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nodules to decrease the number of invasive 
interventions performed on low-risk benign 
nodules. Intensive research has been under-
way in radiology, endocrinology, and surgery 
to attempt to identify patients at high risk of 
aggressive thyroid malignancy and who need 
invasive diagnostic intervention. Despite 
these efforts, accurate diagnosis based on im-
aging findings remains challenging.

Ultrasound (US) is the standard of care 
imaging modality for visually assessing 
the risks of thyroid nodule malignancy, de-
termining the need for biopsy, and guiding 
fine-needle aspiration biopsy. Several expert 
committees have proposed guidelines for tri-
age and management of thyroid nodules de-
tected at US that are being used or incor-
porated into clinical routine by institutions 
worldwide. In the United States, the wide-
ly used systems include those of the Amer-
ican Thyroid Association (ATA) published 
in 2015 [6] and the American College of 
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D
etection of both benign and ma-
lignant thyroid nodules has in-
creased in the United States. 
Much of this increase is believed 

to be due to increased use of imaging [1] with 
a concomitant increase in detection of asymp-
tomatic thyroid nodules and indolent thyroid 
malignancies that would likely never have be-
come clinically manifest. Autopsy studies 
have shown that as many as 50–67% of adults 
nationwide are expected to have thyroid nod-
ules [2, 3] but that only 0.2% of the population 
is reported to have thyroid cancer [4].

Current definitive diagnosis of thyroid nod-
ules requires tissue biopsy or even surgery, 
but only 5–7% of these nodules are found to 
be malignant [5]. Thus, most patients are in-
evitably exposed to unnecessary health risks 
associated with these invasive tests, and soci-
etal health care costs increase substantially. 
There is a critical need for methods to reli-
ably estimate the malignancy risk of thyroid 
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OBJECTIVE. The purpose of this study was to explore whether a quantitative framework 
can be used to sonographically differentiate benign and malignant thyroid nodules at a level 
comparable to that of experts. 

MATERIALS AND METHODS. A dataset of ultrasound images of 92 biopsy-con-
firmed nodules was collected retrospectively. The nodules were delineated and annotated by 
two expert radiologists using the standardized Thyroid Imaging Reporting and Data System 
lexicon of the American College of Radiology. In the framework studied, quantitative features 
of echogenicity, texture, edge sharpness, and margin curvature properties of thyroid nodules 
were analyzed in a regularized logistic regression model to predict malignancy of a nodule. 
The framework was validated by leave-one-out cross-validation technique, and ROC AUC, 
sensitivity, and specificity were used to compare with those obtained with six expert annota-
tion-based classifiers. 

RESULTS. The AUC of the proposed method was 0.828 (95% CI, 0.715–0.942), which was 
greater than or comparable to that of the expert classifiers, for which the AUC values ranged 
from 0.299 to 0.829 (p = 0.99). Use of the proposed framework could have avoided biopsy of 20 
of 46 benign nodules in a curative strategy (at sensitivity of 1, statistically significantly higher 
than three expert classifiers) or helped identify 10 of 46 malignancies in a conservative strategy 
(at specificity of 1, statistically significantly higher than five expert classifiers). 

CONCLUSION. When the proposed quantitative framework was used, thyroid nodule 
malignancy was predicted at the level of expert classifiers. Such a framework may ultimately 
prove useful as the basis for a fully automated system of thyroid nodule triage. 
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Radiology (ACR) Thyroid Imaging Report-
ing and Data System (TI-RADS) proposed 
in 2017 [7]. Other guidelines include those 
of the British Thyroid Association (BTA) 
published in 2014 [8], Korean TIRADS (K-
TIRADS) [9], and European Thyroid Asso-
ciation TIRADS (EU-TIRADS) [10] that are 
or are being adopted in the United Kingdom, 
South Korea, and the rest of Europe.

Among the systems, ACR TI-RADS re-
lies on computing the malignancy score with 
a set of US features to arrive at a biopsy rec-
ommendation. The other systems are based on 
various nodule appearance patterns associat-
ed with varied risks of malignancy. The use 
of such systems for biopsy decision making 
helps to standardize recommendations among 
readers and to reduce the number of unnec-
essary biopsies. However, explicit risk scoring 
of each nodule imposes additional burden on 
radiologists and is subject to intrarater and in-
terrater variability, even among experts [11]. 
Moreover, the systems used to evaluate nodule 
malignancy on the basis of analysis of sono-
graphic features are often oversimplified be-
cause they are of necessity limited to features 
appreciable by visual inspection.

By contrast, quantitative analysis of nod-
ule properties by extraction of computational 
features from US images and estimation of 
the risks by use of machine learning-based 
classifiers may help reduce expert labor and 
eliminate the associated interrater variabil-
ity. Development of an automated image 
analysis system would be the first step to-
ward implementation of large-scale automat-
ed screening of thyroid image datasets. We 
propose a quantitative framework for auto-
mated cancer risk estimation from US imag-
es. In this framework, a rich set of quantita-

tive features and an elastic net classifier are 
used to estimate the probability that a nodule 
is cancerous. We cross-validated the frame-
work in a dataset of US images of patients 
with biopsy-proven diagnoses and compared 
the findings with those obtained with six ex-
pert classification systems.

Materials and Methods
Datasets

US images of patients who underwent US-guided 
thyroid nodule biopsy at our institution from 2010 
to 2015 were collected as part of an institutional 
review board–approved, HIPAA-compliant retro-
spective study. In 1181 identified cases, 765 nodules 
had a longest measured dimension of 1–3 cm; 80 
(10.4%) of these nodules were found to be papillary 
carcinoma. For the purposes of this analysis, 34 pa-
tients with malignancy were excluded because they 
had undergone imaging with an older-generation US 
system at a frequency less than 12 MHz. The final 
dataset consisted of 46 malignant and 46 random-
ly selected size-matched benign (Bethesda category 
II) nodules from 92 patients (73 women, 19 men; 
age range, 21–83 years; mean age, 53.8 years) im-
aged with either a Logiq E9 (GE Healthcare) or an 
Acuson S2000 (Siemens Healthineers) system.

Annotation
The principal transverse and longitudinal US 

images of each nodule as selected by a US tech-
nician and verified by a radiologist at the exami-
nation were included. Two board-certified radiolo-
gists (25 and 12 years’ experience) specialized in 
evaluating sonographic studies of thyroid nodules 
reviewed the images blinded to the diagnosis. The 
radiologists reviewed the manual annotations and 
recorded the visual descriptors of nodules spec-
ified by the ACR TI-RADS lexicon [12] using 
electronic Physician Annotation Device software 

(version 2.8, Stanford Medicine Radiology) [13]. 
They performed nodule segmentation by select-
ing points on a nodule outline while controlling 
the smoothing of the outline polygon by means of 
spline interpolation (Fig. 1).

Quantitative Features for Automated 
Malignancy Risk Estimation

To capture the appearance of nodules in a quan-
titative manner, we selected a rich set of quanti-
tative features to comprehensively encode the 
echogenicity, texture, edge sharpness, and mar-
gin curvature properties of thyroid nodules (Ta-
ble 1). Nodule echogenicity was expressed by 
nodule intensity features, that is, first-order in-
tensity statistics and intensity difference between 
the nodule, its edge, and the surrounding tissue. 
Nodule texture was expressed as Haralick-based 
[14] and gray-level cooccurrence matrix [15] fea-
tures. Nodule edge sharpness was computational-
ly characterized by edge sharpness features com-
prising statistics of sigmoid fit parameters over the 
discretized nodule boundary. Nodule shape was 
characterized by local area integral invariant de-
scriptor [16] statistics at five spatial scales. Over-
all, 219 computational features were collected for 
each nodule from both longitudinal and transaxial 
images in a cumulative manner.

Semantic Ultrasound Features for Radiologist-
Based Malignancy Risk Estimation

The nodule descriptors provided by the raters 
were represented in further analysis as a set of 
20 binary features reflecting the presence or ab-
sence of the following visual features: composi-
tion (solid, predominantly solid, predominantly 
cystic, cystic, spongiform), echogenicity (hyper-
echoic, isoechoic, hypoechoic, very hypoecho-
ic), shape (taller than wide), margins (smooth, ir-
regular, lobulated or ill-defined border; complete 

Fig. 1—73-year-old man with papillary carcinoma 
of left lobe of thyroid. Screen shot shows example 
of thyroid nodule annotation (segmentation and 
American College of Radiology Thyroid Imaging 
Reporting and Data System [TI-RADS] annotation) 
performed on ultrasound image in longitudinal 
projection with electronic Physician Annotation 
Device software (Stanford Medicine Radiology). 
Radiologists performed nodule segmentation by 
selecting points (red) on nodule outline (green) while 
controlling smoothing of outline polygon by means of 
spline interpolation. RECIST = Response Evaluation 
Criteria in Solid Tumors, RID = Radiological Society of 
North America RadLex identifier.
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halo; extrathyroidal extension), and echogenic foci 
(punctate echogenic foci, macrocalcifications, pe-
ripheral calcifications, comet-tail artifacts). For 
reference malignancy risk estimators, we used six 
expert annotation-based classification systems. 
Using the ACR TI-RADS lexicon, we reformulat-

ed and implemented five guidelines—ATA 2015 
[6], ACR TI-RADS 2017 [7], BTA 2014 [8], K-
TIRADS 2016 [9], and EU-TIRADS 2017 [10]—
and a system described in the work of Smith-Bind-
man et al. [17]. The semantic features by classifiers 
are summarized in Table 2.

Evaluation
The quantitative features were used to train the 

elastic net classifier [18] on the biopsy-confirmed 
diagnoses of the nodules in two-label formulation, 
that is, benign versus malignant. Elastic net classi-
fication entails a regression model trained with L1 

TABLE 1: Quantitative Ultrasound Features Used in Proposed Framework

Category Features

Echogenicity First-order statistics (energy, entropy, kurtosis, skewness, maximum, 99th percentile, minimum, 1st percentile, mean, median, SD, 
median absolute deviation, range, range from 1st to 99th percentiles, root mean square, uniformity, variance, 32-bin histogram, 
deciles, peak) of image intensity, contrast with surrounding tissue, contrast on nodule edge

Texture Haralick features (autocorrelation, contrast, correlation, cluster prominence, cluster shade, dissimilarity, energy, entropy, homogene-
ity, variance, sum average, maximum probability, sum variance, sum entropy, difference variance, difference entropy), gray-level run 
length matrix features (SRE, LRE, GLN, RLN, RP, LGRE, HGRE, SRLGE, SRHGE, LRLGE, LRHGE)

Edge sharpness Sigmoid fit statistics (minimum, maximum, median, mean, median absolute deviation, SD, skewness, kurtosis, 32-bin histogram, 
deciles) for window and scale parameters

Margin curvature Statistics (mean, SD, maximum, skewness) and Haar transform of local area integral invariant shape descriptor at five scales

Note—SRE = short-run emphasis, LRE = long-run emphasis, GLN = gray-level nonuniformity, RLN = run-length nonuniformity, RP = run percentage, LGRE = low gray-level 
run emphasis, HGRE = high gray-level run emphasis, SRLGE = short-run low-gray-level emphasis, SRHGE = short-run high-gray-level emphasis, LRLGE = long-run 
low-gray-level emphasis, LRHGE = long-run high-gray-level emphasis.

TABLE 2: Semantic Ultrasound Features Derived From American College of Radiology (ACR) Thyroid Imaging 
Reporting and Data System (TI-RADS) Lexicon and Used in the Classification Systems

Ultrasound Features Expert Classifiers

Binary descriptor ACR TI-RADS 2017 Smith-Bindman et al. EU-TIRADS 2017 K-TIRADS 2016 ATA 2015 BTA 2014

Composition

Solid X X X X X

Predominantly solid X X X

Predominantly cystic X X X

Cystic X X X X

Spongiform X X X X

Echogenicity

Hyperechoic X X X X X

Isoechoic X X X X X

Hypoechoic X X X X X

Very hypoechoic X X X X X

Margins

Smooth X

Irregular X X X X

Lobulated X X X

Ill defined X

Halo X

Extrathyroidal extension X

Shape

Taller than wide X X X

Echogenic foci

Punctate echogenic foci X X X X X X

Macrocalcifications X X

Peripheral calcifications X X X

Comet-tail artifacts X X

Note—The classification of Smith-Bindman et al. can be found in [17]. EU-TIRADS = European Thyroid Association TIRADS, K-TIRADS = Korean TIRADS, ATA = American 
Thyroid Association, BTA = British Thyroid Association, X = feature used in classifier.
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and L2 norm regularization of the weights and is 
particularly beneficial when the number of features 
is greater than the number of observations [18].

Leave-one-out cross-validation (LOOCV) was 
performed [19]. Under the LOOCV scheme, n ex-
periments (where n is the sample size) are conduct-
ed with each having a unique split of n – 1 training 
and one held out testing observations. The statis-
tics of the resulting n-value vector of independent-
ly inferred predictions is used for analysis of per-
formance. By its design, LOOCV ensures that the 
same sample is never included in the test and train 
subset of such experiment. LOOCV was used as 
the evaluation method because of the small sam-
ple size, which precluded having separate training 
and test sets. On each of the LOOCV folds, model 
selection was performed by threefold cross valida-
tion of the training set to choose the model with the 
lowest mean cross-validated error [20].

For the semantic features, we used as reference 
malignancy risk estimators three international 
TIRADS systems (ACR TI-RADS, K-TIRADS, 
and EU-TIRADS), two guidelines (ATA and 
BTA), and the proposal by Smith-Bindman et al. 
[17] designed to lower the rate of unnecessary bi-
opsies. The annotations provided by the two radi-
ologists were transformed into a mineable feature 
set consisting of 20 binary descriptors used by the 
systems to score the malignancy risk or find a cor-
responding pattern (Table 2).

We compared the scoring performance of the 
implemented scoring systems using ROC curves 
and AUC. We computed the point and interval es-

timates (95% CI) using the Mann-Whitney statis-
tic and evaluated the difference between the AUC 
values using the paired DeLong test [21] at 0.05 
significance level. The diagnostic performance of 
the biopsy recommendations of the stratification 
systems was evaluated by means of sensitivity and 
specificity measures with corresponding Clopper-
Pearson CIs (at 95%). Improvement in these mea-
sures was evaluated for all the pairs of systems by 
use of the one-tailed McNemar exact test at 0.05 
significance level. For all comparisons, annota-
tions from both raters were used independently. 
Agreement between the raters’ annotations was 
assessed with the Cohen kappa coefficient.

Results
The agreement of semantic feature anno-

tation between the two radiologists ranged 
between 73.9% and 100% (Table 3). The 
LOOCV experiment had a mean training 
time of 33.9 ± 3.4 (SD) seconds and test time 
of 5.9 × 10–6 ± 5.9 × 10–7 seconds.

Scoring Performance
The ROC curves for the scoring perfor-

mance of each of the six expert classifica-
tion systems versus the proposed quantita-
tive framework are shown in Figure 2. The 
highest performance values were achieved 
by ACR TI-RADS (AUC, 0.829; 95% CI, 
0.726–0.932) and the two raters (AUC, 0.826; 
95% CI, 0.725–0.926). The quantitative 
framework achieved an AUC of 0.828 (95% 

TABLE 3: Annotation Agreement 
of the American College 
of Radiology Thyroid 
Imaging Reporting and 
Data System Ultrasound 
Features for Two Raters

Ultrasound Feature Agreement (%)

Solid 91.3

Predominantly solid 88.0

Predominantly cystic 98.9

Cystic 100

Spongiform 97.8

Hyperechoic 96.7

Isoechoic 84.8

Hypoechoic 73.9

Very hypoechoic 85.9

Smooth 84.8

Irregular 87.0

Lobulated 79.3

Ill-defined 88.0

Halo 85.9

Extrathyroidal extension 97.8

Taller-than-wide 85.9

Punctate echogenic foci 81.5

Macrocalcifications 87.0

Peripheral calcifications 95.7

Comet-tail artifacts 97.8
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1 – Specificity

Quantitative framework, AUC = 0.828 (0.689–0.968)
Score-based systems:
ACR TI-RADS 2017 rater 1, AUC = 0.829 (0.693–0.965)
ACR TI-RADS 2017 rater 2, AUC = 0.826 (0.691–0.961)
Smith-Bindman et al. [17] rater 2, AUC = 0.765 (0.621–0.908)
Smith-Bindman et al. [17] rater 1, AUC = 0.725 (0.584–0.866)
Pattern-based systems:
K-TIRADS 2016 rater 2, AUC = 0.821 (0.678–0.964)
K-TIRADS 2016 rater 1, AUC = 0.784 (0.635–0.933)
ATA 2015 rater 2, AUC = 0.713 (0.541–0.885)
EU-TIRADS 2017 rater 2, AUC = 0.690 (0.531–0.848)
EU-TIRADS 2017 rater 1, AUC = 0.685 (0.534–0.835)
ATA 2015 rater 1, AUC = 0.552 (0.372–0.731)
BTA 2014 rater 1, AUC = 0.500 (0.351–0.650)
BTA 2014 rater 2, AUC = 0.299 (0.127–0.471)

Fig. 2—Graph shows ROC 
curves for performance 
of proposed quantitative 
framework and implemented 
expert scoring systems. 
Values in parentheses are 95% 
CIs. ACR = American College 
of Radiology, TI-RADS and 
TIRADS = Thyroid Imaging 
Reporting and Data System, 
K = Korean, ATA = American 
Thyroid Association, EU = 
European Thyroid Association, 
BTA = British Thyroid 
Association.
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CI, 0.715–0.942). The analysis of difference 
in these values revealed insignificant differ-
ences between the proposed framework and 
ACR TI-RADS (p = 0.99) and the two raters 
(p = 0.96) (DeLong test).

Biopsy Decision
We compared the performances of the clas-

sifiers with respect to the recommendation for 
nodule biopsy. The performance of the quanti-
tative framework for providing biopsy recom-
mendation was validated at two cutoff points 
that reflected conservative or high-specificity 
and curative or high-sensitivity approaches to 
nodule management. For the pattern-based 
classification systems that did not provide 
a pattern for some nodules (ATA, BTA, and 
EU-TIRADS), such nodules were considered 
either all subjected to biopsy (high sensitivity) 
or no biopsy (high specificity).

When all methods were considered at 
their high-sensitivity biopsy decision cutoffs 
(no cancers missed), the quantitative frame-

work had the highest sensitivity (1; 95% CI, 
0.92–1), which was also achieved by rater 2 
using K-TIRADS and by both raters using 
ATA, which was a statistically significant 
improvement over ACR TI-RADS for one 
rater, EU-TIRADS, and the system of Smith-
Bindman et al. [17] for both raters. At the 
same time, the framework specificity of 
0.43 (95% CI, 0.29–0.59) was statistically 
significantly higher than that of these three 
perfect sensitivity results. These specificities 
were 0.07 (95% CI, 0.01–0.18) for rater 2 us-
ing K-TIRADS, 0.11 (95% CI, 0.04–0.24) for 
rater 1 using ATA, and 0.17 (95% CI, 0.08–
0.31) for rater 2 using ATA.

At the high-specificity cutoffs (no be-
nign nodules biopsied), the highest speci-
ficity (1; 95% CI, 0.92–1) was achieved with 
the quantitative framework at sensitivity 
0.22 (95% CI, 0.11–0.36). The specificity of 
the quantitative framework was statistical-
ly significantly higher than that for all other 
classifiers, except the system of Smith-Bind-

man et al. [17], which, however, had lower 
sensitivities of 0.15 (95% CI, 0.06–0.29) and 
0.17 (95% CI, 0.08–0.31) for the two raters.

The performance summary for all of the 
implemented classifiers is shown in Table 4. 
As Figure 3 shows, the biopsy cutoffs of the 
six implemented systems lie either on the 
ROC curve of the quantitative framework or 
below it, indicating that for a chosen sensi-
tivity or specificity, the framework can pro-
vide a decision with higher specificity and 
equal sensitivity.

Discussion
We present a quantitative framework for 

computerized stratification of risk of malig-
nancy of thyroid nodules seen on US images. 
The predictive performance of the framework 
(AUC, 0.828) was better than or comparable 
to that of six classification systems imple-
mented by annotations of two expert raters 
(AUC, 0.299–0.829). This finding suggests 
that the framework can provide expert-lev-

TABLE 4: Performance of Classification Systems at Biopsy-Recommended Level in Terms of Point and Interval 
Estimates of Sensitivity and Specificity (n = 46)

Classifier Sensitivity Specificity No. of Biopsies Spared
No. of Malignancies 

Missed

Quantitative, high sensitivity 1 (0.92–1) 0.43 (0.29–0.59) 20/46 0/46

Quantitative, high specificity 0.22 (0.11–0.36) 1 (0.92–1) 46/46 36/46

ACR TI-RADS 2017, rater 1 0.89 (0.76–0.96) 0.52 (0.37–0.67) 24/46 5/46

ACR TI-RADS 2017, rater 2 0.96 (0.85–0.99) 0.57 (0.41–0.71) 26/46 2/46

K-TIRADS 2016, rater 1 0.96 (0.85–0.99) 0.07 (0.01–0.18) 3/46 2/46

K-TIRADS 2016, rater 2 1 (0.92–1) 0.07 (0.01–0.18) 3/46 0/46

EU-TIRADS 2017, rater 1, high sensitivity 0.87 (0.74–0.95) 0.28 (0.16–0.43) 13/46 6/46

EU-TIRADS 2017, rater 1, high specificity 0.85 (0.71–0.94) 0.33 (0.20–0.48) 15/46 7/46

EU-TIRADS 2017, rater 2, high sensitivity 0.87 (0.74–0.95) 0.30 (0.18–0.46) 14/46 6/46

EU-TIRADS 2017, rater 2, high specificity 0.87 (0.74–0.95) 0.43 (0.29–0.59) 20/46 6/46

Smith-Bindman et al. [17], rater 1 0.15 (0.06–0.29) 0.98 (0.88–1) 45/46 39/46

Smith-Bindman et al. [17], rater 2 0.17 (0.08–0.31) 0.98 (0.88–1) 45/46 38/46

ATA 2015, rater 1, high sensitivity 1 (0.92–1) 0.11 (0.04–0.24) 5/46 0/46

ATA 2015, rater 1, high specificity 0.87 (0.74–0.95) 0.28 (0.16–0.43) 13/46 6/46

ATA 2015, rater 2, high sensitivity 1 (0.92–1) 0.17 (0.08–0.31) 8/46 0/46

ATA 2015, rater 2, high specificity 0.93 (0.82–0.99) 0.24 (0.13–0.39) 11/46 3/46

BTA 2014, rater 1, high sensitivity 0.96 (0.85–0.99) 0.20 (0.09–0.34) 9/46 2/46

BTA 2014, rater 1, high specificity 0.87 (0.74–0.95) 0.50 (0.35–0.65) 23/46 6/46

BTA 2014, rater 2, high sensitivity 0.98 (0.88–1) 0.00 (0.00–0.08) 0/46 1/46

BTA 2014, rater 2, high specificity 0.89 (0.76–0.96) 0.48 (0.33–0.63) 22/46 5/46

Note—For the proposed quantitative framework, two optimal points for high sensitivity and high specificity were calculated. For the pattern-based classifiers that had 
missing patterns, two decisions correspond to either biopsy of all unlabeled cases (high sensitivity) or no biopsy (high specificity). The ratios of spared biopsies of 
benign lesions and missed malignancies are given over the number of corresponding malignant or benign nodules considered by the stratification systems. Values in 
parentheses are 95% CIs. ACR = American College of Radiology, TI-RADS and TIRADS = Thyroid Imaging Reporting and Data System, K = Korean, EU = European Thyroid 
Association, ATA = American Thyroid Association, BTA = British Thyroid Association.
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el malignancy probabilities in an inexpen-
sive and objective manner. Because different 
strategies for triage favor sensitivity or speci-
ficity and depending on the goal in a particu-
lar patient, one strategy may be favored over 
another. Further analysis of the potential bi-
opsy recommendations revealed that the pro-
posed framework could have spared 20 of 46 
patients with benign nodules from biopsy in a 
curative strategy to triage (at sensitivity of 1) 
or identified 10 of 46 malignancies in a con-
servative strategy (at specificity of 1).

In the proposed framework, the quanti-
tative features were selected to comprehen-
sively encode the echogenicity, texture, edge 
sharpness, and margin curvature properties 
of thyroid nodules. This set of features also 
mimics the way a radiologist would annotate 
thyroid nodules when using systems such as 
ACR TI-RADS. However, some of these fea-
tures rely on delineation of a nodule. When 
we used a subset of two features that are less 
dependent on the precision of manual seg-
mentation—intensity and texture—we found 
a decrease in performance (AUC, 0.712). 
Therefore, we included the richer set of fea-
tures that gave higher performance.

Although the choice of curative or con-
servative strategy of thyroid management re-

mains subjective, there has been a shift to-
ward the conservative approach because of 
the recognition that the incidence of thyroid 
cancer has tripled in the past 30 years with-
out a concomitant change in mortality, sug-
gesting a problem with cancer overdiagnosis 
and overtreatment [22, 23]. The more conser-
vative strategy has been reflected in many of 
the more recent guidelines by the addition of 
constraints on the size of the nodule [6, 7, 9, 
10]. In addition to comparing our quantitative 
framework with these classifiers, we also im-
plemented the system described in the work of 
Smith-Bindman et al. [17], which was a prom-
inent study proposing more stringent rules to 
reduce the number of unnecessary biopsies.

Solving the problem of thyroid cancer over-
diagnosis has been the goal of many research 
groups and scientific committees. From the 
radiologist’s perspective, a multitude of so-
nography-based scoring systems have been 
developed, most of them labeled TIRADS, 
to score malignancy risk and define a cutoff 
point for further diagnosis. The development 
of computer-aided tools to define the probabil-
ity of malignancy is an active field of research 
in which methods are roughly divided into 
those that mimic radiologists’ observations 
by defining sets of computational features and 

black-box methods whereby the diagnosis is 
learned directly, avoiding prediction of inter-
mediate values as semantic features.

Several computer-aided methods have 
been proposed to predict or quantify sono-
graphic semantic features [24–28] that could 
later be used as input to expert guidelines. For 
example, in their proposal for a computer-aid-
ed detection system, Chang. [26] inferred the 
presence of semantic features and followed 
the guidelines of the ATA [29] for decision 
making. Alternatively, some methods learn 
the classifiers on top of existing semantic fea-
tures [30] or their combination with clinical 
variables [31]. For example, Wu et al. [30] 
found that their framework of radiologist-an-
notated semantic features and machine learn-
ing classifiers could provide results compa-
rable to those of expert malignancy scoring.

Although a major objective in identifica-
tion of benign nodules is to avoid unneces-
sary biopsies, some authors opt to predict the 
radiologist’s annotation-based TIRADS ma-
lignancy score instead. For instance, Chi et 
al. [32], to determine the likelihood of nod-
ule malignancy as defined in the TIRADS 
classification system of Kwak et al. [33], 
used a US image classification system based 
on a fine-tuned GoogLeNet model rather 
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than on pathologic proof. Although those 
authors reported accuracy of 0.99, the pre-
diction of actual biopsy-proven malignancy 
is only as accurate as its TIRADS reference 
labels. In our dataset, for instance, the bi-
opsy recommendation accuracy of the sys-
tem of Kwak et al. was 0.55, but the highest 
accuracy among the six considered systems 
was 0.76. As such, even accurate prediction 
of a TIRADS malignancy risk category may 
not be ineffective in predicting the ultimate 
pathologic diagnosis.

The main limitation in comparing report-
ed results among systems is that the evalu-
ations were performed on different datasets 
of varying discrimination difficulty. For in-
stance, using a dataset of 59 nodules, Chang 
et al. [34] reported an ROC AUC of 99% for 
their machine learning approach and ROC 
AUC of 98% for visual inspection by radi-
ologists. However, the latter number may be 
indicative of a nonrepresentative dataset, be-
cause it is known that owing to overlap in so-
nographic features of benign and malignant 
nodules, the proportion of unnecessary biop-
sies of benign nodules is estimated to be as 
high as 93–95% [5].

To avoid misinterpretation of the perfor-
mance statistics in a particular dataset, we 
considered it imperative to also provide re-
sults with expert systems in our dataset. 
When comparing the performance of the 
implemented systems with the results re-
ported for other datasets, we as expected ob-
served differences in absolute numbers that 
require adjusting the expectations for per-
formance of a good computerized tool in a 
particular dataset. For instance, in our data-
set, the performance of ACR TI-RADS was 
higher that that reported by Middleton et al. 
[35]. By comparing the performance of our 
framework with the performance of expert 
systems on our dataset rather than the re-
ported values, we aimed to avoid the bias in 
our conclusions about the effectiveness of the 
framework. In addition, many of the previ-
ous studies were limited to training and test-
ing in datasets as small as 20 patients [36]. 
On the other hand, expert-level performance 
has been found in deep learning methods in 
which large image datasets are used to train 
the models [37, 38]. Such approaches, howev-
er, can be prohibitive at institutions with low 
thyroid cancer prevalence, where it would 
take decades to assemble datasets with rep-
resentative image samples for malignant 
nodule classes that such methods require. In 
that sense, our quantitative approach can be 

quickly and effectively adapted to the data of 
a particular clinic.

Thyroid cancer diagnosis currently relies 
on cytopathologic analysis of fine-needle bi-
opsy specimens, which is invasive and anx-
iety-provoking for patients and may be non-
diagnostic in as many as one-third of cases 
[17]. Identifying patients at low risk of can-
cer is important to avoid such unnecessary 
health risks and decrease societal health care 
costs. Attempts to address the issue by intro-
ducing more reliable prebiopsy cancer risk 
estimation with standard-of-care US images 
are based on radiologist-annotated standard 
descriptors, which are laborious to collect 
and are subject to interrater and interrater 
variability [31]. However, by extracting a rich 
set of features from these images in a com-
puterized manner, our proposed framework 
expands the scope of features for analysis be-
yond merely those that are visible to the hu-
man eye and thereby maximizes use of the 
information available in the images. The use 
of computer-aided diagnostic tools based on 
frameworks similar to ours could improve 
the management of thyroid nodules and de-
crease the number of unnecessary biopsies 
and surgical risk while care is more appro-
priately directed at patients who need more 
invasive management.

Limitations
A limitation of this study was the use of 

only two principal projections, transverse 
and longitudinal, for extraction and analysis 
of semantic and computational features. Al-
though the selection of these projections is 
standard in practice to evaluate nodule prop-
erties, such as shape and size, the use of mul-
tiple image frames from the US examina-
tions could improve evaluation of other US 
features and will be analyzed in future work. 
Furthermore, the use of 3D transducers may 
provide more insight to the quantitative fea-
tures of thyroid nodules, and the proposed 
framework can be generalized to such imag-
es in the future.

At present our method also has the limi-
tation of requiring manual segmentation of 
nodules, which can be tedious and time-con-
suming. For this reason, we also explored 
the feasibility of eliminating the precise seg-
mentation step by looking only at quantita-
tive features that were independent of precise 
margin delineation: intensity and texture. In 
so doing, however, we found that the predic-
tive performance decreased quite a bit. Thus, 
development of a segmentation-independent 

quantitative framework has been identified 
as a target for future investigations.

Through the use of a retrospective col-
lection of US images that were routinely ac-
quired at our clinic, our dataset will have 
certain heterogeneity factors. Although we 
excluded patients imaged with lower-frequen-
cy transducers (< 12 MHz) to minimize the 
acquisition variability and increase the image 
quality uniformity, the variability stemming 
from the multiple sonographers acquiring the 
images was unavoidable because more than 
1000 studies over a 5-year period were evalu-
ated. The impact of this variability is unlike-
ly to be important because our US technolo-
gists are well-trained and American Registry 
for Diagnostic Medical Sonography certified, 
and we limited the analysis to the latest US 
equipment. For similar reasons, we did not 
exclude patients with background heteroge-
neity of the thyroid gland, such as those with 
Hashimoto thyroiditis or multinodular goiter. 
In all cases, we carefully selected the images 
of the nodule to correspond specifically to the 
nodule that was biopsied.

Another limitation was that our dataset of 
92 nodules was selected with equal numbers of 
malignant and benign nodules, which is higher 
than the estimated prevalence of thyroid can-
cer and not truly representative of the case mix 
in our clinic. Although this would affect mea-
sures such as positive and negative predictive 
value, which were not used in our analyses, the 
reported AUC, sensitivity, and specificity val-
ues were not influenced. The small size of the 
dataset might have affected the absolute values 
of the methods considered; however, the main 
goals of our analysis were to study relative per-
formance and to validate the proposed frame-
work using established management guide-
lines that are currently used by a variety of 
international societies.

Conclusion
A quantitative framework for automated 

triage of thyroid nodules by use of sonog-
raphy has been developed. The framework 
computes a rich set of computational features 
in the US images and estimates the probabil-
ity of malignancy by use of an elastic net clas-
sifier. The performance of the framework in 
terms of AUC was 0.829, which was higher 
than or at the level of six expert radiologist 
annotation-based classifiers. For both cura-
tive and conservative treatment strategies, use 
of the proposed framework had the highest 
performance in terms of sensitivity and com-
parable performance in terms of specificity. 
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qualitative assessments from an expert radi-
ologist, it could reduce variation in practice.

Our results confirm the ultimate feasibil-
ity of computer-aided diagnostic systems for 
thyroid cancer risk estimation. Such systems 
could provide second-opinion malignancy 
risk estimation to clinicians and ultimately 
help decrease the number of unnecessary bi-
opsies and surgical procedures. At present, 
however, a segmentation step to delineate 
the nodule boundary is critical to achieving 
expert performance, and manual segmenta-
tion is time-consuming. Future work will be 
directed at creating algorithms to accurate-
ly delineate the borders of nodules and de-
veloping a segmentation-independent quan-
titative framework. Once the algorithms and 
framework are devised, a fully automated 
process of thyroid nodule triage would be 
within reach.
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