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Abstract

IMPORTANCE Pulmonary embolism (PE) is a life-threatening clinical problem, and computed
tomographic imaging is the standard for diagnosis. Clinical decision support rules based on PE risk-
scoring models have been developed to compute pretest probability but are underused and tend to
underperform in practice, leading to persistent overuse of CT imaging for PE.

OBJECTIVE To develop a machine learning model to generate a patient-specific risk score for PE by
analyzing longitudinal clinical data as clinical decision support for patients referred for CT imaging
for PE.

DESIGN, SETTING, AND PARTICIPANTS In this diagnostic study, the proposed workflow for the
machine learning model, the Pulmonary Embolism Result Forecast Model (PERFORM), transforms
raw electronic medical record (EMR) data into temporal feature vectors and develops a decision
analytical model targeted toward adult patients referred for CT imaging for PE. The model was tested
on holdout patient EMR data from 2 large, academic medical practices. A total of 3397 annotated CT
imaging examinations for PE from 3214 unique patients seen at Stanford University hospitals and
clinics were used for training and validation. The models were externally validated on 240 unique
patients seen at Duke University Medical Center. The comparison with clinical scoring systems was
done on randomly selected 100 outpatient samples from Stanford University hospitals and clinics
and 101 outpatient samples from Duke University Medical Center.

MAIN OUTCOMES AND MEASURES Prediction performance of diagnosing acute PE was evaluated
using ElasticNet, artificial neural networks, and other machine learning approaches on holdout data
sets from both institutions, and performance of models was measured by area under the receiver
operating characteristic curve (AUROC).

RESULTS Of the 3214 patients included in the study, 1704 (53.0%) were women from Stanford
University hospitals and clinics; mean (SD) age was 60.53 (19.43) years. The 240 patients from Duke
University Medical Center used for validation included 132 women (55.0%); mean (SD) age was 70.2
(14.2) years. In the samples for clinical scoring system comparisons, the 100 outpatients from
Stanford University hospitals and clinics included 67 women (67.0%); mean (SD) age was 57.74
(19.87) years, and the 101 patients from Duke University Medical Center included 59 women (58.4%);
mean (SD) age was 73.06 (15.3) years. The best-performing model achieved an AUROC performance
of predicting a positive PE study of 0.90 (95% CI, 0.87-0.91) on intrainstitutional holdout data with
an AUROC of 0.71 (95% CI, 0.69-0.72) on an external data set from Duke University Medical Center;
superior AUROC performance and cross-institutional generalization of the model of 0.81 (95% CI,
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Abstract (continued)

0.77-0.87) and 0.81 (95% CI, 0.73-0.82), respectively, were noted on holdout outpatient populations
from both intrainstitutional and extrainstitutional data.

CONCLUSIONS AND RELEVANCE The machine learning model, PERFORM, may consider
multitudes of applicable patient-specific risk factors and dependencies to arrive at a PE risk
prediction that generalizes to new population distributions. This approach might be used as an
automated clinical decision-support tool for patients referred for CT PE imaging to improve CT use.

JAMA Network Open. 2019;2(8):e198719. doi:10.1001/jamanetworkopen.2019.8719

Introduction

Pulmonary embolism (PE) is a common life-threatening clinical problem and computed tomographic
(CT) imaging is the standard for diagnosis.1,2 The past 20 years have seen an increase in the number
of CT imaging examinations performed for PE evaluation and a decrease in imaging yield;
approximately 10% or less of patients who undergo CT imaging for PE are positive for the disease3

and a recent publication reported positive PE CT yield as less than 1%.4 Imaging carries risks due to
radiation, intravenous contrast material, and discovery of low incidental imaging findings that further
expose patients to unneeded procedures and tests.5 It has been estimated that approximately
one-third of all CT angiography imaging studies for PE are avoidable and cost the health care system
more than $100 million annually.6

To improve yield and reduce unneeded CT examinations, systematic use of PE risk scores (ie,
Wells or revised Geneva [rGeneva]) is recommended as clinical decision support (CDS), but only a
reported minority of clinicians are compliant.7-9 The deadline in the Protecting Access to Medicare
Act will more forcefully mandate consultation with a CDS tool before ordering CT for PE such that
eventually studies that are ordered without CDS tools will not be paid.10 However, there are
limitations with current CDS tools that call their utility into question; a large meta-analysis found no
overall improvement in use of CT imaging following CDS implementation based on PE risk scores.11

Limitation of the current CDS tools may be explained, in part, by inclusion of subjective criteria and
the fact that many known clinical PE risk factors or risk modifiers are not considered in current PE risk
scores, which can compel clinicians to order CT imaging against guidelines.12,13 Thus, without new
scoring systems that can better leverage advances in data science to inform CDS tools, this legislation
may lead to widespread adoption of existing PE risk scores and the accompanying well-described
limitations.12,13

Designing a method that can use routinely collected patient health care data to arrive at patient-
specific disease outcome prognosis, if successful, could better inform care decisions for patients with
suspected PE. Existing PE risk scores are based on hand-selected clinical variables (eg, expected
elevated heart rate and oxygen desaturation as physical manifestations of symptomatic PE), whereas
modern machine learning approaches have been shown to handle large volumes of relatively
complex interdependent data, are tolerant of errors, and include variables from a variety of sources
to provide more personalized estimations with improved accuracy.14-18 Estimation of the likelihood of
PE may serve as a useful case for application of such powerful tools because (1) the definitive
diagnosis can be made on CT imaging, (2) there are numerous factors known to contribute to PE risk,
(3) there are many existing rules-based prediction tools against which to compare the performance
of a new approach, and (4) overuse of CT for PE diagnosis is of broad concern to clinicians, patients,
payers, and regulatory bodies.

The purpose of this study was to design and evaluate a machine learning modeling approach
called Pulmonary Embolism Result Forecast Model (PERFORM) for predicting PE imaging outcomes
based on patient electronic medical record (EMR) data, including variables such as demographics,
vital signs (absolute and change from baseline), diagnoses, medications, and laboratory test results
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to provide a patient-specific risk score for those referred for CT imaging for PE; we evaluated this
model using intrainstitutional and extrainstitutional patient data and compared it with existing PE
risk scoring systems.

Methods

Figure 1A illustrates the proposed workflow that transforms raw EMR data arranged as a timeline into
feature vectors and uses a machine learning model to estimate the PE imaging outcomes to facilities’
clinical decisions. To train the model, we followed the Standards for Reporting of Diagnostic Accuracy
(STARD) reporting guideline and used the area under the receiver operating characteristic (AUROC)
value to report the performance. Trained models are validated on Stanford University hospital and clinics
(SHC) and Duke University Medical Center (Duke) holdout test sets as well as tested on separate SHC
and Duke outpatient populations. We compared traditional machine learning models and a new deep
learning model against 3 popular clinical scoring systems: Wells, Pulmonary Embolism Rule-out Criteria
(PERC), and rGeneva. As a primary measure, the accuracy of the prediction was evaluated by the AUROC
curve, which is a well-accepted single-performance measure to show the trade-off between
true-positive and false-positive prediction rates. The Duke University Institutional Review Board and
Stanford University Institutional Review Board approved the study with waiver of informed consent
because of the use of deidentified data.

Data Used
SHC Data Set
With the approval of the Stanford University Institutional Review Board, we retrieved 137 834
contrast-enhanced CT chest examinations performed between January 1, 1998, and January 1, 2016,
at SHC, including inpatient, emergency department, and outpatient scans. From the EMRs, we also
extracted the clinical data with time stamps and CT imaging report text. To create an annotated data
set for training and testing of the PE prediction model, 4512 CT images conducted with PE protocol
(PE-CT) examinations were selected from the internal data set of adult patients (after 2008); these
data were a stratified random sample (approximately balanced between PE-positive and
PE-negative) selected from the study population to capture equal distribution of PE-positive and
PE-negative labels for obtaining a balanced data set for training the model. To make a valid
comparison with clinical scorings, we created a data set by selecting 100 outpatient consecutive
samples from SHC PE-CT data set to generate a separate population for computing pretest
probability scores (eFigure 1 in the Supplement).

Each case was manually annotated by 3 experienced radiologists assigned 2 binary class labels
(PE present or absent and PE acute or chronic) and the raters were consistent, with κ scores of 0.959
and 0.969, respectively.19,20 Because we engineered the model to identify acute PE, we only used
examinations labeled as negative for PE (PE-negative) and positive acute (PE-positive) to generate
the final annotations for our cohorts. A senior radiologist (M.P.L.) resolved all conflicting findings on
the cases manually for preparing the ground truth labels.

Duke Data Set
With the approval of the Duke Institutional Review Board, as an external data set, we collected
227 809 contrast-enhanced CT examinations of the chest from Duke performed between January 1,
2013, and August 31, 2017, including inpatient, emergency department, and outpatient scans. We
retrieved a set of clinical data of these patients similar to those from SHC with encounter time-stamp
details. To create an external annotated data set for validation, we randomly sampled 300 PE-CT
examinations from Duke and performed manual annotation with the same group of radiologists. As
with SHC, we created a separate set with only consecutive outpatient samples (101 patients) from
Duke to compare with clinical scoring systems.

JAMA Network Open | Pulmonary Medicine Pulmonary Embolism Result Forecast Model for Computed Tomography Clinical Decision Support

JAMA Network Open. 2019;2(8):e198719. doi:10.1001/jamanetworkopen.2019.8719 (Reprinted) August 7, 2019 3/14

Downloaded From: https://jamanetwork.com/ by a Stanford University Medical Center User  on 11/27/2019

http://www.equator-network.org/reporting-guidelines/stard/
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2019.8719&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.8719


Figure 1. Overview of the Pulmonary Embolism (PE) Prediction Pipeline
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After exclusion of all patients with chronic PE, 3397 annotated PE-CT examinations from 3214
unique patients from SHC were curated as an internal annotated data set, and 244 annotated PE-CT
examinations from 240 unique patients from Duke were curated as an external data set. In addition,
we created a separate outpatient data set for SHC (100 consecutive patients) and Duke (101
consecutive patients), and these cases are independent from the internal SHC and Duke holdout data
set. Cohort assembly is presented as a flowchart in eFigure 1 in the Supplement and characteristics
of the patients are presented in Table 1.

Temporal Feature Engineering
For all patients, we defined their observation window as the 12 months leading up to their prediction
date (day before CT examination). Within the observation window, we created a feature engineering
pipeline that computes a vector representation of the EMR snapshot of each patient by considering
the temporal sequence within the records (Figure 1B and the eAppendix in the Supplement provide
details). Given the complexity of the EMR data and the requirement of temporality preservation, we
designed the pipeline to parse varying types of EMR: (1) all diagnosis codes (except the current
encounter); (2) all inpatient and outpatient medications, (3) all raw values of data from laboratory
tests, (4) all vital sign data, and (5) all demographic data. The feature engineering method curates the
EMR and is tolerant of sparse records (common limitation) (eAppendix, eTable 2, and eTable 3 in the
Supplement). We standardized features by removing the mean and scaling to unit variance.
Centering and scaling happen independently on each feature by computing the relevant statistics on
the samples in the training set. The mean (SD) is then used on later data (ie, internal holdout test and
external test set), using the same transformation function.

Traditional Machine Learning: ElasticNet Model
We created a prediction model based on ElasticNet regularized regression21 that combines L1
penalties of lasso and L2 penalties of ridge to overcome the limitations of incorporating high-
dimensional features for a relatively small number of samples. We performed shrinkage of the large,
quantitative scaled feature matrix while maintaining the pairwise correlation between features and

Table 1. Stratified Patient Characteristics of the Internal (SHC) and External (Duke) Data Set

Variable

No. (%)
SHC Inpatients
(n = 3214)

Duke Inpatients
(n = 240)

SHC Outpatients
(n = 100)

Duke Outpatients
(n = 101)

Age, mean (SD) 60.53 (19.43) 70.2 (14.2) 57.74 (19.87) 73.06 (15.3)

Sex

Men 1510 (47.0) 108 (45.0) 33 (33) 42 (41.83)

Women 1704 (53.0) 132 (55.0) 67 (67.0) 59 (58.4)

Race/ethnicity

White 1952 (60.73) 120 (50.0) 59 (59.0) 56 (55.4)

Black 194 (6.03) 97 (40.4) 11 (11.0) 42 (41.6)

Asian 342 (10.65) 0 6 (6.0) 0

Native American 65 (0.2) 10 (0.4) 5 (5.0) 0

Other 413 (12.83) 10 (0.4) 9 (9.0) 1 (0.01)

Unknown 248 (7.71) 3 (1.3) 10 (10.0) 2 (1.1)

D-Dimer test

Total D-dimer tests 637 (19.8) 31 (13.11) 29 (29.0) 32 (31.7)

Negative D-dimer test
result

42 (6.6) 30 (96.8) 2 (2.0) 4 (4.0)

Prior diseases of
pulmonary circulation

495 (15.4) 35 (14.6) 55 (55.0) 13 (12.9)

Cancer 1376 (42.8) 61 (25.4) 34 (34.0) 21 (20.8)

Anticoagulant therapy 1180 (36.7) 53 (22.1) 55 (55.0) 27 (26.53)

Ground truth: acute
PE-positive

1967 (61.2) 38 (15.8) 29 (29.0) 23 (22.77)
Abbreviations: Duke, Duke University Medical Center;
PE, pulmonary embolism; SHC, Stanford University
hospital and clinics.
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selected a set of discriminative features for distinguishing PE-positive and PE-negative findings
(eFigure 3 in the Supplement). The optimal value of the hyperparameters is derived by analyzing the
coefficient of the features computed by the 10-fold cross validation on the SHC training data. In
addition to ElasticNet, we experimented with other traditional machine learning models (logistic
regression, random forest, and adaptive boosting) and summarized the results in the eAppendix in
the Supplement.

Deep Learning: PE Neural Model
We developed an artificial neural network model to automatically classify patient-level PE likelihood
in which the first layer of the neural network model takes a temporal feature matrix as input. The
output of the first layer then passes through the multiple hidden layers where selecting the number
of hidden layers in the model requires balancing the capture of complex data representations against
overfitting (variance vs bias) (eFigure 4 in the Supplement). Grid search on 10% validation data
selected from the SHC training data was used to identify the hyperparameters, and we experimented
with different settings of number of hidden layers, learning rate, activation function, optimizers,
number of epochs, and dropout rate. The top 50 performance of the model on the validation data are
presented in eTable 5 in the Supplement. The network also contained a dropout layer between the
nonlinear hidden layers and output layer with sigmoid activation to prevent overfitting to the training
data. The final classification layer of the model contains hidden layers and a sigmoid layer, the
purpose of which is to predict the final probability as a differentiable output.

Statistical Analysis
We chose the AUROC as our primary evaluation measurement. In addition to AUROC, we performed
sensitivity analyses to better evaluate the top model’s potential clinical utility. To validate the
overfitting and overoptimistic performance claims, which are common concerns for machine learning
models, we evaluated the models in 4 different settings.

Setting 1: Internal Holdout
We randomly selected 340 CT examinations (10.6%) from the SHC cases for testing and the
remaining data were used for training the machine learning models. We verified that none of the
patients were duplicated between training and testing. We trained both models on the SHC training
data where 10% of the data were used as validation to tune the machine learning hyperparameters:
ElasticNet parameters, λ and α; and PE neural models parameters, number of neurons and hidden
layers, as well as dropout rate.

Setting 2: External Data
We used the models that were trained including only the SHC patients (setting 1) and tested them on
244 annotated CT examinations from Duke, which was curated as an external data set and was not
available at the time of prediction model development. This setting allowed us to test models’
reproducibility on independent sample set from a completely different health care institution (Duke).

Setting 3: Consecutive Outpatient Data
Because of the criteria for usability of the clinical scoring systems for computing pretest probability,
we consecutively selected 100 outpatient data from SHC and 101 from Duke and created another
hold-out cohort separated from the 2 data sets. We used the models that were trained using SHC
patients (setting 1) and tested it on outpatient data separately to judge the model performance of the
outpatient cases. In parallel to machine learning models, following the standard procedure for
retrospective scoring,21-26 we scored the 3 pretest clinical scorings—Wells, PERC, and rGeneva—via
manual medical record review where an expert (M.P.L.) computed the scoring values based on
available EMR data (including notes).
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Setting 4: Cross-Validation
To estimate generalizability of the model on a new SHC patient, we performed 10-fold cross-
validation on the SHS training data (except holdout test set of 340 CT examinations) (eAppendix and
eFigure 2 in the Supplement). A total of 3057 annotated CT examinations were partitioned into 10
equal-sized subsamples in which none of the patients were mixed in training and testing fold. Of the
10 subsamples, a single subsample of approximately 305 CT examinations was retained as the
validation data for testing the model, and the remaining 2752 subsamples were used as training data.
The cross-validation process was then repeated 10 times, with each of the subsamples used only
once as the validation data.

Results

Participants
Of the 3214 patients from SHC included in the study, 1704 (53.0%) were women; mean (SD) age was
60.53 (19.43) years. The 240 patients from Duke used for validation included 132 women (55.0%);
mean (SD) age was 70.2 (14.2) years. In the samples for clinical scoring system comparisons, the 100
outpatients from SHS included 67 women (67.0%)); mean (SD) age was 57.74 (19.87) years, and the
101 patients from Duke included 59 women (58.4%); mean (SD) age was 73.06 (15.3) years (Table 1).

Setting 1: Holdout From SHC
The results are summarized as AUROC in Table 2 and Figure 2; both machine learning models scored
high accuracy (PE neural, 0.85; ElasticNet, 0.93), with the ElasticNet model performing significantly
better than the PE neural model on the internal data set (P = .01). To test the practical usability, we
also plotted the distribution of positive and negative cases in decile of predicted probability value
along with the number of negative CT examinations (Figure 3). Figure 3 shows that, among 140
negative CT examinations performed at SHC, with a more conservative cutoff level, the ElasticNet
model could have redacted 44 of the 140 negative examinations (31.4%) with a cutoff probability
lower than 0.2 and only 2 missed PEs. The PE neural model could have redacted 67 of the 140
negative CT examinations (47.9%) with a cutoff probability lower than 0.2 and 4 missed PEs.

Setting 2: External Patient Data From Duke
As indicated in Table 2 and Figure 2, both machine learning models’ performance dropped on the
external Duke data set compared with the internal holdout SHC test set (PE neural, 0.72; ElasticNet,
0.70). However, the AUROC score remained greater than 0.7, and both models performed equally
well on the external data (Duke AUROC: ElasticNet, 0.70; PE neural, 0.72; P = .17), which suggests
that, even if the models have been trained only on the SHC patients, they are generalizable to the

Table 2. Quantitative Analysis of Model Performance

Variable

SHC Data Duke Data

AUROC P Value AUROC P Value
Holdout Testing on Internal and External Data Set

ElasticNet model 0.93
.01

0.70
.17

PE neural model 0.85 0.72

Comparison With Clinical Scoring Systems on Consecutive Outpatients

Machine learning models

ElasticNet model 0.73
.42

0.74
.01

PE neural model 0.81 0.81

Clinical scoring

Wells 0.48

NA

0.51

NAPERC 0.51 0.60

rGeneva 0.53 0.47

Abbreviations: AUROC, area under the receiver
operating characteristic curve; Duke, Duke University
Medical Center; NA, not applicable; PE, pulmonary
embolism; PERC, Pulmonary Embolism Rule-out
Criteria; rGeneva, revised Geneva; SHC, Stanford
University hospital and clinics.
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Duke patient population. We also plotted the distribution of positive and negative cases in the decile
of predicted probability value along with the number of negative CT examinations on the Duke test
set (Figure 3). The graph shows that over 244 CT examinations performed at Duke, 205 CT results
(84.0%) were negative for PE. With a more conservative cutoff, the ElasticNet model could have
redacted 148 of 244 examinations (60.7%) with a cutoff probability of less than 0.2 and 15 missed
PEs, and the PE neural model could have redacted 147 of 244 negative CT examinations (60.2%)
with a cutoff probability of less than 0.2 and 14 missed PE examinations.

Setting 3: Comparison With Clinical Scoring Systems
For head-to-head comparison, the results are shown in Figure 2 as AUROC values for differences in
scoring criteria and machine learning model and are summarized in Table 2. The PE neural model
performed significantly better (AUROC, 0.81) than all of the other models and criteria on the SHC and
Duke holdout outpatient data, including the ElasticNet model on the Duke data (0.74 vs 0.81;
P = .01). Table 2 also presents the cases with negative results of D-dimer testing from SHC and Duke
in which machine learning models resulted in high sensitivity as well as specificity for PE likelihood
detection compared with the clinical scorings and D-dimer test.

Overall, the best-performing model achieved an AUROC performance of predicting a positive PE
study of 0.90 (95% CI, 0.87-0.91) on intrainstitutional holdout data, with an AUROC of 0.71 (95% CI,
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in setting 3: comparison with 3 clinical scoring systems on 100 outpatient samples

(medical record manually reviewed by experts) seen at SHC (C) and 101 from Duke (D):
PERC (Pulmonary Embolism Rule-out Criteria), Wells, rGeneva against our proposed
ElasticNet and PE neural model.
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0.69-0.72) on an external data set from Duke; superior AUROC performance and cross-institutional
generalization of the model of 0.81 (95% CI, 0.77-0.87) and 0.81 (95% CI, 0.73-0.82), respectively,
were noted on holdout outpatient populations from both intrainstitutional and extrainstitutional

Figure 3. Performance in Setting 1 and 2
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data. Using conservative cutoff scores (<0.2), we would have avoided 67 of 340 studies at Stanford
and 147 of 244 studies at Duke, improving positive CT yield by 78% and 40.2%, respectively.

Discussion

The purpose of this study was to design and evaluate machine learning models capable of leveraging
large volumes of retrospective EMR data to achieve an accurate, patient-specific risk score for PE
diagnosis in patients referred for CT imaging. The core contributions of this work include open-source
(1) feature engineering pipeline to capture and preserve temporality of EMR data, (2) machine
learning models that can use EMR data to predict PE risk in patients referred for CT imaging, and (3)
outcome-labeled longitudinal data extracted from EMR data on patients referred for CT imaging
for PE.

Systematic attempts to curb unnecessary imaging for PE evaluation have focused on the use of
existing predictive PE risk scoring tools, such as Wells or rGeneva, as CDS tools to inform the decision
to perform advanced imaging, but in practice have had a disappointing influence on CT imaging yield
or use.27 Engineering the existing PE risk scoring tools depended on domain experts to designate
specific, relevant clinical variables to include in development.28,29 Early studies reported AUCROC
performance ranging between 0.63 and 0.75; specifically, the rGeneva scoring system, believed by
many to be the most widely applicable, consistent, and least subjective of the available predictive
models, initially reported an AUROC of 0.74 for both internal and external validation data.30 In our
outpatient populations, the predictive PE risk scores performance was closer to 0.5, owing to the fact
that this population comprised patients referred for CT. Yet, given the low overall yield for positive
studies for patients referred for CT imaging for PE, the performance of traditional risk scores, even if
they had been systematically applied, may have also been limited by the constraints of rule-
based methods.

In contrast to traditional risk scoring tools, newer data-driven machine learning approaches,
such as those used in this study, hold the potential to overcome limitations of prior approaches by
automatically identifying patterns and dependencies in complex EMR data to make it easier to
automatically extract useful information, in this case, for PE prediction.10,28 For this work we
highlighted 2 techniques—ElasticNet and PE neural model—applied to retrospective structured EMR
data and achieved AUROC values of 0.93 and 0.85 on internal holdout data, respectively
(performance of other techniques can be found in eTable 4 in the Supplement). The superior results
of ElasticNet on internal holdout data and poor generalization to external data may be a reflection
of the model’s reliance on dependencies in the training data and overfitting. In contrast, the inherent
flexibility of the neural model PERFORM was seen in our results: on external validation of both
inpatients and outpatients, the performance loss to the external data set was less pronounced and
the performance on the outpatient data achieved an AUROC of 0.81 for both the internal and
external outpatient data sets, despite the fact that the population in the external data set was
markedly different in terms of factors such as demographics and prevalence of diseases.

We engineered PERFORM to automatically generate an interpretable objective quantification
of PE risk, without subjective input, to help inform CT imaging decisions. In our analysis using
conservative cutoff scores, we would have avoided 67 of 340 studies at Stanford and 147 of 244
studies at Duke, improving positive CT yield by 78% and 40.2%, respectively; false-negatives, which
occurred with this cutoff value, occurred less frequently than current best practice (patients with
negative results of D-dimer testing and low probability scores on the traditional risk scores) (eTable 1
in the Supplement). Furthermore, the objective prediction score output may allow earlier treatment
for PE in patients with a high positive PE prediction score, which may improve clinical outcomes for
those patients as it may allow for rapid, early treatment.31 Incorporating PERFORM into clinical
workflow would be ideally an intelligent PE imaging CDS rather than an initial triage step; that is, if PE
cannot be excluded by initial clinical practice triage with risk scores from tools such as Wells, rGeneva,
and CT imaging is then ordered, PERFORM would be triggered to run automatically on the patient’s
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structured EMR data to provide patient-specific PE risk score information as an informed
intervention to improve use at the time of the order (Figure 1A). Encouraging performance on the
external Duke data set despite the population difference in terms of variables such as demographics
and prevalence of diseases suggests the reproducibility of the PERFORM model.

Limitations
This study has limitations. This was a retrospective analysis, which carries well-known challenges.7

We used CT imaging reports for precise, temporally specific cohort generation to avoid reliance on
error-prone claims data that lack information about the exact time of diagnosis.32-35 All patients
included in our study underwent CT imaging, even those for whom an age-adjusted D-dimer level
would have precluded imaging in most scoring systems. In addition, patients not referred for imaging
were excluded because the design of the study was not to displace existing rule-out criteria, but
instead to reduce unneeded PE imaging for patients referred for CT imaging for PE.

Conclusions

The neural network model PERFORM possibly can consider multitudes of patient-specific risk factors
and dependencies in retrospective structured EMR data to arrive at an imaging-specific PE likelihood
recommendation and may accurately be generalized to new population distributions. The findings
of this study suggest that this model may be used as an automated CDS tool to improve use of PE-CT
imaging in referred patients.
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