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We propose an efficient natural language processing approach for inferring the BI-RADS final assessment ca-
tegories by analyzing only the mammogram findings reported by the mammographer in narrative form.
The proposed hybrid method integrates semantic term embedding with distributional semantics, producing a

Mammography report
NLP

Distributional semantics
Text mining

context-aware vector representation of unstructured mammography reports. A large corpus of unannotated
mammography reports (300,000) was used to learn the context of the key-terms using a distributional semantics
approach, and the trained model was applied to generate context-aware vector representations of the reports
annotated with BI-RADS category (22,091). The vectorized reports were utilized to train a supervised classifier
to derive the BI-RADS assessment class.

Even though the majority of the proposed embedding pipeline is unsupervised, the classifier was able to
recognize substantial semantic information for deriving the BI-RADS categorization not only on a holdout in-
ternal testset and also on an external validation set (1900 reports). Our proposed method outperforms a recently
published domain-specific rule-based system and could be relevant for evaluating concordance between radi-
ologists. With minimal requirement for task specific customization, the proposed method can be easily trans-

ferable to a different domain to support large scale text mining or derivation of patient phenotype.

1. Introduction

Breast Imaging Reporting and Data System (BI-RADS) was devel-
oped by The American College of Radiology in an effort to standardize
mammography reporting language and assessment of the findings [1].
Yet, in clinical practice, high inter-observer disagreement (kappa value
of 0.37) is reported regarding the final assessment of BI-RADS cate-
gories [2]. For instance, earlier studies have found disagreements be-
tween observers in clinically significant management (biopsy versus
follow-up) in 32% of screening interpretations and in 45% after diag-
nostic evaluation [3]. As a consequence, several breast cancer treat-
ment planning studies [4,5] reported significant delays in assessing
mammography exam findings, which further hampered the timely
management of patients and consequently caused higher mortality rate.

Computerized inference of BI-RADS category may play a key role in
progressing standardized treatment planning by providing feedback to
the radiologists as they create their report to help to minimize potential
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harms associated with variable categorization, and it can be used to
accurately prioritize the follow-up based on patient phenotype. On the
other hand, it may also facilitate Al-based healthcare research by of-
fering a large scale text mining and data gathering opportunity, ulti-
mately supporting the development of an efficient predictive model for
breast cancer. However, the main challenge for a machine to assess the
content of the mammography report is the lack of both the standardi-
zation and the machine interpretability of the reports written in nar-
rative form.

Several NLP-based methods have previously been successfully ap-
plied to radiology reports, also specifically to mammography reports,
for extracting information or performing automatic classification of the
reports [6-10]. In Table 1, we present a comparison of the relevant
works. So far, only three proposed works [11-13] have focused on
classification or annotation of the reports based on BI-RADS final as-
sessment categories. However, the main limitation of the earlier studies
is the requirement for a huge amount of manual labour for creating
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corpus of 300,000 mammography reports from our healthcare institu-
tion’s clinical data repository, which contains a variety of breast ab-
normalities. We used this large corpus of 300,000 un-curated reports to
learn the context of key-terms using an unsupervised distributional
semantic approach which does not need hand-labeled data for training.
Corpus 3. Annotated report from OncoshareDB. In order to for-
mulate an external validation set, we collected 1900 de-identified
screening and mammogram reports from the Oncoshare database
(OncoshareDB) [18] (345 diagnostic, 1555 screening). Oncoshare is a
collaborative research database that is composed of retrospective
electronic data on women treated for breast cancer in the academic
medical center of Stanford University, the research institute of the
community-based Palo Alto Medical Foundation (PAMF), and the re-
search group at the regional Cancer Prevention Institute of California
(CPIC). We selected only the unilateral mammogram reports which
followed the BI-RADS standardization for reporting findings. Similar to
the corpus 1, we extracted the BI-RADS codes that were assigned by the
radiologist who read the mammogram, as ground truth labels.

2.2. Experimental setup

In Corpus 1, 22,109 reports are annotated with BI-RADS final as-
sessment categories, which are summary codes that indicate the radi-
ologist’s level of suspicion that a malignancy is present. We have the
following 7 distinct BI-RADS classes:

1. BI-RADS 0 - Need additional imaging evaluation and/or prior
mammograms for comparison;

. BI-RADS 1 - Negative for abnormality;

. BI-RADS 2 — Benign;

. BI-RADS 3 - Probably benign;

. BI-RADS 4 - Suspicious abnormality;

. BI-RADS 5 - Highly suggestive of malignancy;

. BI-RADS 6 - Known biopsy proven malignancy.

NO A~ W

In our experiment, the reports with the BI-RADS 5 category are
dropped due to an insufficient number of reports (<5%) for training a
machine learning model. From the remaining reports in Corpus 1, we
randomly selected 20% as the testing dataset and the remaining data for
training. The distribution of BI-RADS classes within the 17,672 anno-
tated reports in the training dataset and the 4419 annotated reports in
the testing dataset is summarized as a pie-chart in Fig. la.

Sampling of the training dataset: To manage the class imbalance
issue in the training dataset, we performed over-sampling using the
Synthetic Minority Over-sampling Technique (SMOTE) [19] for under-
represented BI-RADS classes 3, 4 and 6, and we performed cleaning
using Edited Nearest Neighbors (ENN) [20] for over-represented BI-
RADS classes 0, 1, and 2. After sampling, the size of the training dataset
increased about 3%. We report the performance of the systems both
with and without sampling in the Results section (Section 4).

Class-wise distribution of the external validation set: In Fig. 1b,
we represent the distribution of BI-RADS classes in our external vali-
dation set, i.e. corpus 3, as a pie-chart. The BI-RADS categories were
extracted by parsing the ‘Impression’ section of the mammogram re-
ports where the original reader recorded the BI-RADS score while,
during our validation, we used only the text from the ‘Findings’ section
of the reports. Among the 345 reports, 61% of reports were BI-RADS 2,
26% were BI-RADS 1, and 6% were BI-RADS 6. The sample distribution
for the Oncoshare mammograms does not exactly match with the dis-
tribution in the radTF dataset since the majority class in Oncoshare is
BI-RADS 2, while in radTF the majority class is BILRADS 1. Moreover,
BI-RADS 6 (biopsy proven malignancy) represents 6% of the Oncoshare
data.

Journal of Biomedical Informatics 92 (2019) 103137

3. The proposed pipeline

Fig. 2 presents the core processing blocks of the proposed report
categorization pipeline. The pipeline produces a context-aware dense
vector embedding of the whole mammography report in which two
complimentary phases are combined — (i) semantic key term mapping,
and (ii) context analysis using word2vec.

Following the common pre-processing steps, semantic-dictionary
mapping with domain specific key-terms is used as the basis of the word
vector creation process. The semantic dictionary is also used to create a
context-aware vector representation of whole reports based on five span
windowing of the domain-specific key-terms. Finally, a supervised
classification model is trained to learn the mapping between the report
vectors of the training set and ground truth labels for predicting the
annotation of test cases. The majority of the pipeline is unsupervised,
and only the classification block needs manually annotated BI-RADS
labels. The prototype was implemented using the Python programming
language and the Gensim 2.1.0 library [21]. In the following subsec-
tion, we illustrate the functionality of the core processing blocks.

3.1. Pre-processing

In the data pre-processing step, all the textual content of the
mammograpy reports (Corpus 1, 2 and 3) is stemmed and converted
into lower case by using the NLTK library [22]. In addition, all the
stopwords, punctuation characters, words with low frequency (<50),
and words with less than 2 letters are removed. The integer and floating
point numbers are converted to the corresponding string representa-
tion.

In order to preserve the local dependencies, bigram collocations of
all possible word-pairs are calculated for the entire pre-processed
corpus based on Pointwise Mutual Information [23]. The bigrams with
less than 50 occurrence are discarded and the top 1000 bigram collo-
cations are concatenated as a single word to improve the accuracy of
the word embeddings. A few examples of the resultant bigrams are:
‘chest wall’, ‘reduced_dose’, ‘weight loss’, ‘weight gain’, ‘normal -
followup’, ‘trabecular_thicken’, ‘suspici_microcalcif’, ‘cell_carcinoma’.

3.2. Report splitter

The BI-RADS final assessment categories are related to imaging
findings, yet they are often only reported in the impression section of
mammography reports. In order to evaluate the proposed report cate-
gorization approach without explicit mention of the BI-RADS category,
from Corpus 1 and 2 we extract only the findings section from the
mammography reports, which includes the imaging characteristics of
the abnormalities. However, the impression section is excluded: thus, it
does not contain any clear-cut definition of the final BI-RADS assess-
ment class. We developed a Python-based section segmentation algo-
rithm, Report Splitter, to separate the clinical history, findings, and
impression sections. The algorithm is designed to recognize section
headings and uses regular expressions to segment the reports into
proper sections.

3.3. Semantic dictionary mapping

After text pre-processing and report splitting, we exploit domain
ontologies to reduce term ambiguity and improve the semantic accu-
racy of the reports. This is done by using a lexical scanner that re-
cognizes corpus terms which share a common root or stem with pre-
defined terminology, and we map them to controlled terms (key-terms).

We created the domain ontology using the SPARQL (The Simple
Protocol and RDF Query Language) API. We developed a SPARQL
query-engine that remotely queries the RadLex lexicon hosted in the
NCBO BioPortal [24] to find the key-terms provided by the domain-
experts and programmatically extract a sub-tree from the RadLex
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Fig. 3. Automatic domain-specific semantic dictionary generation process.

Table 2
An example part of the dictionary for the term “mass.”

Key Term  Term Synonym Subclass Subclass Synonym
Mass Nodule Vague density Lesion ~ Mass in or Cutaneous mass
Focus Raumforderung on skin Superficial mass

Extramammary mass
Epidermal mass
Vertical lesion

Taller than wide mass
Vertical mass
Non-parallel mass

Non-parallel
mass

lexicon [25] that includes all the BI-RADS related terms, their syno-
nyms, and sub-classes. The query performs pattern matching on the
available graph of RadLex terminology (46,340 concepts and associated
terms) and constructs a domain-specific dictionary. The dictionary is
reviewed by an expert to resolve redundancy. The domain-specific se-
mantic dictionary creation process is illustrated in Fig. 3, and an ex-
ample part of the dictionary for the term “mass” can be seen in Table 2.

In addition to RadLex, we use a general publicly available termi-
nology, CLEVER, which is designed to detect broadly applicable clinical
contexts and map them to root terms, including negation (e.g., “no
evidence of [condition]”), risk (e.g., “risks include [condition]”), and
family related terms (e.g., “mother passes from [condition]”) [26].

After combining the domain-specific key-terms and general terms
derived from CLEVER terminology, we compile on a total of 325 key-
terms. The key-terms are mainly used to serve two purposes in the pi-
peline: (i) reduce the variations in the reports via mapping, and (ii) help
to generate context-aware vector representations to support report ca-
tegorization (see Section 3.5).

3.4. Word-embeddings

The pre-processed mammography reports from the training set of
Corpus 1 and all 300,000 reports from Corpus 2 were used to create
vector embeddings for words in a completely unsupervised manner

Average [a]a[afz]alz]

using the word2vec model [27]. The word2vec model adopts distribu-
tional semantics to learn dense vector representations of all words in
the pre-processed corpus by analyzing their context. In other words, the
vectors produced represent each word or phrase as a mathematical
combination of the words and phrases surrounding it within a linear
context window.

The semantic dictionary mapping step (Section 3.3) not only con-
siderably reduced the size of our vocabulary by mapping the words in
the corpus to key terms, but it also decreased the probability of OOV
word encounters. Therefore, it facilitates the application of word2vec to
directly parse radiology reports. The idea behind this is that the context
of key-terms (derived from the domain-specific dictionary) should
capture their true semantics and can facilitate information extraction
from mammography reports. For word2vec training, we used the skip-
gram model with a vector length of 300, a window width of 10, and
default settings for all other parameters. No vectors were built for terms
occurring fewer than 5 times in the corpus.

3.5. Context-aware vector creation

The vector creation process for each report belonging to Corpus 1 is
illustrated in Fig. 4. In this step, we use the 325 key-terms defined by
the BI-RADS dictionary and CLEVER terminology to identify the
window-of-relevant-words for generating a context-aware vector re-
presentation of whole reports. We searched the key-terms in each report
and, if a match was found, we defined its context as the term and its
surrounding 4 words. We selected a small context-window (4 words) to
capture the legitimate frame of the key-term appearance in the report.
The choice of window size is also conditioned on the fact that the
average sentence length in the mammography report corpus is 5-6
words. The context’s vector was then computed as the average of its five
constituent word vectors. We averaged the vectors of each word created
through the trained word2vec model in the word embedding phase (see
Fig. 4).

Each report vector is computed as follows:
VVEPOH = ﬁ Zcekeyterms (H yll I Zwecontext V), where VVEPOH is the report
vector, v, refers to the vector of word w inferred from the word2vec

ElelelellE] . RS

:'Key Term Vector 1
Key Term Vector 2

\ Report Vector =
' Average

: h
: :
: : \
! H * H
iKey Term Vectorn  ERIZ[A[=a] + H
: ' :
. :
: .

Vector Representation

Report - Key Term Vector of each Report

Creation

Fig. 4. Context-aware report vector creation process.
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Table 3
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Classification results for 4419 test reports without sampling of the training set — proposed method against a rule-based BN model and an out-of-the-box word2vec.

Rule-based BN

out-of-the-box Word2Vec

Proposed method

Precision Recall f1-score Precision Recall f1-score Precision Recall Fl-score
Class 0 0.78 0.47 0.59 0.94 0.59 0.72 0.91 0.92 0.91
Class 1 0.77 0.97 0.86 0.83 0.91 0.87 0.92 0.93 0.92
Class 2 0.78 0.47 0.59 0.76 0.30 0.43 0.75 0.76 0.75
Class 3 0.40 0.03 0.05 0.07 0.20 0.10 0.42 0.24 0.30
Class 4 0.50 0.41 0.45 0.34 0.61 0.43 0.67 0.75 0.71
Class 6 0.29 0.07 0.11 0.09 0.90 0.17 0.71 0.43 0.53
Avg 0.76 0.77 0.74 0.80 0.72 0.73 0.87 0.87 0.87

Table 4

Classification results for 4419 test reports with sampling of the training set — proposed method against a rule-based BN model and an out-of-the-box word2vec.

Rule-based BN

Out-of-the-box Word2Vec

Proposed method

Precision Recall f1-score Precision Recall f1-score Precision Recall Fl-score
Class 0 0.79 0.44 0.56 0.95 0.59 0.73 0.89 0.91 0.90
Class 1 0.75 0.74 0.75 0.84 0.91 0.87 0.97 0.82 0.89
Class 2 0.85 0.35 0.49 0.73 0.36 0.48 0.66 0.76 0.71
Class 3 0.01 0.14 0.02 0.07 0.21 0.10 0.15 0.59 0.23
Class 4 0.47 0.44 0.46 0.34 0.60 0.44 0.50 0.78 0.61
Class 6 0.06 0.23 0.09 0.10 0.90 0.18 0.42 0.79 0.55
Avg 0.75 0.59 0.64 0.80 0.73 0.74 0.81 0.81 0.83

model, n is the context window size (i.e. 5 in this study), and N is the
number of key-terms present in the report.

According to Kenter et al. [28], averaging the embeddings of words
in a sentence has proven to be a successful and efficient way of ob-
taining sentence embedding. On average, each report in the radTF da-
taset contains 4-5 key-terms. If a report included more than one key
term, the report’s individual context vector was the average of the all
the key-term context vectors. We never encountered a report which did
not include any of the key-terms. The most frequent appearing key-term
was “breast”.

3.6. Classification

The main advantage of the proposed context-aware vector re-
presentation is that it can preserve the relevant information about
radiological findings reported in mammography reports, while having
relatively low dimensionality. Additionally, the compact numeric re-
presentation of the free-text information allows better machine learning
treatment than straight one-hot encoding of words or traditional Bag-of-
words variations.

Our goal is to build a supervised classifier using the embedding of
the radiological findings to automatically recognize the BI-RADS cate-
gorization of the reports. We trained a standard non-parametric Logistic
Regression classifier in its default configurations (stochastic average
gradient solver, intercept scaling = 1, , penalty) for predicting six
different BI-RADS assessment classes. We used a logistic regression
classifier, though we expect that similar results could have been ob-
tained using other supervised methods, e.g., random forests and support
vector machine. The performance of the models has been measured in
terms of Accuracy, Precision, Recall, and F1 score. The F1 score is
calculated as the harmonic average of the precision and recall.

4. Results

As a baseline, we compared the performance of the proposed model
with a recently published decision support system for breast cancer
(NLP-DDS) [6,13] and an out-of-the-box Word2Vec (with an averaging
of word embeddings) [14]. The NLP-DDS depends on the features ex-
tracted from the mammography reports with a set of hard NLP rules [6]

and uses a Bayesian Network (BN) to predict BI-RADS category. We
applied the same set of rules to extract features from our training da-
taset that was used to train the proposed model, in order to train a BN
model from scratch.

For the out-of-the-box Word2Vec model, we trained the word2vec
embedding model on the same training dataset as used by our proposed
embedding method (see Section 3.4) and used the same classifier model
for BI-RADS categorization — a non-parametric Logistic Regression
classifier in its default configuration. We also report the performance of
the rule-based, out-of-the-box Word2Vec and the proposed model on
the same test dataset to be able to make a fair comparison (for the
training and test set see Section 2.2). In order to derive a head-to-head
comparison with the proposed method, we also validated the perfor-
mance of the rule-based and out-of-the-box Word2Vec system after
sampling the training data points. The performance of the models has
been measured in terms of Precision, Recall, and F1 score.

4.1. Internal validation: on the radTF dataset

Tables 3 and 4 summarize side-by-side the precision, recall and F1-
score of the proposed, out-of-the-box Word2Vec model, and the rule-
based method, trained in a supervised manner both with and without
sampling the training dataset. The performance is measured for the
same test dataset. In both cases (with and without training on the
sampled dataset), the proposed model out-performed both the rule-
based method and the out-of-the-box Word2Vec model. Without sam-
pling, the rule-based method achieved an average F1-score of 0.74, the
out-of-the-box Word2Vec model achieved an average F1-score of 0.73,
while our model scored 0.87. With sampling, average F1-scores of the
rule-based method, the out-of-the-box Word2Vec model, and our model
are 0.64, 0.74, and 0.83, respectively. Looking at the models’ perfor-
mance at the individual BI-RADS class level, the rule-based method
mostly failed to classify the intermediate and malignant BI-RADS
classes (BI-RADS 3, 4, and 6), even with sampled training data with
equal class distribution. This may be due to the incomplete extraction of
malignant features by the rule-based system, which influences the
classifier to treat the malignancy as a “rare event” and ignore it. In
contrast, the proposed model’s performance is superior for malignant
BI-RADS classes in both settings, which shows the fact that the classifier
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Fig. 5. Normalized confusion matrix for 4419 test RadTF reports — (a) rule-base method without sampling, (b) rule-base method with sampling, (c) out-of-the-box
Word2Vec without sampling, (d) out-of-the-box Word2Vec with sampling, (e) proposed method without sampling, (f) proposed method with sampling. The numeric

value in the diagonal cells represents the true positive rate.

trained on the proposed embedding is able to properly learn the ma-
lignant features of the radiological findings. Interestingly, the out-of-
the-box Word2Vec model out-performed the rule-based system in some
situations, which shows the power of unsupervised embedding to cap-
ture the semantics of radiology reports that not only saves tedious
manual feature engineering, but also aids model generalizability.

To present the class-level comparative performance in a more in-
terpretable manner, we visualize the corresponding confusion matrices
in Fig. 5 that are computed in six distinct settings: (a) rule-based
without sampling; (b) rule-based with sampling; (c) out-of-the-box
Word2Vec model without sampling; (d) out-of-the-box Word2Vec
model with sampling; (e) proposed model without sampling; (f) pro-
posed model with sampling. The numeric values in the confusion ma-
trices show the class-level classification agreement where 1 signifies

that 100% of the data in BI-RADS class x is correctly classified and 0
signifies that no single report is classified. As seen from the figures
(Fig. 5(a)), without sampling, the rule-based method was only able to
derive good classification performance for BI-RADS class 1, with 97% of
reports being correctly classified. This performance may be influenced
by the strong skewed distribution of class 1 in the training dataset. Even
after sampling (Fig. 5(b)), the accuracy of the rule-based method for
inferring malignant and intermediate BI-RADS classes stayed as low as
33% and 14%, when in fact the proposed model’s average accuracy for
inferring malignant BI-RADS (BI-RADS classes 4 and 6) is 79%. The
performance of out-of-the-box Word2Vec is better than the rule-based
system. Mainly, it successfully classified BI-RADS class 0 and 1, as well
as class 4 and 6, with agreement of 60%. Yet it failed to classify the
intermediate BI-RADS classes 2 and 3. This is probably due to the
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Table 5
Sample reports of BI-RADS 1 category and BI-RADS 6 category. (Finding sec-
tions only).

BI-RADS Class 1 - Limited intra-class language variation

The breast tissue is composed of scattered areas of fibroglandular density. No new
focal dominant mass architectural distortion or suspicious microcalcifications are
identified. There are no features to suggest malignancy.

The breast tissue is heterogeneously dense which may obscure detection of small
masses. There is no new focal dominant mass architectural distortion or
suspicious microcalcifications. There are no suspicious features to suggest
malignancy.

BI-RADS Class 6 - Significant intra-class language variation

The breast tissue is almost entirely fatty. There is a post needle biopsy S-shaped metal
marker in the lower and inner right breast which appears separated by 1.7 cm
caudally from a small residual microcalcification with adjacent small hematoma.

The breast tissue is composed of scattered,areas of fibroglandular density. Three scar
markers are seen within the right breast in the upper and upper outer quadrants
associated with architectural distortion and compatible with postsurgical
changes. An omega shaped marker with a small amount of high density tissue
and a small group of microcalcifications are seen within the right breast at the
8:00 position 10.5 cm from the nipple at the site of previously biopsy-proven
invasive ductal carcinoma. The soft tissue component appears smaller than on
prior likely related to interval resolution of post-biopsy hematoma. The
calcifications span a 15 mm region around the omega shaped marker. Other
calcifications appear scattered and loosely grouped throughout the right breast.

semantic similarity in the language between the intermediate classes.
For the proposed model, the sampling strategy helps in boosting the
classification accuracy of the intermediate and malignant BI-RADS
classes (see Fig. 5(d)). In most cases, the proposed model out-performed
the rule-base method and the out-of-the-box Word2Vec model.

The failure of the rule-based method in categorizing the malignant
BI-RADS classes is likely due to the fact that the intermediate and high-
risk mammography reports (BI-RADS categories 3, 4, and 6) exhibit
large variability in the text, which resulted in significant deterioration
in the classifier performance using the rule-based method compared
with the proposed context-aware embedding. On the other hand, the
true semantics of the BI-RADS 0, 1, and 2 mammography reports
(which indicate incomplete imaging or a low risk of findings) was
adequately extracted by the rule-based method, since the low-risk re-
ports are written using macros or very similar language with less term
variation. The findings sections of four diagnostic mammogram reports
are selected to illustrate the major language difference in high-risk re-
ports (BI-RADS 6) compared to low-risk (BI-RADS 1) (see Table 5).

The classification performance of the BI-RADS class 3 is low for both
methodologies: the best accuracy of the rule-based method is 14% while
proposed method had 59% accuracy. This was due to the fact that there
are many cases where the impression section contains critical in-
formation for BI-RADS categorization task, while the rest of the report,
including the finding section, contains an inadequate description of the
abnormality. Thus, the content of the reports without the impression
section is insufficient for the BI-RADS classification task in these cases.
This observation particularly holds for the BI-RADS class 3 (see Fig. 6).
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Interfering BI-RADS 3 is also challenging (sometimes with random as-
signment) for the human reader [29].

In Fig. 7, we present the 95% confidence interval for both the rule-
based method and the proposed system (IWE), which is derived using
an empirical bootstrap approach repeated 1000 times with a random
number of samples. The bootstrap methodology can provide a decent
estimate of how the model’s accuracy might vary for a unseen sample
set. The figure shows that though the spread of the confidence interval
for both methods is small, and the mean accuracy of the proposed
model is much higher than the rule-based system both with and without
sampling.

4.2. External validation: oncoshare screening and diagnostic mammograms

On 1900 mammogram reports from Corpus 3, we applied both the
rule-based and the proposed model, which have been trained only on
Corpus 1 reports (radTF dataset). This validation strategy can provide
insight about the generalizibilty of the models. We ran the validation
with and without the sampling and present the results of the best per-
forming models. The rule-based performed best without sampling the
training set, whereas the proposed method performed best after sam-
pling the training dataset. However, as seen from the classification re-
sults in Table 6 and the confusion matrix in Fig. 8, our proposed model
successfully generalized on the Oncoshare reports with an average F1-
score of 0.89, while the average F1-score for the rule-based system was
0.70. More importantly, despite being trained on a highly skewed da-
taset, the proposed system was able to accurately classify both high (BI-
RADS 4,6) and low (BI-RADS 0,1,2) BI-RADS category, while the rule-
based system mostly failed to classify the BI-RADS 3 and 6 reports.

In order to demonstrate the inter-observer variability for the BI-
RADS inference task, we conducted an experiment with two in-
dependent radiologists (experienced with reading mammogragm re-
ports) by randomly selecting 50 reports from Corpus 3. The radiologists
were asked to read only the findings section of the mammogram reports
and assign a BI-RADS score. We also annotated the same reports with
the proposed model and present both results in Fig. 9, where the x-axis
represents the individual report and the y-axis shows the assigned BI-
RADS score. Between rater 1 and the original mammogram readers,
there is an overall 22% disagreement, and there is 10% disagreement
between rater 2 and the original mammogram readers. Interestingly,
disagreement between the proposed model and the original mammo-
gram readers is only 8%, which is lower than the radiologists reading
the mammogram findings.

5. Discussion

The aim of our study was to propose an efficient and generalizable
approach for inferring the BI-RADS final assessment categories by
analyzing the clinical findings reported in free-text mammography re-
ports. We proposed a hybrid semi-supervised method which combines
semantic term embeddings with distributional semantics and showed

were seen on mag-views.

comparison: digital screening mammogram. technique:

lateral full-view and mag-spot, as well as mag-spot cc mammograms
of the left breast with cad to aid in interpretation.

findings: three loosely grouped calcifications in the inner left breast

impression: 1. left breast: bi-rads 3: probably benign. three loosely
grouped calcifications were seen in the inner left breast on mag-views.
diagnostic mammogram of the left breast is recommended in six
months to establish stability of these lesions.

Fig. 6. Sample report with a BI-RADS 3 category. (Patient IDs, demographic characteristics, and dates have been redacted to preserve anonymity).
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Fig. 7. Comparison of classification confidence between rule-based and proposed system (IWE).

Table 6
Classification results for 1900 Oncoshare reports — proposed method against
rule-based BN model.

Corpus 3: OncoshareDB

Rule-based BN Proposed method

Precision Recall f1-score Precision Recall f1-score
Class 0 0.09 0.12 0.10 0.10 1.00 0.18
Class 1 0.32 0.91 0.48 0.87 0.85 0.86
Class 2 0.96 0.63 0.76 0.98 0.90 0.94
Class 3 0.00 0.00 0.00 0.70 0.58 0.64
Class 4 0.43 0.71 0.54 0.53 0.71 0.61
Class 6 0.33 0.11 0.16 0.67 0.95 0.78
Avg 0.84 0.66 0.70 0.91 0.87 0.89

that our methodology was able to analyze the free-text clinical findings
and infer BI-RADS categorization with a performance comparable to the
radiologist’s reference standard. Semantic term embedding was em-
ployed to reduce the term-variations, as well as to create a vector re-
presentation of the whole report by abstracting significant radiological
findings. To our knowledge, this is the first study that investigates the
integration of distributional semantics techniques with the semantic
term mapping for analyzing mammography reports. We also created a
BI-RADS domain ontology automatically by developing a remote
SPARQL API that extracts a BI-RADS specific sub-tree from the RadLex
lexicon based on a set of terms provided by experts.
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In terms of automatic classification of radiology reports, several
recent studies have yielded promising results [11,6,12,8,30,10,31].
Nonetheless, the main limitation of the earlier works is that they re-
quire the domain experts to define concise information extraction rules
or domain-specific terms for the free-text clinical narratives. Nguyen
and Patrick [30] proposed active learning (AL) solutions for automatic
feature selection, yet their system still needed to use some rule-based
components. Analysis of free text narratives using rule based techniques
is highly time-consuming and the rules are required to be reformulated
for generalizability. Researchers have started to seek unsupervised or
semi-supervised approaches with the help of recent development in
NLP techniques. Neural word embeddings are one of the few currently
successful applications of unsupervised learning. Their main benefit is
that they do not require expensive text annotation, and the features can
be derived from large unannotated corpora that are readily available in
a domain such as radiology. Pre-trained embeddings can then be used
in downstream tasks that use small amounts of labeled data.

In the current cohorts of reports that we used, BI-RADS final as-
sessment categories are often explicitly mentioned in the impression
section of the mammography reports. Therefore, we ran our pipeline
considering only the findings sections. We also experimented with an
external dataset (OncoshareDB) that combines mammogram reports
from three different institutions and showed that our model, trained on
a single institutional dataset, was able to performed well on these re-
ports. These trials showed that our approach with domain knowledge
formalization and context-based analysis is able to classify reports, even
when no interpretation such as ‘benign’, ‘BI-RADS 2’, etc. occurs in the
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Fig. 8. Normalized confusion matrix for 1900 Oncoshare reports — (a) rule-base method without sampling, (b) proposed method with sampling. The numeric value in

the diagonal cells represents the true positive rate.
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Fig. 9. Plot showing BIRADS scoring of 50 randomly pulled reports from
Corpus 3 (a) assigned by the original mammographer and two individual
radiologists; (a) assigned by the original mammographer and our model.

report text. The results also showed that our approach is useful in the
identification of malignant cases. Even without any mention of BI-RADS
classes in the findings section, report classification achieved promising
results. This has the consequence of producing high specificity while
maintaining reasonable sensitivity. On the other hand, like in example
Fig. 6, most of the reports’ findings sections were not complete in terms
of imaging observations. We believe that the performance of the report
categorization will be significantly improved if the findings section of
the mammography reports comprehensively describe tumor character-
istics. As suggested in the literature, more complete and more effective
reporting of imaging observations [32] would promote the efficiency of
NLP applications to any classification or extraction task.

The improvement in the performance of the standard classifier
when compared with the rule-based system and the out-of-the-box
Word2Vec model (see Section 4) suggests that the integration of se-
mantic-dictionary based context analysis and unsupervised neural em-
bedding can enhance the extraction of critical information from radi-
ology reports by capturing the content of highly variable narration. We
suspect that the low success rate of the rule-based system is also caused
by the fact that the rule-based system was extracting information for
each lesion in a mammography report and present the performance for
assigning a lesion based BI-RADS category [13]. In contrast, in this
study, our approach for was predicting BI-RADS categories on a docu-
ment level. For instance, if there are more than one lesions in a report,

10
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all information was concentrated for all lesions in the document and the
network was re-trained to classify document level final BI-RADS as-
sessments. Therefore, concentration might be a reason for the perfor-
mance drop of the rule based system comparing to its former results. In
addition, we observed that the features that were extracted by the rule-
based system were mostly sparse for both Corpus 1 and 3, especially for
reports of the BI-RADS 3 class. This is due to the fact that the rule-based
system was designed to find terms only if they are recorded in the
findings section following the exact BI-RADS terminology. Linguistic
variations and vague observations cannot be tackled by the rule-based
system, which decreased the performance of the classification task. The
out-of-the-box Word2Vec model performance is better than that of the
rule-based system. This could be due to the fact that the Word2Vec
model somewhat captured the linguistic variation by computing simi-
larity between the words.

Efficient inference of BI-RADS classes may help to establish phe-
notyping in terms of malignancy for research purposes and can also
expedite quality reporting for radiology practices. It is also concluded
that if the term contexts are defined efficiently using embedding
methods, such as we present in this work, then they can be used as
features for other non-mentioned class terms in the text. Therefore, the
technique might also be useful for automated coding and correction of
reporting errors, and a second reading of reports to help increase the
consistency of final assessments and decrease the ambiguities in the
final assessments [33]. Our experiment shows that, on an external va-
lidation dataset, there is higher agreement between the original image
reader and the model than two individual radiologists. There are a
number of potential sources of variation for the individual radiologists,
which include different personal ideas of what constitutes a truly ne-
gative exam vs. benign findings (BI-RADS 1 vs. 2), different levels of
suspicion for equivocal findings (BI-RADS 2 vs. 3), uncertainty about
whether a finding is truly biopsy-proven without access to the original
electronic record (BI-RADS 6), and inferring from the report the nature
of any technical limitation to imaging (BI-RADS 0).

Despite the apparent high accuracy of our system, our approach has
several limitations. First, in addition to many reports with incomplete
findings section, the imbalanced nature of our corpus could have biased
the performance of the classification task. Second, instead of using only
the BI-RADS related terms that are present in the RadLex ontology, it
would be more effective to use all BI-RADS terms which are not yet
formalized in RadLex. Third, due to an insufficient number of reports in
BI-RADS 5 class for training, we ignored the class for this study, which
limits the practical utility of this approach. However, given enough
training data, the classifier model can easily be retrained. And finally,
although we believe that our method is highly generalizable due to the
success on the external validation set, our model is trained with single
institutional dataset, and this might bias the performance of the clas-
sification task.

6. Conclusion

In conclusion, we have presented the first experimental demon-
stration of combining semantic context-driven analysis with a dis-
tributional semantics technique to classify mammography reports ac-
cording to the BI-RADS classes. We believe that this technique can
provide a valuable and efficient way for recognizing the BI-RADS as-
sessment category phenotype in mammography reports without
needing any pre-defined rules. Ultimately, our approach can auto-
matically score reports describing breast cancer based on BI-RADS final
assessment categories and may improve standardization in BI-RADS
reporting. We believe the method may help to facilitate large scale text
mining or data gathering tasks to improve decision making in breast
cancer, and, most importantly, it requires minimal human effort for
task-specific customization.
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