
Quantitative Image Feature Engine (QIFE): an Open-Source,
Modular Engine for 3D Quantitative Feature Extraction
from Volumetric Medical Images

Sebastian Echegaray1 & Shaimaa Bakr2 & Daniel L. Rubin1,3
& Sandy Napel1

Published online: 6 October 2017
# Society for Imaging Informatics in Medicine 2017

Abstract The aim of this study was to develop an open-
source, modular, locally run or server-based system for 3D
radiomics feature computation that can be used on any com-
puter system and included in existing workflows for under-
standing associations and building predictive models between
image features and clinical data, such as survival. The QIFE
exploits various levels of parallelization for use on multipro-
cessor systems. It consists of a managing framework and four
stages: input, pre-processing, feature computation, and output.
Each stage contains one or more swappable components,
allowing run-time customization.We benchmarked the engine
using various levels of parallelization on a cohort of CT scans
presenting 108 lung tumors. Two versions of the QIFE have
been released: (1) the open-source MATLAB code posted to
Github, (2) a compiled version loaded in a Docker container,
posted to DockerHub, which can be easily deployed on any
computer. The QIFE processed 108 objects (tumors) in 2:12
(h/mm) using 1 core, and 1:04 (h/mm) hours using four cores
with object-level parallelization. We developed the
Quantitative Image Feature Engine (QIFE), an open-source
feature-extraction framework that focuses onmodularity, stan-
dards, parallelism, provenance, and integration. Researchers
can easily integrate it with their existing segmentation and

imaging workflows by creating input and output components
that implement their existing interfaces. Computational effi-
ciency can be improved by parallelizing execution at the cost
of memory usage. Different parallelization levels provide dif-
ferent trade-offs, and the optimal setting will depend on the
size and composition of the dataset to be processed.
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Introduction

Radiomics [1–7] is science that studies the extraction and
quantification of explicit image features from imaging stud-
ies (e.g., CT, MR, ultrasound, optical coherence tomogra-
phy, mammography, microscopy) and their relationship to
other clinical data (e.g., survival, molecular phenotype, co-
morbidities). It involves delineation of a volume of interest
(VOI) (e.g., surrounding a tumor or a region of interstitial
lung disease), followed by computation of features of the
VOI and the voxels within it (e.g., shape, margin sharpness,
intensity distribution, and texture). Many researchers are
engaged in radiomics studies, and most often, they use their
own software to compute the image features. The use of
disparate computation engines leads to difficulties in com-
paring results across research groups and in aggregating
them for better-powered studies. In response to this, we
developed a free, open-source, modular, feature extraction
framework that executes a set of tested feature-extraction
algorithms that can be used in radiomics research. It is also
designed to run on a server so that research groups can use
the same exact computations, allowing their results to be
compared and aggregated.
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While there have been other efforts in the academic
and industrial worlds to create frameworks for collabora-
tive computational research [8–13], there are few avail-
able tools for image feature computation and analysis.
One such tool is IBEX [13], which provides an end-to-
end solution with a graphical interface for researchers to
annotate image datasets, compute radiomics features, and
analyze the resulting feature data. A more recently re-
leased software package is Pyradiomics [14], which pro-
vides a set of python libraries that can be invoked to
process one or multiple image series and compute
radiomics features. Our system, the Quantitative Image
Feature Engine (QIFE), is a locally run or server-based
system exclusively for radiomics feature computation.
Our tool differentiates itself from the others by focusing
on out-of-the-box parallel processing, modularity, and its
ability to be plugged into existing workflows. It accepts as
input DICOM files containing volumetric data together
with DICOM Segmentation Objects (DSOs) specifying
the volumes of interest (objects) to be processed. Code
is also provided to modify the images and/or segmenta-
tions to allow simulation of different segmentations, ac-
quisition, and/or reconstruction conditions. We developed
the QIFE using MATLAB 8.6 R2015b (Mathworks,
Natick, MA), exploiting its ability to generate parallel
threads for performance improvement on multiprocessor
systems, and we distributed it in multiple formats, includ-
ing an open-source code repository to allow collaboration
and modification, and a self-contained Docker [15] image
for easy tool sharing. Sharing code widely allows the
QIFE to be continuously tested, and any identified bugs
can be fixed and re-shared to the community [16–18].
Finally, we have put a strong emphasis on provenance
and research attribution. As part of its output, the QIFE
stores the date and time, the version that was run, its run-
time configuration parameters, and a citation defining
each feature computed, fostering reproducible science
[19, 20].

BQuantitative Image Feature Engine (QIFE) Architecture^
section presents the architecture of the engine describing
its internal workings and organization. BIncluded
Components^ section lists and describes all components
included in the engine at the moment of this publication.
BSpeed and Memory Tests^ section describes methods and
results of an experiment using a large cohort to analyze
the time and memory requirements using different modes
of parallel processing. BFeature Comparison^ section de-
scribes how to obtain the engine, either in as source code
or in a Docker image for execution. BCurrent Use^ sec-
tion discusses several use cases currently underway.
BLimitations^ section discusses some limitations of this
software. Finally, BConclusions^ section summarizes and
offers concluding remarks.

Materials and Methods

QIFE Architecture

The QIFE generates quantitative features from a volume of
interest, defined by a DSO, from a DICOM series. It consists
of a managing framework and four stages: input, pre-process-
ing, feature computation, and output, as shown in Fig. 1. Each
stage contains one or more components that are loaded at run
time. The managing framework provides functions to facili-
tate the communication between components and stages. The
output of each stage serves as the input for the next one. We
designed the stages to be modular, such that each component
can be swapped out for another one as long as the new one
implements the stage-defined interface. Information is passed
from the framework to each component on request. When a
component finishes processing, it returns its output to the
framework for collation.

The Managing Framework (1) is the fixed structure of the
engine, within which the stages and components communi-
cate. It parses the configuration file at the beginning of the run,
loads the necessary components, provides global helper func-
tions for each component, facilitates communication between
components, and collates the results from each stage.

The configuration file is a text file that defines which com-
ponents to load, sets global configuration parameters, and
overrides individual default parameters in each of the compo-
nent. Appendix 1 lists all of parameters currently accepted by
this configuration file, and Appendix 2 gives an example of
such a configuration file.

The input Stage (2) loads the data that will be processed by
the engine. This includes DICOM files containing one ormore
image series and one or more DSOs describing the location of
the VOIs within each relevant DICOM image series. The
components in this stage receive the path and filenames or
Unique identifier (UID) [21] of the image series that need to
be processed and loads them into memory. The output of this
stage includes an array storing metadata for each slice (e.g.,
slice location, thickness, etc.) and two 3Dmatrices, one for the
intensity values in the scan and one for the binary mask
representing the volume of interest. The output of this stage
is submitted to the Managing Framework.

The Managing Framework then submits the output of the
Input Stage to the Pre-processing Stage (3), which then executes
code to alter the original scan data. Components in the pre-
processing stage can be invoked to apply filtration, add noise,
and/or alter the VOI to facilitate experiments, e.g., to test stability
of the features extracted with respect to imaging and segmenta-
tion conditions. The components of this stage are applied sequen-
tially, using the processing order established in a configuration
table, with the output of each component applied to the input of
the following component. After all components have executed,
the stage outputs its results to the Managing Framework.
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The Managing Framework then submits the output of the
Input Stage to the Feature Computation Stage (4), which con-
tains components that compute quantitative features describ-
ing voxel data within the VOIs defined by the supplied DSOs.
Each feature component can return a single value, a group of
values, and/or an image. Finally, this stage collates all results
into a structure and submits it to the Managing Framework.

Finally, the Managing Framework submits the results of the
Feature Computation Stage to the Output Stage (5), which
contains components to convert the outputs to user-readable
formats. Components in this stage can generate multiple out-
puts depending on the configuration. For example, the CSV
component groups results per patient and writes them into
CSV files for easy import in other tools, and the cross-
sectional image generator component outputs example images.

We next describe the specific components that we have
implemented.

Included Components

In this section, we describe the components currently included
in the QIFE. For an up-to-date list and description of all fea-
tures in the current version of the engine included, please refer
to our Github repository https://github.com/riipl/3dpipeline.

Input Stage

Components in the input stage load data from outside the en-
gine and send it to the managing framework for further pro-
cessing by the following stages. The engine currently imple-
ments a single component to load DICOM image files and
DSOs for image and segmentation data, respectively.

The DSO/DICOM loader loads DSOs [22] and their refer-
enced DICOM [21] image files. Parameters required by this

component include the path of the directory containing the
original DICOM images and the path of the directory contain-
ing the DSOs. This component consists of three different sub-
components: indexing, segmentation-loading, and scan
reading.

First, the indexing sub-component scans all the directories
provided and checks the type of all files with the extension
BDCM.^ It then determines if the file is a valid DICOM image
or DSO; if not, the file is logged and ignored. The component
generates three hash tables: (1) mapping the DSOs’ UIDs to
their file path, (2) mapping DICOM images’ UIDs to their file
path, and (3) mapping DICOM Series’ UIDs and Instance
number [21] to their file path. The first and second hash tables
are used to minimize the time required to link the individual bit
planes in the DSOs to the correct DICOM images. The third
hash table is used to find DICOM images that are not refer-
enced by theDSOs but might be needed for certain features that
use values outside the segmentation (e.g., edge features). The
hash tables can be stored in the root directories of the provided
paths to avoid re-computation in future runs with the same
dataset.

Next, the segmentation-loading sub-component loads the
DSO corresponding to the scan being analyzed into memory.
This sub-component sorts the segmentation planes by their
slice location parameter in the DSO’s DICOM header.

Finally, the object-reading sub-component loads the corre-
sponding DICOM images referenced by the DSO. As some
computations (for example, edge features) will require images
superior and inferior to the segmentation volume itself, a pad-
ding parameter (in mm) is provided. In this case, images supe-
rior and inferior to the most superior and inferior aspects, re-
spectively, of the segmentation VOI that are closer than the
distance provided by the padding parameter are loaded into
the appropriate locations superior and inferior to the VOI.

Fig. 1 The Quantitative Image Feature Engine (QIFE) architecture. The
rounded rectangles represent stages, and the rectangles within represent
components. Data flows occur from left to right. The Managing
Framework (1) reads the configuration file and sets up all stages for
processing. The input stage (2) loads the segmentation and image files
into the engine, and then the pre-processing stage (3) applies its
components sequentially to normalize or otherwise modify the input

data appropriately. Next, the feature computation stage (4) runs each of
its components independently and extracts quantitative descriptors of the
images and segmentation. Finally, the output stage (5) generates files
summarizing the results. At the end of execution, the managing
framework outputs a log file with the information required to reproduce
the results

J Digit Imaging (2018) 31:403–414 405

https://github.com/riipl/3dpipeline


The intensity values of all loaded images are then normalized
[23, 24] by their slope and intercept metadata values if present
in the DICOM image files [21].

This component generates three outputs: (1) a 3D integer
matrix containing the possibly normalized values from the
DICOM images corresponding to those referenced by the
DSO and possibly padded superior and inferior to it, (2) a
3D binary matrix same size as (1) with a value of 1 wherever
the voxel is part of the segmentation and zero otherwise, and
(3) a cell array with a cell per each DICOM image loaded
containing all their image metadata.

Pre-processing Stage

The pre-processing stage receives the segmentation and image
data loaded by the input stage and runs components that may
modify these data. Each component in this stage runs sequen-
tially using the output of each component as the input to the
next. This stage then outputs the modified segmentation and
intensity data. The engine currently implements components
that can deform the DSO, bridge small gaps, eliminate all but
the largest volume, and fill holes in the original segmentation.
These can be enabled or disabled individually using the con-
figuration file as desired.

Segmentation Deformation This sub-component can be used
to apply morphological operations [25] to a supplied segmen-
tation. This component takes as input parameters the desired
operation (i.e., erosion or dilation) and the size of the spherical
structuring element in millimeters.

Topology Preservation This sub-component merges disjoint
components of segmentations that are within N voxels of each
other using a morphological closing operation, with N being a
user-defined parameter. This can be required, e.g., when the
segmentation deformation sub-component splits a segmenta-
tion into two or more disjoint regions during erosion.

Maximum Connected Volume Selection This sub-
component groups all connected voxels and, if there is more
than one group, eliminates all but the group with the largest
volume.

Hole Filling This sub-component finds unsegmented regions
that are completely surrounded by segmented regions and
includes them in the segmentation to be processed.

Feature Computation Stage

Components in the feature computation stage receive as inputs
the (potentially) modified segmentation and image intensity
values generated by the pre-processing stage and compute
quantitative descriptors of the volumes of interest specified

by the segmentation and the data they contain. Each compo-
nent in this stage runs independently of the others, i.e., the
output of each component does not affect any other compo-
nent. The output of this stage is an aggregated list of all the
descriptors generated by the components. The engine current-
ly implements components to extract the following features:
size distribution features, intensity distribution, edge sharp-
ness, local volume invariant integral (a metric of shape), sur-
face roughness, sphericity, and Haralick’s texture features.

Size Distribution Features This component computes the
size of the volume of interest. It reports its volume (mm3),
its largest cross-sectional area (mm2), and its largest diameter
(mm).

Intensity Distribution Features This component character-
izes the global distribution of intensity values by computing
summary statistics [26] (mean, standard deviation, geometric
mean, harmonic mean, minimum value, maximum value, kur-
tosis, trimmed mean, skewness) of the intensity value distri-
bution in the segmentation.

Edge Sharpness Features This component describes the sta-
tistics of the intensity changes between the interior and exterior
of the segmentation. To define the surface of the segmentation,
we use the MATLAB function isosurface [27] to create a tri-
angle mesh that fits the segmentation. We then decimate the
mesh using MATLAB’s reducepatch function [28] to a value
set in the configuration file (defaults to 600 triangles). Next, the
component calculates normal vectors at the centroid of each
triangle of the mesh, as shown in Fig. 2, and then trilinearly
interpolates the voxel intensities along the normals every 1
from 5 mm outside to 5 mm inside the segmented volume.
Finally, we fit a sigmoid function [29, 30], characterized by
scale, S, and window, W, parameters, to the interpolated inten-
sity points using MATLAB’s nlinfit [31] (nonlinear regression)
with the following parameters: max iterations = 300;
To lFun = 1e - 8 ; To lX = 1e - 8 ; D i s p l a y = o f f ,
DerivStep = eps^(1/3); FunValCheck = on; Robust = on;
WgtFun = bisquare. The fit can fail when the values inside
and outside the VOI are similar, e.g., when a lung tumor is next
to the chest wall, or when the normal traverses noisy data or
heterogeneous tissues; in these cases, the component does not
record the S and W parameters. Finally, the component returns
summary statistics of the distribution of S and W parameters,
and the percentage of normals for which the fit failed.

Local Volume Invariant Integral (LVII) Feature This com-
ponent characterizes the local curvature of the volume of in-
terest (VOI) by generating a sphere of size N (configuration
options in Appendix 1) centered at each point along the
boundary of the VOI and calculating the percentage of the
sphere filled by the VOI. This percentage will vary depending
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on the local curvature of the VOI; the component returns sum-
mary statistics (mean, standard deviation, geometric mean,
harmonic mean, minimum value, maximum value, kurtosis,
trimmed mean, skewness) of the distribution over all points on
the surface of the VOI. Figure 3 shows some examples of LVII
illustrated in 2D for simplicity.

Roughness Feature Surface roughness [32] characterizes the
surface of the volume of interest (VOI) by computing surface
deviations compared to a simulated smooth surface. To com-
pute surface roughness, the QIFE generates a simulated
smooth surface by first generating two new volumes using
the morphological closing and opening operations, respective-
ly, followed by combining them with a voxel-wise Band^ op-
eration. The size of the structuring element used in the mor-
phological operations determines the cutoff frequency of this
smoothing filter (configuration options found in Appendix 1).
Second, the shortest distance between this smooth surface to
each of the boundary voxel is calculated to find the deviations.
This component returns summary statistics of the (average,
standard deviation, kurtosis, skewness, root mean squared,
maximum valley depth, maximum peak height, maximum

height of profile of this difference (Japanese Industrial
S t anda rd ( J IS ) [33 ] , and German Ins t i t u t e fo r
Standardization (DIN) [34]).

Sphericity Feature This component characterizes how simi-
lar the shape of the volume of interest (VOI) is to a sphere by
calculating [35]:

ψ ¼ π
1
3 6Vð Þ23
A

whereψ, V, andA are the sphericity, volume, and surface area
of the segmentation, respectively.

Haralick’s Texture FeaturesTo characterize texture features,
this component generates gray-level co-occurrence matrices
(GLCM) [36] from the raw intensity values for each voxel
within the segmentation for 13 directions corresponding to
the 26 connected voxels [37] and at the distances specified
by the configuration file (configuration options found in
Appendix 1). The Haralick’s Features from each of these 13
matrices are aggregated (average, standard deviation, mini-
mum and maximum) by distance, making the reported values

Fig. 2 a A mesh obtained by
running the marching cubes
algorithm on a segmented tumor.
b The decimated mesh and the
normal to each face

Fig. 3 2D Example of LVII. The percentage of the circle filled by the VOI changes depending on the local curvature
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rotational invariant. Table 1 lists the texture features we com-
pute; this component outputs the aggregated statistics gener-
ated for each distance.

Output Stage

The components in the output stage receive lists of feature
values from the feature computation stage and generate user-
readable files and images to be used in further analysis. The
engine currently implements components that produce the fol-
lowing outputs per segmented VOI: a comma-separated fea-
ture value file, a run information file, and example cross-
sectional images/segmentations.

CSV Exporter The CSV exporter writes the feature names
(defined in each feature component configuration) and results
generated by the feature-computation stage to a CSV file [38].

Run Information Exporter This component creates a file
detailing the run date and time, the UIDs of the files that were
processed, the configuration, and the software version used to
run the experiment. This file allows researchers to repeat the
experiment, as it documents when it ran, the version of the
QIFE and components it was using, the UID of the objects that
were processed, and the references defining each computation
performed.

Cross-sectional Image Generator This component outputs
an image file displaying the slice with the largest cross-

sectional VOI area in each of three directions (sagittal, coro-
nal, axial), overlaid with the outline of the DSO. This image is
useful for debugging and demonstration purposes as it gives a
summary of the volume used to generate the results. Figure 3.
2D Example of LVII. The percentage of the circle filled by the
VOI changes depending on the local curvature

Figure 4 shows an example of a processed lung nodule
from a CT image volume.

Evaluation

To evaluate the computational efficiency of the QIFE as a
function of parallelization choice, we extracted features from
108 CT scans presenting lung tumors ranging in size from
0.37 to 371.53 cm3 (mean = 31.35 cm3; s.d. = 66.78 cm3).
We ran the QIFE with all features active at their default set-
tings. We repeated the experiment for different parallelization
levels (none, object, feature, internal) and stored the total run-
ning time and maximum memory usage for each run.

Results

Speed and Memory Tests

Table 2 shows the total run time and the peak memory
usage for each parallelization level. Total run time was
obtained using MATLAB’s profiler; peak memory usage
was obtained using Sysinternals Process Monitor.

Table 1 List of Haralick features extracted from the gray-level co-occurrence matrix. Details of the implementation of each of these features can be
found in the references

Energy [33, 35] Entropy [35] Correlation [33, 35]

Contrast [33, 35] Homogeneity [35] Variance [33]

Sum of means [33] Inertia [33, 35] Cluster shade [35]

Cluster tendency [35] Max probability [35] Inverse variance [33, 35, 36]

Fig. 4 Output from the cross-sectional image generator showing, from
left to right, axial, coronal, and sagittal cross-sections of a lung CT-scan
and the tumor boundaries given by the supplied segmentations (solid red

line). The location of each cross-section corresponds to the maximum
cross-sectional area for each orientation
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Running without parallelization resulted in the longest
running time with the least memory, while parallelizing
at the object level took the least time but required the
most amount of memory, as multiple copies of the engine
must be memory-resident at the same time. Feature-level
parallelization did not improve speed much compared to
no parallelization. This is to be expected because (a) there
is overhead, which is not reduced by parallelization, and
(b) we used only four cores and of the nine feature classes
executed in parallel; some are computationally intensive
and others are significantly less so. In this scenario, it is
unlikely that the computationally intense feature classes
will always be processed in parallel, effectively limiting
the expected performance increase.

Feature Comparison

To demonstrate the features of the QIFE, we processed four
lung nodules of different in shapes, sizes, and compositions,
as shown in Fig. 5. Nodules A and C are mostly solid, while
nodules B and D present ground glass components
(Table 3). Comparison of chosen features between the four
nodules is shown in Fig. 5. Nodules A and C are solid tu-
mors, while nodules B and D are part solid and part ground
glass. As expected, solid tumors (nodules A and C) present a
higher mean intensity and lower texture variance (mean
GLCM variance) than the tumors with partial ground glass
(nodules B and D). Nodules A and B show a high surface
variation, giving them higher roughness values compared to
nodules C and D. Finally, nodules A, B, and C are mostly
convex, while nodule B presents multiple concavities,
therefore having the lowest sphericity. It shows selected
feature output by the QIFE for these four nodules. The vol-
ume feature shows that nodules A and B are similar in size,
while nodule C and nodule D are much smaller. Nodules B
and D present a lower mean intensity, as expected due to the
lower density of the ground-glass portion of the tumor. The
roughness feature characterizes high frequency surface var-
iations; as Fig. 5 shows, Nodules A and B surfaces are less
smooth, resulting in a higher roughness values. The

sphericity feature is proportional to the ratio of surface area
to volume and is therefore higher for more spherical objects,
resulting in higher values for nodules A, C, and D. Finally,
tumors with ground-glass components (nodules B and D)
have more heterogeneous density and therefore have lower
mean intensities and larger texture features (GLCM).

Deployment and Collaboration

Code Repository

The QIFE Version 1.0 has been released as a BSD-
licensed [39] open-source project in Github, (https://
www.github.com/riipl/3dpipeline). Collaboration from
the research community is encouraged either by
contributing code, creating pull requests, or by testing
and reporting. The complete source code can be
downloaded from the repository; Mathworks MATLAB
8.6 R2015b is necessary to run the engine.

Docker

We have also released a compiled version of the engine.
The compiled version of the engine requires that the cor-
rect release (9.0.1 at the time of this publication) of
MATLAB’s Compiler Runtime (MCR) be present in the
host computer. To simplify deployment, we have provided
a Docker container hosted in Dockerhub (https://hub.
docker.com/r/riipl/3d_qifp/), containing the correct MCR
and the compiled QIFE, making it completely portable,
and avoiding any possible mismatch between the QIFE
and the user’s computer.

Discussion

Current Use

The QIFE is currently deployed as part of an internal web
application, known as the Quantitative Image Feature

Table 2 Total run-time (seconds) and peak memory usage (GB) for the
QIFE while processing 5 CT lung scans presenting masses from 0.81 to
59.04 cm3 (mean 14.113, s.d. 25.21 cm3). Total run time was obtained
using MATLAB’s profiler, peak memory usage was obtained using

Sysinternals Process Monitor. We used a Clevo P370EM laptop,
containing an Intel I7-3740QM (4 cores, all available to the engine)
CPU clocked at 2.70GHz and 16.0 GB of RAM and a solid-state drive
(Samsung EVO 850)

Parallelization level Total time (hh/mm) Peak memory (GB)

None 2:12 2.53

Object 1:04 7.90

Feature 2:00 6.98

Internal 2:07 4.53
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Pipeline (QIFP), at Stanford University. A web interface
was created to act as a wrapper between the Docker mod-
ule containing the QIFE and the users. Researchers can
upload their scans and segmentations, and the application
returns a CSV with their results after processing.

The QIFE was also used in a study of feature sensitiv-
ity to segmentation to evaluate whether digital biopsies
could be used to speed up segmentation while retaining
information [40]. In this study, the QIFE used pre-
processing components that deformed the original 3D dig-
ital biopsies to simulate multiple manual-segmentations.

Finally, the QIFE was also used in a study to com-
pare feature extraction implementations and showed rea-
sonable correlations with features of the same type [41].

Limitations

One limitation of QIFE is that it does not use the latest
advances in GPU technology to speed up computation.
We decided to forego this optimization as access to com-
puters with powerful GPUs is not always a possibility,
and we wanted to make the QIFE universally compatible.
This limitation can be addressed at the component level.
While the engine logic does not use the GPU, our com-
ponents could implement GPU functionality in the future.
Components using the GPU should either have a fallback
to use the CPU in case a GPU is not present or show in
their documentation that a GPU is required for them to
function.

Table 3 Comparison of chosen features between the four nodules
shown in Fig. 5. Nodules A and C are solid tumors while nodules B
and D are part solid, part ground glass. As expected, solid tumors
(nodules A and C) present a higher mean intensity, and lower texture
variance (mean GLCM variance) than the tumors with partial ground

glass (nodules B and D). Nodules A and B show high surface variation,
giving them a higher roughness values compared to nodules C and D.
Finally, nodules A, B, and C are mostly convex, while nodule B presents
multiple concavities, therefore having lowest sphericity

Feature Volume (mm3) Mean intensity (HU) Roughness JIS @1 mm (mm) Sphericity Mean GLCM variance @2 mm

Nodule A 371,856.44 −21.56 6.83 0.57 3.56

Nodule B 361,845.55 −215.49 9.07 0.35 10.39

Nodule C 104,399.57 −10.54 4 0.65 1.96

Nodule D 15,233.23 −525.52 1.53 0.73 6.93

Fig. 5 Four example nodules: Each row shows three cross-sectional views of a different nodule. The location of each slice corresponds to the maximum
cross-sectional area for each orientation
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Another limitation is that currently the QIFE only
computes 3D features, while there are multiple studies
in the literature showing the usefulness of 2D features.
For example, in previous studies, our group created a
2D feature extraction engine and successfully used it for
image retrieval [42] and to generate features that corre-
late with gene expression [43]. Integrating other features
such as these could expand the applicability of the
QIFE.

Conclusions

In this paper, we presented the QIFE, a portable, open-
source feature extraction framework that focuses on
modularity, standards, parallelism, provenance, and inte-
gration. We describe the different stages of QIFE and
the components that can be loaded and executed at each
stage.

Integration with existing research workflows can be
implemented by changing the input-stage and output-
stage components. By separating the input-output logic
from feature processing, researchers can easily add
MATLAB code to read other input formats, generate
new features, and implement new output types.

The QIFE also outputs information about the config-
uration and components involved in generating a set of
results. By storing these log files, provenance of result
sets is recorded and experiments can be repeated or
compared across datasets with confidence on the simi-
larity of the processing engine.

Finally, we also tested the QIFE at different
parallelization levels measuring memory and time taken
for each setting. Speed-ups can be obtained by
parallelizing execution at the cost of memory usage.
Different parallelization levels provide different trade-
offs, and the optimal setting will depend on the size
and composition of the dataset to process and the num-
ber of processing cores available.
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Appendix 1 Configuration Parameters for each
component

Global

Input Stage

DSO/DICOM loader component

Preprocessing stage

Segmentation deformation

Parameter name Default
Value

Description

inputRoot N/A Root directory for input. (All input
folders are relative to this directory)

outputRoot N/A Root directory for output. (All output
folders are relative to this directory)

parallelMode none What parallelization strategy to use
(None, Object, Feature, Internal)

numberOf
Processors

max If parallelMode is other than None, then
the software creates a processing
pool with numberOfProcessors
processors. “Max” uses all available

uidToProcess all A list of UID to be processed by the
QIFE. If “all” it processes all volumes
loaded by the input stage

Parameter name Default
value

Description

dicomFolder N/A Folder relative to inputRoot where
the DICOM sets are stored

dsoFolder N/A Folder relative to inputRoot where
the DSOs are stored

recomputeHashTable false Computes the UID hash tables
even if a cache index is found in
the directory

saveHashTable true Saves a cache of the UID
hashtables in their root
directories

padding 10 Millimeters to go outside the VOI
when loading the VOI

Parameter name Default value Description

operation N/A Operation to perform in the VOI
(“erosion” or “dilation”).

sizeOfElement N/A Size of the ball used to perform the
operation specified.
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Topology preservation

Maximum connected volume selection

Hole filling

Feature Computation Stage

Size distribution features

Intensity distribution features

Edge sharpness features

Local volume invariant integral (LVII) feature

Roughness feature

Sphericity feature

Haralick’s texture features

Output stage

CSV Exporter

Parameter Name Default value Description

sizeOfGap N/A Maximum size of gaps to be bridged.

Parameter name Default value Description

connectivity 26 What connectivity determines that a
voxel is part of the same volume
(Possible values: 6, 18, 26)

Parameter name Default value Description

connectivity 26 What connectivity determines that a
voxel is part of the same volume
(Possible values: 6,18, 26)

Parameter name Default
value

Description

featureRootName size The prefix to add to all results generated
by this component

Parameter name Default
value

Description

featureRootName intensity The prefix to add to all results generated
by this component

Parameter name Default
value

Description

featureRootName edge The prefix to add to all results
generated by this
component

normalLength 5 Length in millimeters of
normals in each direction.

numberOfNormals 600 Number of normals after
triangulation and decimation

numberOfSamplingPoints 21 Number of intensity samples
along a normal

Parameter name Default value Description

featureRootName lvii The prefix to add to all results
generated by this component

sphereRadius 1,2,3,4,5 List of radii for the Sphere used to
calculate intersections separated by
commas

Parameter name Default value Description

featureRootName roughness The prefix to add to all results
generated by this component

patchSize 3 Maximum distance in mm for a voxel
to be considered in the same patch
when roughness is computed

Parameter name Default
value

Description

featureRootName sphericity The prefix to add to all results generated
by this component

Parameter name Default
value

Description

featureRootName haralick The prefix to add to all results generated
by this component

distance 1,2,3 Distances in mm at which to calculate the
GLCM.

grayLevels 16 Number of gray levels to quantify
intensity values to.

Parameter
name

Default
value

Description

filename out.csv Filename for the csv file relative to out folder

Transpose false Transpose the data in the CSV (headers in the
first column)
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Run information exporter

Cross-sectional image generator

Reference Generator

Appendix 2 Example Configuration File

The configuration file defines which components are loaded
in each stage, and can override default parameters (shown in
Appendix 1). The file follows the following syntax:

Category|ParameterName = VALUE (The separator is a
pipe B|^).

Category can be:

& global (sets parameter for the whole engine)
& input (sets parameter for the input stage)
& preprocessing (sets parameters for the preprocessing

stage)
& featureComputation (sets parameters for the feature com-

putation stage)
& output (sets parameters for the output stage), or
& a specific component name to override its defaults.

Multiple parameters can be set using comma as a
separator.

Comments are defined with a semicolon at the begin-
ning of a line. The following is an example configura-
tion file:

; Global Parameters
; Disables parallel mode
global|parallelMode = Bnone^
; Use the maximum number of processors
global|numberOfProcessors = Bmax^
; Process all files included in the input directory

global|uidToProcess = Ball^
; Components to load
; Input components to load
input|component = BdsoLoader^
; Preprocessing components to load
preprocessing|components =
BmaximumConnected,holeFilling^
; Feature computation components to load
featureComputation|components =
Binformation,size,intensity,sphericity,roughness,
edgeSigmoidFitting,lvii,glcm,connectedRegions^
; Output components to load
output|components = BcsvOutput,
maxAreaImage,references^
; Component parameters to override (See Appendix 1 for
definition)
; Number of Normals in the Edge Sigmoid Feature
edgeSigmoidFitting|numberOfNormals = 1200
; Window and Level preset
maxAreaImage|windowLevelPreset = BctLung^
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