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We compare methods to develop an adaptive strategy for therapy choice in a class of breast cancer
patients, as an example of approaches to personalize therapies for individual characteristics and each
patient’s response to therapy. Our model maintains a Markov belief about the effectiveness of the differ-
ent therapies and updates it as therapies are administered and tumor images are observed, reflecting
tumor response. We compare three different approximate methods to solve our analytical model against
standard medical practice and show significant potential benefit of the computed dynamic strategies to
limit tumor growth and to reduce the number of time periods patients are given chemotherapy, with its
attendant side effects.

� 2017 Published by Elsevier Inc.
1. Introduction Oncologists face challenging questions when treating meta-
Personalized medicine offers the potential of selecting the best
therapies depending on patient characteristics, medical history,
and observed response to treatment. We seek to develop a frame-
work to model the effectiveness of different therapies and develop
a strategy tailored to a patient or class of patients. In this paper we
consider breast cancer patients who are hormone receptor-positive
and we use approximate algorithms to construct therapy strategies
that incorporate clinical observations about tumor response to
therapy.

Breast cancer is one of the most common cancers with 231,840
estimated new cases and 40,290 estimated deaths among US
women in 2015 [1]. Roughly 6% of all breast cancer cases reported
from 2005 to 2011 are metastatic breast cancer cases. Breast can-
cer can be hormone receptor-positive for estrogen (ER+) and/or pro-
gesterone (PR+), where hormone therapy is most effective. This is
the most prevalent of the three therapeutic categories for breast
cancer, comprising 2/3 of all cases. Recent studies have also shown
that targeted therapy in combination with hormone therapy, i.e.
everolimus plus exemestane, is even more effective than many
hormone therapies and chemotherapies [2,3]. Because hormone
therapy, as well as targeted therapy, induce fewer side effects than
chemotherapy, it is usually the first-line therapy for hormone
receptor-positive breast cancer patients.
static hormone-receptor positive patients, including

(1) Is the current therapy effective?
We say that a therapy is currently effective for a patient if it
is more likely that the tumor size will decrease than
increase. According to a systematic review of metastatic
breast cancer therapies [4], the rate of objective tumor
response (defined as the tumor being less than half its initial
size for at least 4 weeks), varies from 19% to 56% across ther-
apies. There is considerable uncertainty, in the measurement
of tumor size from radiological images, in the response of a
tumor even to an effective therapy, and in the high probabil-
ity that the measurement of tumor size will not change sig-
nificantly in the two weeks between hospital visits. Together
this makes it difficult to determine whether the current
therapy is effective. This is exacerbated by the current prac-
tice of waiting three months between mammograms.
Unfortunately, tumors can develop resistance to therapies.
The probability that a particular therapy is effective declines
over time. This decline in effectiveness is observed whenever
the patient receives that therapy or, to a lesser extent,
another therapy from the same family, with similar func-
tional mechanisms.
Therefore, we may possibly use the past treatment and
observation history to update our belief about the current
therapy effectiveness. However, this inference is too compli-
cated to perform without a computer-based framework.
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Fig. 1. Markov model of the changes to the effectiveness of therapies given therapy
A is administered this period.
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(2) When to switch to another therapy?
As the effectiveness of the current therapy is not directly
observable, oncologists are unsure when to switch to other
therapies. In the standard approach, each therapy is halted
when the tumor progresses (defined as an increase of at least
25% in the estimated cross-sectional image area). However,
evidence suggests that progression might not be the best
signal to determine when to switch therapies. For example,
early breast cancer patients who took Tamoxifen for 2–
3 years and switched to Anastrozole have longer disease-
free and local recurrence-free survival than those who con-
tinued with Tamoxifen [5].
Therefore, we seek to determine a better dynamic therapy
strategy for hormone receptor-positive breast cancer
patients so as to limit the tumor growth and reduce the
chemotherapy side effects.

In the following sections: we build a belief Markov Decision
Process (MDP) model for the therapy strategy; we validate model
inputs and implement two Kalman Filter Q-Learning Algorithms,
and compare numerical results for those algorithms, a generic sol-
ver SARSOP, and the standard medical practice; and we present our
discussion and possible future work.
2. Methods

2.1. Decision framework for dynamic therapy strategy

We develop a dynamic decision framework to find an optimal
strategy personalized to the patient. We choose to adopt Matlab
for code development.

In our model, we consider alternative therapies for a patient
with metastatic hormone receptor-positive breast cancer. There
are two hormone therapies, Tamoxifen and Fulvestrant, and two
chemotherapies, Docetaxel and Capecitabine, that we label as
Therapy A, B, C and D, respectively. One of the four therapies can
be chosen each period.

If we know which therapies are currently effective, we can plan
a patient’s treatment. A Markov Decision Process (MDP) models
sequential decision problems with an underlying state. When the
state is not directly observable the model becomes a Partially
Observable Markov Decision Process (POMDP) [6]. A POMDP can
then become a ‘‘belief MDP” with the introduction of a Markovian
‘‘belief state,” the probability distribution for the underlying, but
unobservable state. Our models use a Markov state to represent
our current probabilities for effectiveness of the different
therapies.

We estimated the prior belief of therapy effectiveness based on
the literature, but in practice those could be adjusted for patient
characteristics, eg, demographic, biological or microbiological.
We assume that the effectiveness of different therapies are depen-
dent if they are in the same family, i.e. hormone therapy or
chemotherapy, but independent if they are in different families.

We use a simple Markov model to capture the decline of ther-
apy effectiveness when applying the same therapy or a therapy
in the same family. When therapy x is applied for a period there
are two possible effects: the within-therapy effectiveness decline
rate ax denotes the probability that therapy x becomes ineffective,
and the between-therapy effectiveness decline rate byjx denotes the
probability that therapy y in the same family becomes ineffective.
To illustrate, if Tamoxifen (therapy A) is applied for one period, the
effectiveness of hormone therapies A and B can change, as repre-
sented as in Fig. 1, but we assume that the effectiveness of
chemotherapies C and D do not.
We use an MDP to model dynamic therapy choices. The length
of each period corresponds to the time between hospital visits,
when therapy decisions are usually made. For metastatic breast
cancer patients, we assume periods last two weeks, and we use a
time horizon of 100 periods or about 4 years. While the effective-
ness of therapies are useful distinctions, they are not directly
observable, so instead our state includes our beliefs about them,
represented as a joint probability distribution. The state also
includes the estimated tumor size, and we use it to update our
beliefs about effectiveness.

For each period t, we define absolute tumor size mt in square
centimeters as the estimate obtained by summing over the product
of the two dimensions of observable tumors given in the radiolog-
ical report that period. For example, the initial tumor size ism0. We
believe that the tumor size in period t þ 1;mtþ1, will depend on the
therapy chosen, its effectiveness, and mt . A therapy is chosen in
period t after observing mt and updating our beliefs about the cur-
rent effectiveness of the therapies. The stage reward in period t
combines the tumor response and therapy side effects, and is a
function of the therapy chosen and mt , discounted at the rate of
0.95 per year. The first three time periods of the model are repre-
sented by the influence diagram shown in Fig. 2. The dashed boxes
group the therapy effectiveness uncertainties in each period, repre-
senting that arcs directed into and out from the dashed box apply
to every uncertainty in the dashed box.

We could have solved this problem as a discrete state POMDP,
but since we would need to remember all past observations to
update our belief, it becomes intractable as the number of thera-
pies and observations increase. Instead, we solve a ‘‘belief state”
MDP, characterized by its states, actions, and stage rewards, as
described below.

Belief MDP Model
Action: In each period, we choose a therapy a 2 fA;B;C;Dg.
Reward: Stage reward is separated into two parts, to be

summed and discounted at the rate of 0.95 per year.
The first part is the tumor response, which we define as the neg-

ative log of the tumor size, �log2ðmtÞ for t ¼ 1; . . . ;100 and
�log2ðm100Þ thereafter, corresponding to the MDP shown in
Fig. 2. Since we have no control over the initial size m0, it suffices
to minimize the number of tumor size doublings,

R1;t ¼ �log2
mt

mt�1

� �
for all t ¼ 1; . . . ;100; ð1Þ

corresponding to the MDP shown in Fig. 3. We assume that the
observed tumor response will grow by one of three factors in period
t: either increase to 21=6 � 112%, decrease to 2�1=6 � 89%, or stay the
same, relative to the start of period t. We measure tumor size

increases by factors of 21=6 � 112% to capture tumor progression,
defined as a 25% increase in cross-sectional image area. Specifically,



Fig. 2. MDP with state including current and past absolute tumor size and our beliefs about the effectiveness of therapies.

Fig. 3. MDP with state including current tumor response and our beliefs about the effectiveness of therapies.
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two consecutive tumor size increase by factor of 21=6 is equivalent

to 21=3 � 125%.
The second part of stage reward represents the disutility due to

chemotherapy side effects. We define / ¼ �0:1 as the value that
makes the decision maker indifferent between (1) enduring the
side effects caused by chemotherapy for 1=j/j ¼ 10 periods, i.e.
20 weeks, or (2) having the tumor become twice as big as with that
chemotherapy. We assume that both Docetaxel and Capecitabine,



Table 1
Definition of variables in (approximate) Kalman Filter Q-Learning Method.

Variable Definition

s Current MDP state
s0 Successor MDP state
a Action, therapy choice from {A, B, C, D}
Rðs; a; s0Þ MDP reward
hðs; aÞ Basis function values for pair ðs; aÞ
r Weights on the basis functions that minimize the mean Bellman

residual
l;R Mean vector and covariance matrix for r � Nðl;RÞ
Qðs; aÞ Q-value for ðs; aÞ
�ðs; aÞ Estimation error, learning rate
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i.e. therapy C and D, have the same disutility due to chemotherapy
side effects in our model. Therefore, the chemotherapy disutility is

R2;tðaÞ ¼
/ ¼ �0:1 if a 2 fC;Dg
0 otherwise

�
ð2Þ

The total stage reward is Rt ¼ 0:95t=26ðR1;t þ R2;tÞ.
State: The current state s is the current tumor response and

joint probability of effectiveness for all therapies, accounting for
the dependence between therapies in the same family,

s ¼ ðR1;t; pA; pBjA;pBjA; pC ; pDjC ;pDjCÞ:

Given the state s and action a, we update to obtain our next state s0.

2.2. Model Input Validation

In the belief MDP shown in Fig. 3, four sets of inputs are
required, namely the tumor response observation probability
matrix, the initial probability of effectiveness, within-therapy
decline rate a and between-therapy decline rate b. We assume that
the tumor response observation probability matrix is the same for
all therapies, whereas the other three inputs are assessed for each
therapy.

The tumor response observation probability matrix describes
the probability of tumor grows, shrinks or stays the same given
an effective or ineffective therapy is administrated for the period.
In the influence diagram shown in Fig. 3, this probability matrix
is embedded in the Tumor Size Doubling uncertainty. The tumor
response observation probability matrix we used is shown in
Table 2. As a first step to assess model inputs, we assume this prob-
ability matrix is based on the three degrees of tumor response, i.e.

either increasing to 21=6 � 112%, decreasing to 2�1=6 � 89%, or stay-
ing the same.

We assess the initial probability of effectiveness pi and within-
therapy decline rate a for each therapy individually based on the
assumed tumor response observation probability matrix. We refer
to clinical measures reported in randomized clinical trial results
where each therapy is applied individually as a first-line therapy.
The clinical measures include Progression Free Survival and the clin-
ical benefit rate. PFS is defined as the time from randomization to
the trial until tumor progression or death, usually measured in
months. Clinical benefit rate is the percentage of patients with
objective tumor response or stable disease (a decrease in the cross
sectional image area maintained for at least 6 months).

For each therapy, we extract three numbers from clinical trials,
namely the median PFS, the 80th percentile of PFS, and the clinical
benefit rate. Then we perform grid search over pairs of initial prob-
ability of effectiveness and a to identify the pair that minimizes the
square error in comparison to the three randomized clinical trial
statistics.

The initial probability of effectiveness pi we obtain from param-
eter fitting is the marginal probability for individual therapy. The
dependence of effectiveness between therapies is difficult to esti-
mate from clinical trial results, and we relied on subjective judg-
ments. In this research, we assess the conditional probabilities,
and ensure they are consistent with the marginal probabilities
from parameter fitting.

The between-therapy decline rate b is even harder to estimate
from randomized clinical trial data. To approximate b , suppose
that the clinical trial statistics for the same therapy i as a first-
line versus second-line therapy (given therapy j is used as a first-
line therapy) are both available. We can perform similar grid
search to find the optimal pair of initial probability of effectiveness
pi and a for both cases. Let pi1 denote the initial probability of effec-
tiveness when therapy i is used as a first-line therapy; and pi2

denote the initial probability of effectiveness when therapy i is
used as a second-line therapy after t periods of therapy j. Then
we can estimate bijj such that pi2 ¼ pi1ð1� bijjÞt .

For example, we estimate between-therapy effectiveness
decline rate for hormone therapies using clinical trial data showing
the effectiveness of therapy i = Fulvestrant following therapy
j = Tamoxifen that can be compared to starting out with therapy i.

2.3. Kalman Filter Q-Learning Methods

Our solution is a (near) optimal policy mapping from the con-
tinuous belief state to action, usually with an approximate algo-
rithm. In particular, the exact and approximate Kalman Filter Q-
learning (KFQL and AKFQL) Methods [7] search for an effective pol-
icy for multi-dimensional continuous state space MDP’s via Q-
Learning [8]. We applied them to our belief MDP. Definition of vari-
ables in KFQL and AKFQL methods are listed in Table 1.

Given a set of basis functions hðs; aÞ for state s and action a, we
learn a vector of weights r for these basis functions to minimize the
mean Bellman residual. Prior belief is that r follows a multivariate
normal distribution with mean l and covariance matrix R. Q-
value, calculated from the basis functions and the weights r,
approximates the optimal net present value of the future rewards
given initial state action pair ðs; aÞ.
Qðs; aÞ ¼ rThðs; aÞ ð3Þ

� Rðs; a; s0Þ þ cmax
a0

Qðs0; a0Þ ð4Þ

When updating the weights r using a Kalman filter, each sample has
variance �ðs; aÞ, assumed to be conditionally independent of the
prediction given r.

AKFQL is a simplified version of KFQL that ignores the depen-
dence among basis functions, treating R as a diagonal matrix.
AKFQL reduces the computation complexity from quadratic to lin-
ear in the number of basis functions. It also appears to be more effi-
cient and robust generating policies for our problem.

We chose two basis functions for each therapy, so 8 basis func-
tions are used for our 4 therapies. For the therapy chosen, they are
the probability it is effective pi and a constant 1; they are both zero
for the therapies not chosen. Symbolically, the two basis functions
corresponding to each therapy i are given by

hi;1 ¼ pi if therapy i is chosen
0 otherwise

�
ð5Þ

hi;2 ¼ 1 if therapy i is chosen
0 otherwise

�
ð6Þ

Both KFQL and AKFQL require an estimate of estimation error or
sensor noise, �, used to control the learning rate. We found
�0 ¼ 20 for KFQL and �0 ¼ 1 for AKFQL worked well in our model.
We found the best method to compute � for KFQL was the ‘‘average
method,” averaging over all alternatives, and the best method for
AKFQL was the ‘‘policy method,” based on the optimal choice. In
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both algorithms, we adopt the backtracking technique to update the
policy [9].

For comparison, we also applied a POMDP solver using a point-
based algorithm. Point-Based Value Iteration (PBVI) [10] was the
first point-based algorithm that demonstrated good performance
on large state space POMDPs. Based on the understanding that
most POMDP problems are unlikely to reach most of the belief
states even with arbitrary action and observation sequences, PBVI
selects a small set of representative belief states and performs
value updates to these states iteratively. Many more point-based
algorithms have been developed with improved performance
[11,12]. We chose to apply Successive Approximations of the
Reachable Space under Optimal Policies (SARSOP) [13] to our prob-
lem. SARSOP explicitly attempts to sample the optimally reachable
belief states through learning-enhanced exploration and a bound-
ing technique. It maintains a belief tree, with the initial belief state
as its root, and prunes out subtrees that will never be visited under
the optimal policy.
3. Results

3.1. Model Inputs

Probability inputs for our model are validated against the med-
ical literature. A paper which conducted random trials comparing
Tamoxifen and Fulvestrant is used to validate inputs for Therapy
A and B [14]. Similarly, papers with clinical trials for Docetaxel
and Capecitabine are used for Therapy C and D [15,16]. We also
compared the hormone therapy used with and without hormone
therapy history to infer the between-therapy effectiveness decline
rate b [17].

Table 2 shows how the tumor response we observe depends
probabilistically on therapy effectiveness. Table 3 lists the param-
eters used in the model, and compares the model outputs to the
statistics from randomized clinical trials where exactly one ther-
apy was used. Although the side effects from chemotherapy may
Table 2
Tumor response observation probability.

Increase Stay the same Decrease

If therapy is effective 0.1 0.5 0.4
If therapy is ineffective 0.8 0.2 0

Table 3
Model input validation.

Tamoxifen Fulvestrant

P(Effective) 90.5% 88%
a 4.5% 5.5%
b 1.5% 1.5%

Median Model 8.86 7
PFS (mo.) Trial 8.3 6.8
80th %tile Model 21.93 17.73
PFS (mo.) Trial 22 18
Clinical Model 62.9% 55.7%

Benefit Rate Trial 62% 54.3%

Docetaxel Capecitabine
P(Effective) 97.5% 82.5%

a 6.5% 6.5%
b 2% 2%

Median Model 7.47 6.07
PFS (mo.) Trial 7.5 6
80th %tile Model 16.3 14.47
PFS (mo.) Trial 15 15
Clinical Model 57.4% 49.0%

Benefit Rate Trial 58% 50%
indirectly affect PFS and clinical benefit, they are not explicitly
considered.

3.2. Convergence to optimal policy

As mentioned before, the Kalman Filter Q-Learning algorithms
are iterative methods to find an approximate optimal policy. We
used a time horizon of 100 periods to provide meaningful strate-
gies for at least four years of therapy. We found that both algo-
rithms converged with 100 independent sample paths. The
complexities of KFQL and AKFQL are quadratic and linear, respec-
tively, in the number of basis functions, two for each therapy.

In order to investigate convergence, we evaluated the policies
generated using samples with different time horizons. Specifically,
100 random samples with time horizon 100 periods are first gen-
erated independently. Then, the algorithms are applied separately
to the samples of the first period, the first 2 periods, and eventually
all 100 periods. The resulting policies are recorded and then eval-
uated by simulation of 15,000 independent samples and the aver-
age total reward over 100 periods is calculated. The resulting
average rewards are then plotted on the same diagram shown in
Fig. 4. For 100 samples and 8 basis functions, both methods seemed
to converge within the time horizon, and both methods converge
to policies with similar average reward. More interestingly, AKFQL,
which ignores the covariance between coefficients, converges fas-
ter than KFQL.

3.3. Comparison of policies

We compared the policy generated by the Kalman Filter Q-
Learning methods to another approximate algorithm and standard
medical practice.

The approximate POMDP solver SARSOP [13] found a policy
with average 100 period reward of �5:96, with 95% confidence
interval (�6:05;�5:87).

The standard therapy strategy uses hormone therapies before
chemotherapies, and switches therapies when progression is
observed, i.e., tumor size increases at least 25% over its value at
the start of the therapy. Specifically, we assumed that the sequence
of therapies is A;B;C;D;£. If all the therapies have failed, therapy
£ indicates no therapy and disease progresses as if there were an
ineffective therapy without side effects. The standard therapy
strategy results in an average total value of �6:47, with 95% cred-
ible interval (�6:58;�6:36).
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reward than SARSOP and the standard therapy strategy.
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According to the model, all three methods for solving this
POMDP appear to yield significantly better results than standard
medical practice. AKFQL and KFQL achieve the best results and
AKFQL does so with the least computational complexity.

As the reward trades off the tumor response (or shrinkage)
against the disutility from chemotherapy side effects, we consid-
ered these two elements separately for the four policies. Fig. 5
shows the mean of the cumulative number of tumor doublings
under all four policies over time. The y-axis is the number of tumor
doublings, the logarithm of relative tumor size, log2ðmt=m0Þ. Fig. 6
shows the mean cumulative number of periods that chemothera-
pies, i.e. therapy C or D, are used under each policy.

The policies from KFQL and AKFQL perform similarly for most of
the measurements. Their policies are the most effective at limiting
tumor growth. Compared to the standard therapy strategy, there is
half as much median tumor growth under their policies at period
40. Moreover, their policies apply less chemotherapy than the
standard therapy strategy, on average, 22.03 and 23.97 v.s. 28.57
out of 100 periods. Thus, it appears that they dominate the stan-
dard therapy strategy under our model assumptions.
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Fig. 5. The cumulative number of tumor doublings shows that the policies from
KFQL and AKFQL are the most effective at limiting tumor growth.
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Fig. 6. The cumulative number of periods of chemotherapies shows that all three
computed policies apply chemotherapy in fewer periods than the standard therapy
strategy.
SARSOP’s policy, in a similar way, limits tumor growth better
than the standard therapy strategy while applying chemotherapy
in the fewest periods among all therapy strategies, 21.07 out of
100 periods on average.

A significant difference between the standard therapy strategy
and the three computed policies is the number of therapy switches,
as shown in Fig. 7 and reflected in sample therapy trajectories
shown in Fig. 8.1 The standard therapy strategy iterates once
through all four therapies, from hormone therapies to chemothera-
pies, using progression as the signal to switch, and we estimate an
average of 3.41 switches in 100 periods, with progression under all
four therapies in most samples, leading to cessation of therapy. On
the other hand side, the policies generated by KFQL, AKFQL, and SAR-
SOP have on average 10.73, 10.06, and 25.89 therapy switches in 100
periods. The significantly higher number of therapy switches in SAR-
SOP’s policy suggests an overly complicated, or overfitted, policy.

We speculate that this more frequent switch of therapy con-
tributes to the better performance of these three policies as it
enables the therapies to be applied when our model considers
them more effective. Due to the loss of effectiveness over time,
especially from therapies in the same family, therapies are less
likely to be effective when applied later. For example, if therapy
B is only applied when therapy A results in tumor progression,
therapy B may itself no longer be effective even if it would have
been earlier.

We estimated the clinical measures for all four policies using
simulation, as shown in Table 4. These measures do not reflect
the patient’s disutility from chemotherapy. The policies from KFQL
and AKFQL result in much better performance in both PFS and clin-
ical benefit rate than SARSOP’s policy and the standard therapy
strategy, which corresponds to the effective control of tumor size.
SARSOP’s policy results in a clinical benefit rate similar to the stan-
dard therapy strategy, but with much longer PFS.

We also plot the progression-free survival curves for these four
policies in Fig. 9. More than 60% of all patients are estimated to
have progression-free survival longer than 20 months under
AKFQL and KFQL policies, compared to roughly 20% under the stan-
dard policy. However, AKFQL and KFQL policies apply chemother-
apies for an average of 2.5 months more than the Standard policy
during the first 20 months, as shown in Fig. 6.
1 Fig. 8 demonstrates that given the same initial beliefs about therapy effective-
nesses, therapies should be chosen differently when different tumor responses are
observed. Each line represents one possible treatment trajectory from period 1–100
.



Fig. 8. Sample therapy trajectories in the four policies show how the patient may need to follow different therapy trajectories when the observed tumor sizes differ.

Table 4
Efficacy of the different policies.

Method Median PFS
(mo.)

Clinical benefit rate
(%)

Periods of
chemotherapy

KFQL 27.07 88.47 22.02
AKFQL 28.47 90.56 23.97
SARSOP 17.73 79.7 21.07
Standard 8.87 79.2 28.57
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Futhermore, all three computed policies apply chemotherapy in
fewer periods than the standard therapy strategy. According to the
these policies, therapy switches are executed before progression is
observed. This may have contributed to the prolonged PFS.

3.4. Sensitivity analysis of chemotherapy toxicity factor /

We performed sensitivity analysis on the chemotherapy toxic-
ity factor /, which we assumed to be �0.1 in our analysis, because
it incorporates assumptions about patient preferences and we
expect it to be different for different patients. Holding all other
model parameters fixed, we varied / from �0.3 to 0, in 0.01 incre-
ments. When / ¼ 0, the patient has zero disutility for chemother-
apy side effects; thus the only reward measure is tumor response.
As we increase the disutility, i.e. / becomes more negative, the
patient prefers less chemotherapy (see Fig. 10).
When the chemotherapy toxicity factor / is less than or equal to
�0.15, the approximate optimal policies do not apply chemother-
apies, i.e. therapy C and D. As / increases from �0.15 to �0.01,
the median number of tumor doublings decreases significantly
from 7.7 to 4.4 while the mean number of periods of chemotherapy
in the optimal policies increases gradually from 21.9 to 28.7 peri-
ods. Finally, as / approaches 0, the mean number of periods of
chemotherapies increases dramatically to 64.9 periods, without
any significant change in the median number of tumor doublings.
4. Discussion

We developed therapy strategies for a hormone receptor-
positive breast cancer patient that outperform standard medical
practice, according to our model, but they would have to be con-
firmed by prospective patient studies. All of our computed strate-
gies, based on belief Markov Decision Process (MDPs), appear to
prolong progression free survival and increase clinical benefit rate
with less chemotherapy than the standard therapy strategy. They
try to switch therapies before the tumor progresses and the ther-
apy, as well as alternative therapies in the same family, lose their
effectiveness.

Although the POMDP Solver SARSOP outperformed the standard
therapy, its strategy was more complicated and less effective
than those generated by Kalman Filter Q-Learning (KFQL) and
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Approximate KFQL (AKFQL). AKFQL is a simplified version of KFQL
which is considerably faster and converged more rapidly to its final
policy. Both AKFQL and KFQL appear to be promising techniques
for solving belief MDPs, where the system maintains a multi-
dimensional continuous joint probability as a Markov state.

Our framework can be personalized to patients with different
chemotherapy toxicity disutility, as shown in the sensitivity anal-
ysis in the preceding section. We also tested our framework using
more than four therapies, and showed that it scales well with the
number of alternative therapies and the resulting increased state
space, especially when applying the AKFQL method.

As personalized medicine develops and the number of highly-
targeted alternative therapy increases, there is a need for sophisti-
cated strategies to manage each patient’s therapy, taking into
account the patient’s characteristics, medical history, observed
tumor response, and side effects. With increasing patient outcomes
data available, the belief MDP model and AKFQL solution method
might be able to develop a customized therapy strategy that can
be adapted in real time to advise patients and physicians. This
same approach could also be applied in other medical and non-
medical domains.

There are promising directions to further develop this research
effort, which would either advance our effort to develop dynamic
strategies for metastatic breast cancer patients, or extend this inte-
grated framework to other domains.

First of all, we have assumed that the chemotherapy toxicity
factor is constant over time in our model. In other words, the
cumulative chemotherapy toxicity is linear in time. However,
research has found that even though the cumulative dose of
chemotherapy is the most robust risk factor of toxicity, the rela-
tionship is not necessarily linear. As an example, for chemotherapy
doxorubicin, the estimated percentage of patients with
doxorubicin-related heart failure was found to be 5% at a cumula-
tive dose of 400 mg/m2, 26% at 550 mg/m2, and 48% at 700 mg/m2

[18].
To better capture the toxicity factor, we can include the expo-

nentially smoothed cumulative dose of applying a therapy as a
Markov state variable, or even more specifically the cumulative
toxicity of a therapy. Some questions may need to be addressed
in the process. For example, how to capture the decrease in cumu-
lative toxicity when a therapy is paused for some periods; how to
make personalized assessments for cumulative toxicity as a func-
tion of dosages over time, etc. With more clinical knowledge of
therapy toxicity, we may improve our model of toxicity.

Secondly, we can use our model to include combination ther-
apy. Each combination therapy regimen will be considered as
one therapy in our model, with an assigned probability of effective-
ness, and with-in therapy decline rate a. When assigning between-
therapy decline rate b’s, we will take into consideration any beliefs
about the resistance tumor may develop to other therapies, includ-
ing each single agent included in the combination therapy.

Thirdly, we have used single studies for the four therapy alter-
natives selected. There are multiple clinical trials available for each
therapy, with marginally or significantly different reported effec-
tiveness [19,20]. Thus, more sophisticated methods should be used
to aggregate data from different clinical trials to set input parame-
ters of the model. Moreover, actual results in the real world setting
may differ from the clinical trial results. One possible mitigation
method would be to incorporate expert judgment from oncologists
when setting model inputs.

Last but not the least, there is potential that our integrated
framework could be adopted for other problems in medical or
non-medical domains. Examples include treatment strategies of
other types of cancer, e.g. lung cancer, lymphoma, etc, treatment
strategy of infectious disease, and economic problems like dynamic
pricing [21] and optimized marketing [22].
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