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Abstract

Background: The population-based assessment of patient-centered outcomes (PCOs) has been 

limited by the efficient and accurate collection of these data. Natural language processing (NLP) 

pipelines can determine whether a clinical note within an electronic medical record contains 
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evidence on these data. We present and demonstrate the accuracy of an NLP pipeline that targets 

to assess the presence, absence, or risk discussion of two important PCOs following prostate 

cancer treatment: urinary incontinence (UI) and bowel dysfunction (BD).

Methods: We propose a weakly supervised NLP approach which annotates electronic medical 

record clinical notes without requiring manual chart review. A weighted function of neural word 

embedding was used to create a sentence-level vector representation of relevant expressions 

extracted from the clinical notes. Sentence vectors were used as input for a multinomial logistic 

model, with output being either presence, absence or risk discussion of UI/BD. The classifier was 

trained based on automated sentence annotation depending only on domain-specific dictionaries 

(weak supervision).

Results: The model achieved an average F1 score of 0.86 for the sentence-level, three-tier 

classification task (presence/absence/risk) in both UI and BD. The model also outperformed a pre-

existing rule-based model for note-level annotation of UI with significant margin.

Conclusions: We demonstrate a machine learning method to categorize clinical notes based on 

important PCOs that trains a classifier on sentence vector representations labeled with a domain-

specific dictionary, which eliminates the need for manual engineering of linguistic rules or manual 

chart review for extracting the PCOs. The weakly supervised NLP pipeline showed promising 

sensitivity and specificity for identifying important PCOs in unstructured clinical text notes 

compared to rule-based algorithms.
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INTRODUCTION

Prostate cancer is the most common noncutaneous malignancy in men, accounting for 19% 

of new cancer diagnoses in the United States in 2017.1 Multiple treatment modalities exist, 

including surgery and radiotherapy.2 These treatments are known to be associated with 

treatment-related side effects that can alter a patient’s quality of life, such as sexual, urinary, 

and bowel dysfunction (BD).3 These outcomes are not detectable by a labaratory or 

diagnostic test, but rather through patient communication and they are often referred to as 

patient-centered outcomes (PCOs).4 Therefore, the data are typically captured as free text in 

clinical narrative documents or through patient surveys, if at all,5,6 both which are 

laborintensive and subject to biases. However, with relative 5-year survival in low-risk 

localized prostate cancer now above 99%,7 these treatment-related side effects have emerged 

as an important discriminator in prostate cancer care management and treatment decisions 

and more evidence-based research on these outcomes can assist both patients and clinicians 

to make informed decisions about treatment pathways, promoting value-based care.8,9 

Furthermore, the assessment and documentation of these outcomes are proposed quality 

metrics for prostate cancer care and under consideration for value-based payment modifiers 

under healthcare reform.9,10 Therefore, efforts to efficiently and accurately assess these 

outcomes align with the principles of value-based care and forms part of a growing national 

research agenda around patient-centered care.
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Computerized natural language processing (NLP) techniques can potentially be a solution 

for parsing millions of free text clinical narratives stored in hospital repositories, extracting 

PCOs, and converting them into a structured representation, including both supervised 

machine-learned and rule-based strategies. Such strategies have already been applied to a 

range of clinical notes, including progress notes and radiology and pathology reports to 

extract relevant clinical information in structured format.11 Supervised machine learning for 

automatic extraction of information from clinical narratives are common.12–15 In the 

prostate cancer domain, NLP offers an opportunity to extract treatment-related side effects 

on a large-scale from historical notes, which may help train models to automatically predict 

these outcomes for future patients. Developing such an NLP pipeline would enable 

secondary analyses on these data and help to provide valuable population-based evidence on 

these important outcomes. Previous NLP studies in prostate cancer applied rule-based 

strategies to classify whether a clinical note contained evidence of urinary incontinence (UI), 

mapping tokens in the note against a dictionary of related terms with a negation detection 

system, yielding reasonable precision and recall compared to manual chart review.16,17 

However, building supervised systems requires large amounts of annotated data, which is 

tedious and time-consuming to produce and a core limitation of such systems is their 

generalizability to other locations and settings.

Recent advances in NLP techniques can be leveraged for the automatic interpretation of 

free-text narratives by exploiting distributional semantics to provide adequate 

generalizability by addressing linguistic variability.18,19 Yet such techniques need a small 

subset of annotated data for training supervised classifiers when manual annotations are a 

major limitation. A weakly supervised approach is a promising technique for various NLP 

tasks aimed to minimize human effort by creating training data heuristically from the corpus 

content or exploiting the pre-existing domain knowledge. Following this idea, we propose a 

weakly supervised machine learning method for extracting treatment-related side effects 

following prostate cancer therapy from multiple types of clinical notes.

We extend previous studies both clinically and methodologically, with the objective to 

extract both treatment-related: UI and BD from a range of clinical notes without considering 

manually engineered classification rules or large-scale manual annotations. For machine 

learning, the method exploits two sources of pre-existing medical knowledge: (1) domain-

specific dictionaries that have been previously developed for implementing a rule-based 

information extraction systems;17 and (2) publicly available CLEVER terminology (https://

github.com/stamang/CLEVER/blob/master/res/dicts/base/clever_base_terminology.txt) that 

represents a vocabulary of terms that often present within clinical narratives. A weighted 

neural word embedding is used to generate sentence-level vectors where term weights are 

computed using term frequency and inverse document frequency (TF-idf) scoring 

mechanism, with sentence labels derived from a mapping against domain-specific 

dictionaries combined with CLEVER (weak supervision). These sentence vectors are used to 

train a machine learning model to determine whether UI and BD were affirmed or negated, 

and whether the clinician discussed risk with the patient. Finally, we combine the sentence-

level annotations using majority voting to assign a unique label for the entire clinical note. 

For performance assessment, we compare the sentence-level classification performance 
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against a popular generative models for text sentiment analysis: Naive Bayes model’s (NB) 

and note-level performance against a domain-specific rule-based system.17

METHODS

Raw data source

With the approval of Institutional Review Board (IRB), the Stanford prostate cancer research 

database was used for analysis.20 This contains electronic medical record (EMR) data from a 

tertiary care academic medical center on a cohort of 6595 prostate cancer patients with 

diagnosis from 2008 onwards, encompassing 528 362 unique clinical notes including 

progress notes, discharge summaries, telephone call notes, and oncology notes.

Dictionaries

The two targeted treatment-related side effects following prostate cancer therapy are defined 

as:

• UI: Urinary incontinence, or the loss of the ability to control urination, is 

common in men who have had surgery or radiation for prostate cancer. There are 

different types of UI and differing degrees of severity and length of duration

• BD: bowel problems following treatment for prostate cancer are common and 

include diarrhea, fecal incontinence, and rectal bleeding, also with differing 

degrees of severity and length of duration.

A reference group of 3 clinical domain experts (2 urologists and 1 urology research nurse) 

gave us lists of terms relating to the presence of UI and BD by individually looking at 100 

clinical notes that were retrieved from the Stanford prostate cancer research database. The 

lists were combined and an experienced urology nurse curated the final terms for UI (eg 

incontinence, leakage, post void dribbling) and BD (eg bowel incontinence, diarrhea, rectal 

bother). The final list (see Supplementary Table S1) not only contains terms from the 100 

clinical notes but also includes additional terms important for capturing UI and BD that are 

based on the suggestions of the domain experts. Note that general urinary symptoms (eg 

nocturia, dysuria, hematuria) are not considered as affirmed UI, thus such terms are not 

included in the dictionary. The same UI dictionary was previously used to implement a rule-

based information extraction system. 17

Annotations

In order to create a gold standard test set, 110 clinical notes were randomly selected from the 

entire corpus of notes. Two nurses and one medical student independently annotated 110 

clinical notes with 120 sentences. The set of clinical notes used to create the dictionaries was 

isolated from the validation notes. Annotations were assigned in two levels—(1) sentence-
level—raters went through the entire note, selected the sentences that discussed UI/BD, and 

assigned a label to each sentence; (2) note-level—raters looked at all the sentences that have 

been extracted on the sentence-level annotation phase, and assigned a label to the entire 

note. We present the sample distribution for both sentence- and note-level annotations in 

Supplementary Table S2.
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The following labels were assigned, if applicable, for both UI and BD: (1) Affirmed: 

symptom present; (2) Negated: symptom negated; (3) Discussed Risk: clinician documented 

a discussion regarding risk of the symptom. Some example sentences retrieved from the 

clinical notes present in our dataset and the labels assigned by the human expert are 

presented in Table 1.

Inter-rater reliability at the sentence-level was estimated using Cohen’s Kappa (Table 2). 

Moderately low agreements between the human raters reflects the subjectivity challenges 

associated with manual chart review. The main discrepancies occurred when the sentences 

contained contradictory information or unclear statements. Note that no predefined 

annotation protocol was available to the raters. The annotation was performed only 

depending on their clinical experience. Majority voting among the three raters was used to 

resolve the conflicting cases. These human annotations were only used to validate the 

automated annotation described below.

Proposed pipeline

Our proposed pipeline consisted of three core components: (1) dictionary-based raw text 

analysis; (2) neural embedding of sentences; (3) discriminative modeling. The pipeline takes 

the free-text clinical narratives as input and categorizes each sentence according to whether 

the PCO was affirmed/negated or risk discussed. Figure 1 shows a diagram of the pipeline.

Neural embedding of words

In the Stanford prostate cancer database (see Sec. Dataset), there are 164 different types of 

clinical narratives. In the preprocessing step, we applied standard NLP techniques to clean 

the text data and enhanced the semantic quality of the notes prior to neural embedding. We 

used a domain-independent Python parser for stop-word removal, stemming, and number to 

string conversion. Pointwise Mutual Information is used to extract the word-pairs to preserve 

the local dependencies using nltk library.21 The bigrams with fewer than 500 occurrences 

were discarded to reduce the chance of instability caused by low word frequency count. The 

top 1000 bigram collocations were concatenated into a single word, eg ‘low_dose’, 

‘weak_stream’. In order to reduce variability in the terminology used in the narratives, we 

used the pre-existing CLEVER dictionary to map the terms with similar meaning that are 

often used in the clinical context, to a standard term list. For instance, {‘mother’, ‘brother’, 

‘wife’,.} were mapped to FAMILY; {‘no’, ‘absent’, ‘adequate to rule her out’,.} mapped to 

NEGEX; {‘suspicion’, ‘probable’, ‘possible’,...} mapped to risk RISK; {‘increase’, 

‘invasive’, ‘diffuse’,...} mapped to QUAL. The CLEVER terminology was constructed using 

a distributional semantics approach where a neural word embedding model was trained on 

large volume of clinical narratives derived from Stanford.22 Then, after using the UMLS and 

the SPECIALIST Lexicon to identify a set of biomedical “seed” terms, statistical term 

expansion techniques were used to curate the similar terms list by identifying new clinical 

terms that shared the same contexts. This expanded dictionary derived empirically from 

heterogeneous types of clinical narratives will be more useful and comprehensive in the text 

standardization process compared to any single manually curated vocabulary. Bigram 

formulation using PMI and CLEVER root term mapping contributed to reducing sparsity in 

the vocabulary.
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Total 528 162 preprocessed notes (excluding the test set) were used as input for a word2vec 

model23 in order to produce the neural embeddings in an unsupervised manner. word2vec 

adopts distributional semantics to learn dense vector representations of all words in the 

preprocessed corpus by analyzing the context of terms. The word embeddings learned on a 

large text corpus are typically good at representing semantic similarity between similar 

words, since such words often occur in similar context in the text. For the word2vec training, 

we used the Gensim library24 and the continuous bag of words model which represents each 

word in a vocabulary as a vector of floating-point numbers (or “word embeddings”) by 

learning how to predict a “key word” given the neighboring words. No vectors were built for 

terms occurring fewer than 5 times in the corpus and the final vocabulary size was 111 272 

words. We collected 50 randomly annotated sentences (for UI) to use for validation and 

selected the window size and vector dimension by performing grid search to optimize the 

best f1-score (see Figure 2).

Training set creation from dictionary

In context of the current study, manual annotation of narrative sentences is not only 

laborious, but also extremely subjective as demonstrated by the inter-rater agreement scores 

(see Table 2). One of the major advantage of the proposed method is that no explicit ground 

truth sentence-level annotation is needed to train the supervised learning model. We 

employed the domain-specific dictionaries containing a set of affirmative expressions for UI 

and BD to build an artificial training set (see Dictionaries for details of dictionary creation). 

The UI dictionary contains 64 unique terms, indicative of UI, and BD dictionary contain 48 

terms. Further the affirmative expressions are combined with NEGEX and RISK term from 

the CLEVER dictionary to create examples of nonaffirmed and risk description expressions. 

Finally, these artificial expressions (for UI: 65 × 3 = 195 and for BD: 48 × 3 = 144) were 

exploited to create a ‘weakly supervised’ training set where each of them was labeled as 

whether it affirmed, denied, or discussed risk associated with UI/BD.

Sentence vector creation

Training set—We created the sentence-level embedding by weighting word vectors by the 

Tf-idf score. First, we computed the Tf-idf score for terms present in the domain dictionary, 

whereby Tf-idf is (i) highest when terms occur many times within a small number of 

training samples; (ii) lower when the term occurs fewer times in a training sample, or occurs 

in many samples; (iii) lowest when the term occurs in virtually all training samples (no 

discriminative power). The computed Tf-idf scores for the terms present in the UI and BD 

training dataset are shown in Figure 3. As seen from the diagram: incontin, diaper, negex 
and risk, scored highest for UI; and diarrhea, stool, rectal, negex, and risk scored highest for 

BD. The high score represents that these terms are clinically relevant and thus expected to 

have high discriminative power. Finally, the sentence vectors were created by combining the 

word vectors and weighting by the Tf-idf score of each term. Specifically, sentence vectors 

were computed with:

Vsen = 1
N

∑i = 1
N TScorewi

× Vwi
,
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where N is the total number of terms present in the expression, TScorewi
 is the Tf-idf score of 

word Wi in, and Vwi
 refers to the word vector of word wi.

Testing set—We use a pretrained NLTK sentence tokenizer to identify the sentence 

boundaries for 528 362 clinical narratives, and then selected relevant sentences based on 

presence of terms in the domain-specific dictionaries (see Supplementary Table S1). We 

design a set of filtering rules for each domain to drop out irrelevant sentences—for example, 

ensuring eye pad or nasal pad were not misinterpreted for the pad associated with 

incontinence; or that wound leakage was not misinterpreted as urinary leakage.

Among 528 362 texts, our pipeline extracted a total of 9550 unique notes with 11 639 

relevant sentences for UI and 2074 relevant notes for BD with unique sentence. For BD, we 

limited reports within 5 years of prostate cancer diagnosis since BD is a common symptom 

and we are focusing on BD as a side effect of prostate cancer treatment. In order to validate 

our sentence extraction pipeline outcome, we randomly selected 100 narratives from both 

cohorts and achieved 97% accuracy with manual validation. Finally, we generate sentence-

level vector embeddings as described above.

Discriminative model: supervised learning

Vector embeddings of the training expressions (described in the previous section) can be 

utilized to train parametric classifiers (eg logistic regression) as well as nonparametric 

classifiers [random forest, support vector machines, K-nearest neighbors (KNN)]. We chose 

to use multinomial logistic regression (also referred as maximum entropy modeling) with 5-

fold cross validation on the training dataset. Classifier performance on the test set was 

reported. We refer to this classifier hereafter as the neural embedding model.

Statistical analysis of results

A total of 117 expert annotated notes and corresponding sentences were used to validate the 

proposed model’s outcome (see Sec. Annotations) and to compare the performance with pre-

existing techniques. We adopted dual level performance analysis for both sentence- and 

note-level annotation.

Sentence-level annotation

We compare the performance of our sentence-level annotation model with one of most 

popular generative models for text sentiment analysis: Naive Bayes for multinomial 

Bernoulli models.13 The model estimates the conditional probability of a particular term 

given a class as the relative frequency of term in documents belonging to the particular class. 

Thus it takes into account also multiple occurrences.

Note-level annotation

We aggregated our sentence-level annotation to the note level. Individual notes could contain 

multiple sentences with UI/BD related information (11 639 UI-related sentences were 

retrieved from 9550 notes), hence a single note may have conflicting sentence-level labels. 

We applied majority voting across all sentence annotations to assign a label for the note. 
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However, we assigned priority to Affirmed and Negated labels over Risk labels, since 

clinical practitioners can discuss PCO risk in multiple sentences, but this does not confirm 

the current medical state of the patient.

This allowed us to compare our pipeline with the recently published rule-based method17 for 

extracting UI from patient notes in prostate cancer. The rule-based method only considered 

affirmation and negation, so notes classified as Discussed Risk were grouped with the 

negated notes based on the absence of any positive terms.

RESULTS

Sentence-level annotation

Table 3 summarizes the baseline NB performance on both UI and BD test and artificial 

training dataset. The model achieved an average f1 score of 0.57 for UI and 0.61 for BD. For 

the test dataset, the average precision was >0.7 but the recall remained as low as <0.55 

which suggests that the comparator classifier will miss 50% information about the targeted 

PCOs. Table 4 summarizes the performance of our pipeline with the same training and 

testing datasets. Our model achieved an average f1 score of 0.86 for both UI and BD, with 

0.88 precision and 0.85 recall. We present the performance of both methods on the artificial 

train dataset to show that though the NB model was able to learn the semantics of the simple 

expression from the dictionary, it failed to interpret the complex real sentences. Whereas the 

proposed method being trained on the artificial training dataset, was able to classify 

sentences extracted from the clinical notes with morphological and syntactic word variations 

and show significant improvement on the test set over the NB method (P-value <.01).

Classification accuracy versus the Naive Bayes comparator model is shown as a confusion 

matrix in Figure 4. The comparator classifier tends to incorrectly predict affirmation and risk 

discussion in both disease states. Our neural embedding model performs significantly better 

in classifying negated outcomes, with an ability to classify correctly 80% UI cases and 91% 

BD.

We also compared our Tf-idf weighted sentence vector generation method with doc2vec 

paragraph embedding method (epoch 10, dimension 100, learning rate 0.02, decay 0.0002) 

using the same multinomial logistic regression model. However, our weighted embedding 

method outperformed the doc2vec since doc2vec scored 0.55 overall f1-score for UI and 

0.62 overall f1-score for BD while out method scored 0.86 f1-score for both UI and BD. The 

modest performance of doc2vec could be due to the application of equal weight to each 

word rather than capturing their discriminative power in the weights.

Note-level annotation

For the UI case-study, we consider the 117 manually annotated notes to compare 

performance with rule-based method where the rules was formulated with the help of 

Stanford Urology experts.17 Figure 5 shows the performance of our pipeline in terms of f1 

score, precision, and recall compared to the rule-based model. Our model had f1 score of 0.9 

versus 0.49 for the rule-based model, and higher precision and recall for both Affirmed 

incontinence and Negated. The limited performance of the rule-based method is mainly due 
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to the concrete nature of the hard extraction rules that restricts the system to extract right 

information from the notes which were written using different styling/formats/expressions, 

even though all the notes belongs to the same institution from which the experts were 

involved in developing the rules. In contrast, the proposed model’s performance is superior 

for both Affirmed and Negated incontinence, which shows the fact that the classifier trained 

on the proposed embedding using an artificial training dataset is able to learn properly the 

linguistic variations of multiple types of clinical notes.

DISCUSSION

Contribution

In this study, we describe a weakly supervised NLP pipeline for assessing two important 

outcomes following treatment for prostate cancer, UI, and BD, from clinical notes in EMR 

data for a cohort of prostate cancer patients. To date, the evaluation of these outcomes has 

relied on labor and resource intensive methodologies, resulting in insufficient evidence 

regarding relative benefits and risks of the different treatment options, particularly in diverse 

practice settings and patient populations. As a result, efforts to establish guidelines for 

prostate cancer treatment based on these PCOs have been inconclusive.22 The pipeline 

described here used pre-existing domain-specific dictionaries combined with publicly 

available CLEVER terminology as training labels, removing the need for manual chart 

review. This method achieved high accuracy and outperformed a previously developed rule-

based system for prostate cancer treatment-associated UI.11 Advancing the assessment of 

these outcomes to such scalable automated methodologies could significantly build 

desperately needed evidence on PCOs, and advance PCOs research in general.

Significance

While survival is the ultimate treatment outcome, prostate cancer patients have over 99% 5-

year survival rates for low-risk localized disease and therefore treatment-related side effects 

are a focus of informed decisions and treatment choice. However, while the risk of such 

complications plays a critical role in a patient’s choice of treatment,23 previous studies have 

suggested that urologists may underestimate or under-report the extent of these symptoms.24 

In addition, reported outcomes mainly come from high volume academic centers, which 

likely do not translate to other practice settings and patient populations. Recent efforts in 

prostate cancer care have therefore focused on the assessment and documentation of these 

outcomes to improve long-term quality of life following treatment25 as well as promote 

patient engagement in medical care.26 However, these outcomes are not captured in 

administrative or structured data, which greatly limits the generation of evidence and 

secondary analyze of them.27 NLP methods present a way to automatically extract these 

outcomes data from clinical notes in a systematic and nonbias way,9,24 which can 

significantly increase the amount of evidence available in these data and promote associated 

studies across disparate populations.

Existing methods for large-scale clinical note analysis rely on supervised learning25,26 or a 

fixed set of linguistic rules,26,27 which are both labor-intensive. Our weakly supervised 

approach is novel because it does not rely on manual annotation of sentences or notes. 
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Instead, our approach exploits domain-specific vocabularies to craft a training set. In 

addition, the neural embedding allows for rich contextual information to be fed into the 

classifier for improved accuracy. We acknowledge that human effort is needed for the 

dictionary creation, but this effort is substantially less than the manual chart review effort 

and reusable to identify annotation for more cases. This approach outperformed a rule-based 

system for incontinence,17 and showed good performance relative to a comparator classifier 

in both UI and BD. The application of this methodology to evaluate outcomes hidden in 

clinical free text may enabled the study of important treatment-related side effects and 

disease symptoms that cannot be captured as structure data and possibly enhance our 

understanding of these outcomes in populations who are not adequately represented in 

controlled trials and survey studies. In Figure 6, we quantified positive UI for 1665 radial 

prostatectomy patients applying the neural embedding model on the clinical notes that are 

documented before and after the surgery. The NLP extracted quantifications of the large 

cohort correlate well with recent clinical studies33,34 conducted on diverse patient 

populations and practice setting.

Limitations

First, assessing outcomes from clinical notes requires adequate documentation within the 

EHR. While significant variation in documentation rates likely exists across providers and 

systems, PCOs such as UI and BD in prostate cancer care are integral in evaluating the 

quality of care and therefore are routinely documented in the patient chart.35 Second, the 

domain-specific dictionaries used in the current study were collected from a set of experts 

from the same clinical organization and therefore might not be generalizable to other 

healthcare settings. However, these outcomes and the terms used to report their assessment 

are fairly standardized in the community. The validation of the dictionaries in a different 

organization could enhance the accuracy of the pipeline, and we expect that performance 

could vary when multi-institutional free-text clinical notes are analyzed. Third, our model 

lacks sensitivity for word order which limits the ability of learning long-term and rotated 

scope of negex terms. However, our method is focused on sentence-level analysis thus it is 

not heavily impacted by long-term scope. Clinical practitioners often mention PCOs in 

multiple sentences of a clinical note, but the discussion of outcomes simultaneously with 

other unrelated topics in the same sentence was limited.

In future work, we will apply this model in other healthcare settings to test cross-

institutional validity. This would require adaptation of the preprocessing step and possibly 

an update to the domain-specific dictionaries to capture terminology differences between 

sites. Additionally, the pipeline can be applied to other disease domains to test its 

generalizability. A new domain would require the development of a new dictionary. 

However, it may be possible to conduct clustering on a text corpus in order to generate the 

domain-specific dictionaries automatically without the need for a clinical review group.

CONCLUSIONS

Based on weighted neural embedding of sentences, we propose a weakly supervised 

machine learning method to extract the reporting of treatment-related side effects following 
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among prostate cancer patients from free-text clinical notes irrespective of the narrative 

style. Our experimental results demonstrated that performance of the proposed method is 

considerably superior to a domain-specific rule-based approach11 on a single institutional 

dataset. We believe that our method is suitable to train a fully supervised NLP model where 

a domain dictionary has already been created and/or interrater agreement is very low. Our 

method is scalable for extracting PCOs from millions of clinical notes, which can help 

accelerate secondary use of EMRs. The NLP method can generate valuable evidence that 

could be used at point of care to guide clinical decision making and to study populations that 

are often not included in surveys and prospective studies.
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Figure 1. 
Pipeline for sentence-level annotation for urinary incontinence presence, absence and risk 

discussion. Gray highlighted texts represent I/O of the modules. Headings ofthe 

corresponding sections are mentioned along with the section numbers in red.
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Figure 2. 
Validation study to optimized two hyperparameters (window size and vector dimension) for 

word2vec: Over all f1-score for 50 UI annotated sentences. Window size 5 and vector 

dimension 100 resulted best f1-score (in bold).
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Figure 3. 
TF-IDF scores for each of the terms in the dictionaries for urinary incontinence (left) and 

bowel dysfunction (right).
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Figure 4. 
Confusion matrix for urinary incontinence (a) and bowel dysfunction (b): Baseline on right 

and Proposed model on the left. 44% incontinence statements have been misclassified by the 

baseline whereas only 19% misclassified by the proposed model. 53% bowel dysfunction 

statements have been misclassified by the baseline whereas only 9% misclassified by the 

proposed model.
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Figure 5. 
Comparative performance analysis with state-of-the-art rule-based system: urinary 

incontinence.
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Figure 6. 
UI evaluation for radial prostatectomy patients before (BASELINE) and after surgery at 

different time points.
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Table 2.

Agreement between raters in annotating 120 selected sentences for urinary incontinence and bowel 

dysfunction

Annotators

Cohen-kappa score

Urinary incontinence Bowel dysfunction

Rater 1, Rater 2 0.66 0.70

Rater 1, Rater 3 0.72 0.72

Rater 2, Rater 3 0.62 0.64
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