)
Chondrosarcoma (41)
Giant cell tumor (41)
Nonossifying fibroma
(38)
Ewing sarcoma (38)
Fibrous dysplasia (30)
Lymphoma (22)
Chondroblastoma
(21)

Simple bone cyst
(19)
Eosinophilic
granuloma (19)
Osteoid osteoma
(16)
Non-Hodgkin
lymphoma (16)
Malignant fibrous
histiocytoma (14)
Chondromyxoid
fibroma (11)
Osteomyelitis (11)
Periosteal
chondroma (10)
Multiple myeloma
(10)
Osteoblastoma (10)
Unknown (12)
Ganglion cyst (9)
Paget disease (9)
Giant cell reparative
granuloma (8)
Hemangioma (7)
Intraosseous lipoma
(7)
Adamantinoma (7)
Plasmacytoma (6)
Pigmented
villonodular
synovitis (6)
Ossifying fibroma
(6)
Hodgkin lymphoma
(5)
Sarcoma (5)
Synovial sarcoma (5)

Cystic angiomatosis (4)
Mastocytosis (4)
Epithelioid
hemangioendothelioma (4)
Brodie abscess (3)
Angiosarcoma (3)
Fibrosarcoma (3)
Benign fibrous histiocytoma
(3)
Ameloblastoma (2)
Giant cell tumor of tendon
sheath (2)
Tuberculosis (2)
Caffey disease (2)
Leukemia (2)
Central osteosarcoma (2)
Rosai-Dorfman disease (2)
Telangiectatic osteosarcoma
(2)
Osteopetrosis (1)
Avascular necrosis (1)
Osteonecrosis (1)
Erdheim-Chester disease (1)
Hereditary multiple
exostoses (1)
Osteoma (1)
Desmoplastic fibroma (1)
Glomus tumor (1)
Granuloma (1)
Sclerosing osteomyelitis (1)
Rheumatoid nodule (1)
Enchondromatosis (1)
PIndborg Tumor (1)
Chronic sclerosing osteitis
(1)
Sarcoidosis (1)
Schwannoma (1)
Rhabdomyosarcoma (1)
Maffucci syndrome (1)
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where ∥ ∥· denotes the Euclidean norm and γi denotes the feature vector
of the ith image in the dataset. We choose to use Cosine distance to
measure the similarity since one important property of vector cosine
angle is that it gives a metric of similarity between two vectors unlike
Euclidean distance, which give metrics of dissimilarities instead. Finally,
the similarity values between query and the stored images are used to

rank the results, and the ‘n’ top ranked images are retrieved and pre-
sented to the user in the subsequent round to collect the feedback.

c. User feedback, Feature space reformulation using Rocchio, Semantic
features prediction

The goal of this step is to incorporate feedback from the user about
the relevancy of initial retrieved images so as to improve the final query
results according to user preferences and, ultimately, to improve the

Fig. 2. Workflow of the proposed system.

Table 2
List of 18 semantic features and all possible values.

Type Semantic Feature Values

Clinical Age Decade bins: 0–9, 10–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80–89, 90–100+
Gender Male, female

Radiographic Number of lesions Solitary, multiple
Bone location Carpals, clavicle, femur, fibula, foot, hand, humerus, iliac bone, ischium, mandible, patella, pubis, radius, rib, sacrum, scapula, skull,

sternum, tarsals, tibia, ulna, vertebrae
Longitudinal location Apophysis, diaphysis, epiphysis, metadiaphysis, metaphysis, n/a
Proximal vs. distal Proximal, middle, distal, not applicable
Transverse location Medullary cavity, endosteum, cortex, periosteum, sessile, pedunculated, juxtacortical, soft tissue
Distribution Central, eccentric, n/a
Density Normal, ground glass, lytic, sclerotic, mixed lytic and sclerotic
Matrix/texture Normal, bone forming or osteoid, chondroid, septated, coarse trabeculae, central calcification
Transition zone/border Geographic 1A (narrow sclerotic), geographic 1B (narrow nonsclerotic), geographic 1C (wide non sclerotic), permeative/destructive/

punched out, unable to determine border or n/a (e.g.: osteochondroma does not have a border)
Cortex Endosteal scalloping grade: 0= none, 1= 0–25%, 2=25–50%, 3= 50–75%, 4= 75%+, where %=approximate depth of scalloping;

cortical thickening, periosteal scalloping (any degree), n/a
Periosteum No periosteal reaction, solid periosteal reaction, lamellated periosteal reaction, interrupted periosteal reaction, codman triangle,

sunburst
Lesion to shaft ratio 0–25%, 25–50%, 50–75%, 75–100%, > 100%, n/a
Physis Closed, open
Expansion Non-expansile, expansile
Soft tissue mass Yes, no
Pathologic fracture Yes, no
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accuracy of image retrieval. The main novelty of the current approach
is that an initial automatic prediction of semantic terms is generated
from the HFS without any user input other than an ROI about the le-
sion. Subsequently, the set of predicted semantic terms is improved
with iterations of relevance feedback. This can be done by moving the
query point in the HFS towards the contour of the user’s preference
which is defined as the cluster formed in HFS by the relevant images
identified by the user feedback (see Fig. 4). After a few iterations with
changes of location and contour, the reformulated query point should
be close to a convex region of the user’s preference in HFS, and, as a
consequence, the reformulated query vector should also better capture
the semantic axis of the query image.

We used Rocchio’s algorithm [5], which is a query modification
method that aims to find an optimized query vector, denoted
as γquery , by maximizing the similarity with relevant images while
minimizing similarity with irrelevant images as:  =γquery

−γ γ γ γargmax[sim( , ) sim( , )]query rel query nonrel , where γrel and γnonrelare the set
of relevant and irrelevant feature vectors, respectively. In our system,
similarity between the vectors (sim u v( , )) is measured as cosine simi-
larity (Eq. (1)) as described in the previous section. Under the cosine

similarity, Rocchio’s algorithm computes the optimized query vector as:

 ∑ ∑= + −
∊ ∊

γ αγ β
γ

γ δ
γ

γ1
| |

1
| |query query

rel γ γ
i

nonrel γ γ
i0

i rel i nonrel (2)

where γquery0 is the original query vector, γreland γnonrelare the set of re-
levant and irrelevant feature vectors, respectively, and α β δ, , are the
weights associated with each term. Starting from γquery0, the new query
γquery moves some distance toward the centroid of the relevant feature
vector and some distance away from the centroid of the irrelevant
vectors, as presented in Fig. 4. This new refined query vector should
better represent user’s current information needs and simultaneously
should expand the query vector to capture the semantic information
integrated in the vector space. This modified query vector can be used
for retrieval in the vector space model as well as it can provide a rea-
sonable judgment about the query image semantics.

We constitute the user feedback procedure as:

(1) The query vector (γ )query round_ 1 for round 1 contains only the radio-
mics features, and the semantic features are padded with zeros;

(2) The ‘n’ top similar images present in the current dataset are

Table 3
Description of the quantitative features extracted by the developed MATLAB module.

Type Radiomics Feature (Name and citation) Dimension Represents

Photometric features Intensity median inside lesion 1 Quantifies 1st order intensity distribution within the lesion
Entropy inside lesion 1
Proportion of pixels with intensity larger than pre-defined threshold 1
Intensity different between lesion and its neighbouring tissue (3 scale
analysis)

3

Haralick features [11] 12 Captures occurrence of gray level pattern within the lesion.
Gabor features [34] 32
Daubechies features (Wang et al. [31]) 324
Haar wavelets 1
Run Length Matrix [29] 7
Local binary pattern [23] 12 Computes marginal distribution of gray values with in lesion
No of pixels in different Hist. bins 20
Edge sharpness 60 Quantifies edge sharpness along the lesion contour
Histogram on edge 1

Geometric features Compactness [9] 1 Describes the morphology of the lesion
Eccentricity 1
Roughness [16] 1
Local area integral invariant [13] 15
Radial distance signatures [25] 2

Fig. 3. Sobel_G and Laplacian_G images of different types of bone tumors accentuating different image features of the lesions – (a) osteolytic; (b) osteosclerotic; (c)
mixed lytic and sclerotic; (d) mixed lytic and sclerotic.
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retrieved based on cosine similarity with the initial query vector
where ‘n’ can be specified by the user and is typically∼ 10;

(3) The user gives feedback on the retrieved result set by marking re-
levant or non-relevant images;

(4) Based on the user feedback, the initial query vector position in the
HFS will be altered according to Rocchio’s query reformulation
algorithm (Eq. (2)),

(5) The new updated query vector (γ )query incorporates both radiomics
and semantic axis of the HFS;

(6) In the subsequent round, the ‘n’ top similar images will be retrieved
based on cosine distance (σ) between images present in the dataset
and the new query vectorγquery .

The relevance feedback procedure (from 2 to 4) can go through one
or more iterations, if requested by the user. The process exploits the
idea that it may be difficult to formulate a comprehensive representa-
tion of the query, particularly if we do not collect semantic features
from the user with the query image, but it is natural and efficient for a
user to visually judge the similarity of retrieved images. Thus, it should
be practical to engage the user in iterative query refinement of this sort.
In such a scenario, relevance feedback can also be effective in tracking a
user's evolving information need: seeing some images may lead users to
refine their understanding of the information they are seeking.

We also exploit the idea of Rocchio’s query vector reformulation to
predict the semantic features of query image from the altered query
vector γquery . The altered query vector γquery is basically composed of
modified radiomics and semantic query vector components:
 ← × ×γ R S[ | ]query Matrix query Matrix query_ 1 496 _ 1 9 . We extract the


×SMatrix query_ 1 9 component from the optimized query vector, and, owing
to the categorical representation of the semantic features, we can pro-
ject the numeric values back to the original semantic feature space for
predicting the semantic features of the query images. Conceptually, the

new semantic feature vector (×S )Matrix query_ 1 9 is formulated in a way that
it should be close to the mean semantic features of cluster of relevant
image set in the semantic feature space. Therefore, if the relevance
feedback iteration manages to saturate, at that point the predicted se-
mantic features can capture an implicit correlation between radiomics
and semantic axis in the HFS by incorporating the high-level expert
preference.

2.2.3. UI prototype implementation
We implemented the components of our system (Fig. 2) as a gra-

phical MATLAB application that allows a user to load query DICOM
images, draw ROIs, and collect user feedback on the relevance of re-
trieved images to their query image. The prototype retrieves the top ‘n’
similar images. Fig. 5 shows a screenshot of the application, where a
user can initiate a retrieval operation by drawing an ROI on the query
image and specify the number ‘n’ of retrieved images to be displayed.
By default, we set the value of ‘n’ to 10, and the weight of the non-
relevant images δ( ) in Eq. (2) is set to 0. The user can modify the pre-set
values at any round during the retrieval process. The markup and the
semantic features for each retrieved image are shown within the ap-
plication.

2.3. Evaluation

As mentioned earlier in Section 2.1, we created a held-out test set by
randomly selecting 20 images from the first and second columns of
Table 1. To evaluate the performance of our system, two experienced
radiologists independently validated the held-out 20 test cases by up-
loading the images (see Section 2.1). For the sake of uniformity during
the experimentation, both radiologists used identical pre-drawn ROIs
on the query images. The relevance feedback was collected on the top-
10 retrieved images returned by the system. This number was selected

Table 4
Selected semantic features incorporated in the hybrid feature space.

Targeted Semantic Feature Values

Distribution Central, eccentric, n/a
Density Normal, ground glass, lytic, sclerotic, mixed lytic and sclerotic
Matrix/texture Normal, osteoid, chondroid, septated, coarse trabeculae, central calcification
Transition zone/border Geographic 1A (narrow sclerotic), geographic 1B (narrow nonsclerotic), geographic 1C (wide non sclerotic), permeative/

destructive/punched out, unable to determine border or n/a
Cortex Endosteal scalloping grade: 0= none, 1= 0–25%, 2= 25–50%, 3= 50–75%, 4= 75%+, where % = approximate depth of

scalloping; cortical thickening, periosteal scalloping (any degree), n/a
Lesion to shaft ratio 0–25%, 25–50%, 50–75%, 75–100%, > 100%, n/a
Expansion Non-expansile, expansile
Soft tissue mass Yes, no

Fig. 4. Conceptual representation of Rocchio’s query reformulation. User marks some images as relevant and non-relevant and the initial query vector is moved in
response to this feedback – (a) relevance feedback round 1 employing only radiomics features, and (b) relevance feedback round 2, employing both radiomics and
semantic features.
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as a realistic number of images for a reader to review quickly as part of
an interpretation workflow. We also assume that if most relevant
images are not returned within the first 10 hits, the retrieval system is
not performing well. For each of the 10 test cases selected as query
images, the users determined the number of iterations of relevance
feedback that he/she wanted to pursue. The first iteration was without
relevance feedback, with ranking of image similarity to the query image
based on quantitative features alone. The relevance feedback was
provided beginning with the 2nd round of retrieval, indicating for each
of the top-10 hits whether it was relevant or irrelevant, resulting in a
new ranked list of image query results. The users repeated the process
as many times as they desired until they felt they had a visually similar
set of query results. According to our experiment with the test set, the
system usually saturated at 4th round of iteration. The user can de-
termine the weights of the relevant and non-relevant feedback (β δ, ) by
interacting with the graphical UI. However, for sake of consistency
during the evaluation, we consider only positive feedback, which is
equivalent to setting =δ 0 in Eq. (2), and α is set to 1.

To evaluate the performance of the proposed system, we adopted
several standard evaluation measures in information retrieval – Mean
Average Precision (MAP), which provides a single-figure measure of
quality across precision levels for the ranked information retrieval.
According to the literature [30], MAP has been shown to have espe-
cially good discrimination and stability. MAP is defined for a set of
queries as the mean of the average precision scores for each query
image:

=
∑ =MAP

AvgPrecision q

Q

( )q
Q

1

(3)

where Q is the number of queries and AvgPrecision q( ) is the average
precision score for qth query. For a single query image, Average

Precision score is defined as the average of the precision values ob-
tained for the set of top n retrieved images:

∑=
=

AvgPrecision
n

P i1 @
i

n

1 (4)

where P i@ is the precision at the ith position when precision is defined
by the relevance feedback provided by the rater. For example, if the
rater marks the 1st ranked retrieved image ‘relevant’ and 2nd ranked
image ‘nonrelevant’, P i@ values will be =P@1 1/1 and =P@2 1/2. We
measure the AvgPrecision value of each round for each query, and
compute the MAP for the whole test set to report the performance
summary of the retrieval.

To evaluate the accuracy of semantic feature prediction, we col-
lected the ground truth of eight semantic features (see Table 4) for the
test images in the same way as described in Section 2.2.1. We measure
prediction accuracy by comparing the predicted value with the ground
truth features, and overall prediction score for each semantic feature
category is computed as average prediction accuracy over all the test
images.

3. Results

3.1. Retrieval of similar images

Table 5 shows the ranked retrieval results of final round (4th) for
the first query image (Query 1) for both the radiologists (named as
Radiologist #1 and Radiologist #2). As seen from the table, for the
same query images, the retrieved similar images may vary between
Radiologist #1 and #2, as the feedback differs based on the individual
judgment of similarity. Table 6 shows the corresponding results of
Rocchio’s query vector reformulation at each iteration of the user
feedback (we used Principal Component Analysis to reduce the

Fig. 5. MATLAB UI snapshot showing semantic feature prediction result and the top ranked similar image of a sample data.
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dimensionality of the HFS for visualization purpose). Table 6 also shows
the corresponding P i@ graph for the ranked retrieval results where
round 1 does not yet incorporate any user feedback. Therefore, the
performance of round 1 represents a baseline CBIR performance with
no relevance feedback from the user. As seen from Table 6, with the
increasing number of relevance feedback rounds, the query vector is
moving towards the cluster of relevant images in the HFS, and there is a
consistent improvement in the ranked retrieval performance for both
raters – P i@ is increasing for each ranked retrieval position.

In Table 7, we summarize the retrieval performance in the test set in
terms of Average Precision score as defined in Eq. (4). Starting in round
2, given the user relevance feedback and the predicted semantic fea-
tures, the system's performance improved substantially. Ultimately,
retrieval leads to a convergence for most of the query images. To prove
this fact statistically, we performed two-sided T-test by considering the
null hypothesis (H0) that baseline (round 1) have identical expected
AvgPrecision value as with the subsequent rounds with user feedback,
and report the p-values in Table 8. This test assumes that the popula-
tions have identical variances by default. As seen from Table 8, the null
hypothesis has always been rejected when baseline is compared with
the subsequent round of feedback that means there is a significant gain
in Average Precision score with iterative user relevance feedback. More
importantly, null hypothesis has been rejected with very high statistical
significance (p≪ 0.001) when baseline is compared with the final
round of feedback. The significant improvement in retrieval perfor-
mance compare to the quantitative baseline CBIR also proves the fact
the predicted semantic features could capture the radiological ob-
servations of the query image content.

Finally, we compute the MAP value as defined in Eq. (3) and present
the MAP value for each round as a bar plot (Fig. 6) which clearly shows
the iterations having user relevance feedback produce results much
higher in MAP value than the baseline round 1 (∼0.2). For the final
round, the computed MAP value is ∼0.90 for both the raters which
show a great improvement over the initial ∼0.2 MAP suggesting that
relevance feedback on the hybrid feature space CBIR is very helpful to
incorporate user preferences.

3.2. Prediction of the semantic features

We consider the semantic features computed at the final round of
relevance feedback (round 4 in the current study) as the prediction
outcome. For each rater, we present the prediction results of the test
query images for 8 different semantic features as heat maps in Figs. 7
and 8, where 1 means predicted feature matches with the actual

annotation and 0 means no match. The heatmaps indicate that pre-
diction of most of the semantic features matches nicely with the ground
truth annotations.

We also computed the average accuracy for the semantic feature
prediction in Table 9. Other than ‘Distribution’ and ‘Transition zone/
border’, all the semantic features achieved>0.8 prediction accuracy.
This is a promising result since not only the semantic features are
predicted in a semi-supervised iterative way, they were also in-
corporated on the feature space to improve the baseline CBIR perfor-
mance. As seen from the retrieval results, the predicted features suc-
cessfully captured the user preferences as well as increase the precision
of the system. The lower accuracy of ‘Distribution’ and ‘Transition zone/
border’ may be caused by the fact that they are more challenging to
estimate from the cropped images than other features. For instance,
information on the bone center is not captured on the cropped images
which makes computation of ‘Distribution’ semantic feature (sub-cate-
gory – eccentric/concentric) less conceivable. Thus, the two radiologists
did not rely as heavily on these features in refining the results.

4. Discussion and conclusion

In this work, relevance feedback was employed as a mechanism to
achieve good accuracy in CBIR by incorporating semantic and quanti-
tative image features, but not requiring the user to provide the semantic
features in the query image. The implications of this approach are
important in that by removing the requirement of collecting semantic
features, it may be practical to introduce our approach to CBIR into the
clinical workflow, since busy radiologists rarely have time to input such
data into the system. Furthermore, it is relatively easy to judge visual
similarity seeing a different set of images, and this process, combined
with existing knowledge in previously annotated images, enables our
system to perform well in the CBIR task with relevance feedback.

While the ultimate goal of machine learning algorithms and artifi-
cial intelligence may be to automatically learn from the data with
limited or no human interaction, it needs to be recognized that
achieving accurate results for complex image interpretation tasks such
as medical images may require higher levels of cognitive processing
[12]. Our system shows promising results in this regard by retrieving
visually similar images in the challenging area of bone tumor radio-
graphy by incorporating a human expert as part of the iterative process.
This type of “human-in-the-loop” integration or so-called “interactive
machine learning” has promise for other complex interpretation tasks in
radiology. In addition, if humans recognize their integral role in the
iteration towards improved retrieval, this may boost their confidence in

Table 5
Ranked retrieval results for the first query image (Query 1).

Query 1:

Radiologist #1 – Final ranked retrieval results
Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank6 Rank 7 Rank 8 Rank 9 Rank 10

Radiologist #2 - Final ranked retrieval results
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applying the results clinically. The latter remains to be investigated and
was not part of the current project. In the current work, performance
was measured in terms of retrieval of similar images, regardless of the
final histological diagnosis. We believe this approach has the potential
to aid in differential diagnosis of bone tumors by presenting a number
of possible lesion types that match the query image. We integrated
quantitative and semantic features extracted from the images to build
the hybrid feature space. By incorporating relevance feedback into the
hybrid feature vector space model, we not only get a very substantial
gain over the baseline CBIR performance but we also predict the se-
mantic features of the query image with good accuracy.

Much prior work in developing relevance feedback methods used
non-medical images, but little research has been conducted on the ap-
plication of relevance feedback in medical images using a fusion of
semantic and quantitative features. This is mainly due to the hetero-
geneity and complexity of medical images and their contents [1,32]. We
are aware of an encouraging prior work [19] that incorporates a ‘‘soft’’
prediction of ontological terms that describe the image contents from
image features and retrieves similar images by evaluating the similarity
that takes into account both image-based and ontological term rela-
tions. However, that framework depends on deterministic learning of
visual signatures, and no dynamic relevance feedback mechanism is

Table 6
Round-wise retrieval evaluation measures for the first query image (Query 1) – first row shows the Rocchio query vector reformulation and second row
presents P i@ graph.

Query 1- Radiologist #1
Round 1 (Baseline CBIR) Round 2 Round 3

Query 1- Radiologist #2
Round 1 (Baseline CBIR) Round 2 Round 3
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involved. This limits the effectiveness and similarity search personali-
zation capability of the system. Relevance feedback applied in the se-
mantic feature space also showed promise for performing retrieval of
medical images [17,33]. However, these systems require users to
manually interpret the targeted image and report semantic observa-
tions, which is time consuming and potentially disruptive of the current
radiology workflow.

Our proposed framework addresses some limitations of existing
clinical CBIR systems by enabling search for similar images with
iterative relevance feedback, and at the same time, predicting the se-
mantic features of the targeted image. The system requires only a query
image and an ROI marked by the user, and by iteration with user
feedback, it simultaneously predicts the semantic features by query
vector reformulation and uses the predicted features to improve the
retrieval results. Thus, the primary contribution of this paper is that it
proposes a framework where a seamless integration between low-level
features and high-level semantic terms exploited through relevance
feedback to perform radiological image interpretation and semi-auto-
matic image annotation. In addition, we calibrated state-of-the-art
edge-based features and design a case-specific quantitative feature
computation pipeline that automatically analyze the gradient of edges
present inside ROI and extract statistical measures which appear to
correlate well with the major complementary characteristics of tumors -
bone density and bone loss.

The study has several limitations. First, our dataset is unique and
heterogeneous, with a total of 69 unique bone tumor diagnoses, and
some diagnoses have few examples (< 5), which makes accurate re-
trieval very challenging. Therefore, we randomly selected 20 test cases

from the tumor types that have more than five samples and evaluated
the CBIR performance with the same tests for both the radiologists.

A second limitation is that we only collected the feedback on the top
10 similar images returned by the baseline CBIR since our system
heavily depends on active user engagement, and it did not seem prac-
tical to ask the radiologists to evaluate more than 10 cases at each
round. We plan to build a web-based user interface in the future to
facilitate collecting relevance feedback from users on a large scale
heterogeneous image database. This may yield means to couple the
proposed short-term learning RF strategy to a long-term learning
strategy that collects and stores the feedback of the radiologists for

Table 7
Round-wise retrieval performance measured in-terms of AvgPrecision value.

Query no. Radiologist #1: round-wise AvgPrecision value Radiologist #2: round-wise AvgPrecision value

Round 1) Round 2 Round 3 Round 4 Round 1 Round 2 Round 3 Round 4

(Baseline CBIR CBIR+Predicted semantic features+Relevance feedback (Baseline CBIR CBIR+Predicted semantic features+Relevance feedback

1 0.45 0.94 1 1 0.63 0.87 0.96 0.96
2 0.04 0.51 0.56 0.88 0.01 0.85 1 1
3 0.15 0.25 0.37 0.64 0.06 0.13 0.40 0.58
4 0.05 0.23 0.34 0.73 0.3 0.34 0.67 0.70
5 0.63 0.34 0.91 0.98 0.53 0.64 0.76 0.89
6 0.26 0.97 1 1 0.23 0.28 0.85 0.85
7 0.02 0.55 0.51 0.85 0.02 0.16 0.62 0.9
8 0.06 0.53 0.64 0.81 0.1 0.71 0.71 0.87
9 0.14 0.86 0.99 1 0.01 0.21 0.78 1
10 0.22 0.30 0.45 0.98 0.30 0.45 0.62 0.89
11 0.12 0.81 0.71 0.98 0.02 0.55 0.75 0.79
12 0.33 0.85 0.98 1 0.16 0.92 0.94 0.94
13 0.01 0.86 1 1 0.31 0.79 0.89 0.88
14 0.2 0.67 0.9 1 0.15 0.7 0.89 0.96
15 0.1 0.47 0.86 0.99 0.24 0.65 0.86 1
16 0.01 0.69 0.75 0.86 0.1 0.69 0.83 0.86
17 0.24 0.82 0.9 0.96 0.25 0.83 0.92 1
18 0.53 0.60 1 1 0.25 0.61 0.91 0.91
19 0.28 0.85 0.91 0.91 0.23 0.56 0.92 0.96
20 0.21 0.63 0.76 0.92 0.14 0.42 0.63 0.94

Table 8
Pairwise t-test of the AvgPrecision values (Table 9) between the baseline CBIR performance with increasing round of relevance feedback – Null hypothesis (H0)
assumes identical expectation of AvgPrecision value between baseline and subsequent round of relevance feedback.

Raters Measure p-Value Derived hypothesis

Radiologist #1 AvePrecision [Baseline (Round 1) – 1st round of relevance (Round 2)] 0.0066 H0 rejected with >99% confidence
AvePrecision [Baseline (Round 1) – 2nd round of relevance (Round 3)] 0.0003 H0 rejected with >99% confidence
AvePrecision [Baseline (Round 1) - Final round of relevance (Round 4)] 6.14e-08 H0 rejected with >99% confidence

Radiologist #2 AvePrecision [Baseline (Round 1) – 1st round of relevance (Round 2)] 0.0439 H0 rejected with 96% confidence
AvePrecision [Baseline (Round 1) – 2nd round of relevance (Round 3)] 1.62e-05 H0 rejected with >99% confidence
AvePrecision [Baseline (Round 1) - Final round of relevance (Round 4)] 2.80e-07 H0 rejected with >99% confidence
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Fig. 6. MAP measures of the retrieval based on the relevance feedback itera-
tions.
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future use of the system by another user [15].
A third limitation is that the benefits of relevance feedback are not

guaranteed to be realized for all iterations due to the randomness of
human interaction, and the user may need to continue providing re-
levance feedback until the system reaches a saturation point. It is also
possible that the reformulated query vector may actually move farther
from the relevant vectors in the feature space after multiple iterations
and the optimal saturation point will never be reached, since we only
considered the positive relevance for this study. However, in the user
interface, we have incorporated a sliding control bar that in future
testing will allow the users to tune the weights of positive and negative
relevance.

Finally, the relevance feedback approach may not work as well if
the relevant vectors create several disconnected clusters within the
hybrid feature vector space. Thus, the reported performance may not
generalize to other types of datasets or with different set of users.
Further studies on larger image collections will be needed. Despite
these limitations, we believe our results show the potential value of our
approach to enhancing CBIR with relevance feedback of visual simi-
larity as a new direction for helping radiological image interpretation.
Looking toward immediate future work, one of our goals is to test the
ability of our system to improve diagnostic accuracy across readers with
varying levels of clinical experience, with the aim of improving the
performance of less experienced users through effective similar image
retrieval. We are also interested in studying whether this type of

interactive machine learning increases the confidence of readers in
applying the results in clinical applications beyond that obtained with
entirely machine-based methods.
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