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Deep Learning Enables Automatic
Detection and Segmentation of Brain
Metastases on Multisequence MRI
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Background: Detecting and segmenting brain metastases is a tedious and time-consuming task for many radiologists, par-
ticularly with the growing use of multisequence 3D imaging.
Purpose: To demonstrate automated detection and segmentation of brain metastases on multisequence MRI using a
deep-learning approach based on a fully convolution neural network (CNN).
Study Type: Retrospective.
Population: In all, 156 patients with brain metastases from several primary cancers were included.
Field Strength: 1.5T and 3T. [Correction added on May 24, 2019, after first online publication: In the preceding sentence,
the first field strength listed was corrected.]
Sequence: Pretherapy MR images included pre- and postgadolinium T1-weighted 3D fast spin echo (CUBE), post-
gadolinium T1-weighted 3D axial IR-prepped FSPGR (BRAVO), and 3D CUBE fluid attenuated inversion recovery (FLAIR).
Assessment: The ground truth was established by manual delineation by two experienced neuroradiologists. CNN
training/development was performed using 100 and 5 patients, respectively, with a 2.5D network based on aGoogLeNet architec-
ture. The results were evaluated in 51 patients, equally separated into thosewith few (1–3), multiple (4–10), andmany (>10) lesions.
Statistical Tests: Network performance was evaluated using precision, recall, Dice/F1 score, and receiver operating charac-
teristic (ROC) curve statistics. For an optimal probability threshold, detection and segmentation performance was assessed
on a per-metastasis basis. The Wilcoxon rank sum test was used to test the differences between patient subgroups.
Results: The area under the ROC curve (AUC), averaged across all patients, was 0.98 � 0.04. The AUC in the subgroups
was 0.99 � 0.01, 0.97 � 0.05, and 0.97 � 0.03 for patients having 1–3, 4–10, and >10 metastases, respectively. Using an
average optimal probability threshold determined by the development set, precision, recall, and Dice score were 0.79 �
0.20, 0.53 � 0.22, and 0.79 � 0.12, respectively. At the same probability threshold, the network showed an average false-
positive rate of 8.3/patient (no lesion-size limit) and 3.4/patient (10 mm3 lesion size limit).
Data Conclusion: A deep-learning approach using multisequence MRI can automatically detect and segment brain metas-
tases with high accuracy.
Level of Evidence: 3
Technical Efficacy Stage: 2
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ATTRIBUTED IN LARGE to advances in effective sys-
temic treatment regimens of primary tumors, there has been

an increase in the number of patients with metastatic cancer over
the last decade.1 Brain metastases are one of the most common
neurologic complications of cancer, most frequently originating
from lung cancer, breast cancer, and malignant melanoma.2 In a
survey including more than 26,000 patients, 12.1% of all patients
with metastatic disease had brain metastases at diagnosis.3 Most

patients present with three or fewer metastases to the brain, but
40% of patients have greater than this number.4,5 Contrast-
enhanced magnetic resonance imaging (MRI) is the key imaging
technique in the diagnosis of brain metastases and is also used for
longitudinal follow-up to assess treatment response.

Delineation of initial tumor volume and volume change in
relation to disease progression or therapy are key neuroradiological
tasks as part of optimal patient management. Given its importance
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and high demand for accuracy, manual detection and segmenta-
tion of brain tumors is a tedious and time-consuming task, particu-
larly with the growing use of multisequence 3D imaging.
Furthermore, the diagnostic methods for assessing treatment
response follow the criteria formulated by the Response Assess-
ment in Neuro-Oncology (RANO) working group and are based
on measuring the size of the enhancing lesion on gadolinium
(Gd)-enhanced T1-weighted MR images.6 The traditional metrics
used for response evaluation are based on unidimensional measure-
ments, although the value of using volumetric measurements has
been increasingly discussed. One concern raised by the RANO
group was that volumetric analysis, as performedmanually by radi-
ologists, adds cost and complexity and is not available at all centers.

During recent years, advances in machine learning
(ML) have suggested the possibility of new paradigms in healthcare.
One application of ML in radiology is the detection and segmenta-
tion of organs and pathology.7–10 In particular, there has been a sig-
nificant effort in developing deep learning (DL) algorithms to learn
from the comprehensive voxelwise labeled MRI data for segmen-
ting primary brain tumors.11–15 However, only a few studies have
applied such ML approaches on patients with brain meta-
stases,16–18 which may require different approaches given their size
and multiplicity. To this end, the aim of this work was to develop
and assess a fully convolution neural network (CNN) for automatic
detection and segmentation of brain metastases using multi-
sequenceMRI data as input.Whereas comparable studies in the lit-
erature use homogeneous patient cohorts, ie, a single field-strength/
vendor/scanner, or limited to patients receiving stereotactic radio-
surgery (SRS), this study work included a heterogeneous cohort of
clinical patients not limited to SRS planning, facilitating subgroup
analysis based on the total number of brain metastases and their
sizes, thus challenging the generalizability of the proposed neural
network.

Materials and Methods
Patient Population
This retrospective, single-center study was approved by our Institutional
Review Board. Inclusion criteria included the presence of known or possi-
ble metastatic disease (ie, presence of a primary tumor), no prior surgical
or radiation therapy, and the availability of all required MRI sequences
(see below). Only patients with ≥1 metastatic lesion were included. Mild
patient motion was not an exclusion criterion. Based on these criteria, a
consecutive set of 156 patients was identified, imaged between June
2016 and June 2018, and were included in the study. Details of this
cohort are shown in Table 1. Imaging was performed with both 1.5T
(n = 18; SIGNA Explorer and TwinSpeed, GE Healthcare, Chicago, IL)
and 3T (n = 138; Discovery 750 and 750w and SIGNA Architect, GE
Healthcare; Skyra, Siemens Healthineers, Erlangen, Germany) clinical
scanners. Mean patient age was 63 � 12 years (range: 29–92 years). Pri-
mary malignancies included lung (n = 99), breast (n = 33), melanoma
(n = 7), genitourinary (n = 7), gastrointestinal (n = 5), and miscellaneous
cancers (n = 5). Of the 156 patients included, 64 (41%) had 1–3metasta-
ses, 47 (30%) had 4–10 metastases, and 45 (29%) had >10 metastases.
Lesion sizes varied from 2 mm to over 4 cm and were scattered in every

region of the brain parenchyma, ie, the supratentorial and infratentorial
region, as well as the cortical and subcortical structures.

Imaging Protocol
The imaging protocol included pre- and post-Gd T1-weighted 3D
fast spin echo (CUBE), post-Gd T1-weighted 3D axial IR-prepped
FSPGR (BRAVO), and 3D CUBE fluid-attenuated inversion recov-
ery (FLAIR). All sequences with key imaging parameters are summa-
rized in Table 2. For Gd-enhanced imaging, a dose of 0.1 mmol/kg
body weight of gadobenate dimeglumine (MultiHance, Bracco Diag-
nostics, Princeton, NJ) was intravenously administered.

Image Segmentation and Coregistration
Ground truth segmentations were established by two neuroradiologists
with 8 (M.I.) and 2 (E.T.) years of experience by manually delineating
and cross-checking regions of interest (ROIs) around each enhancing
metastatic lesion. The lesions were outlined on each slice on the post-Gd
3D T1-weighted IR-FSPGR sequence, with additional guidance from
the 3D FLAIR and the post-Gd 3D T1-weighted spin echo data using
the OsiriXMD software package (v. 8.0, Geneva, Switzerland).

Pre/postcontrast T1 CUBE and FLAIR images were coregistered
to the IR-FSPGR space by normalized mutual information coregistration
using the nordicICE software package (NordicNeuroLab, Bergen, Nor-
way). Prior to network training, the brain was extracted by using the
Brain Extraction Tool (BET)19 and applying the resulting brain masks
on the network’s input data. The brain masks were generated from the
precontrast T1-weighted 3DCUBE imaging series and propagated to the
other sequences.

CNN Details
Training was performed using a 2.5D fully CNN based on the
GoogLeNet architecture20 (Fig. 1). The network was modified to opti-
mize segmentation by skipping the first and third downsampling max
pooling layers and using a stride of one on the first 7 × 7 convolutional

TABLE 1. Demographics

Total number of patients 156

Gender 105 Female / 51 Male

Primary cancer:

Lung 99 (63%)

Breast 33 (21%)

Skin/melanoma 7 (5%)

Genitourinary 7 (5%)

Gastrointestinal 5 (3%)

Miscellaneous 5 (3%)

Number of metastases: Number of patients

≤3 64 (41%)

4–10 47 (30%)

>10 45 (29%)
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layer. As a result, the final downsampling rate throughout the con-
volutional layers was 4×, rather than 32×. To make the network fully
convolutional, GoogLeNet’s final fully connected layers were replaced by
a single convolutional transpose layer of stride 4 and size 8 × 8. The final
prediction was made on a single channel of logit values with a sigmoid
cross-entropy loss function. In order to counter learning hurdles intro-
duced by an unbalanced dataset, the loss on positive ground truth voxels
were weighted 10×more than the loss on negative ground truth voxels.

To better capture through-plane features without incurring
the inefficiencies associated with true 3D CNN’s, we implemented a
"2.5D" model. The network’s input were seven slices from each of
the four aforementioned sequences, comprising a single center slice
with three slices above and below, resulting in an input channel
dimension of 28. Each image was rescaled (if necessary) to a size of
256 × 256. Note that all MR images were originally 256 × 256 or
512 × 512, and that bilinear interpolating the 512 × 512 images
down to 256 × 256 gave minimal artifacts. Prior to training,
preprocessing and normalization was performed with independent
histogram equalization on each slice of the 28-channel input. During
training, we randomly flipped and rotated the images in multiples of
90� for data augmentation.

All training was performed on two consumer-grade graphical
processing units (GPUs) (NVIDIA GeForce GTX 1080TI). The
batch size was 32 with a learning rate of 0.001. Given that there
were far more frames (>30×) without lesions compared with frames
with lesions, we employed an uneven sampling procedure. For 16 of
32 images in each batch, we sampled the image from the set of
frames with at least some lesion. For the other 16 images, we sam-
pled uniform randomly from all frames. This ensured that for each
batch at least half of the images was populated with frames including
some ground truth lesions. Regularization was performed by an L2
weight decay with a decay constant of 1e-5. Batch normalization was
used following every convolutional layer. We used the ADAM opti-
mization method21 with default TensorFlow beta values of 0.9 and
0.999. By defining an epoch as the statistical equivalent of seeing

every distinct frame of the dataset once, the training continues until
convergence, which occurred at about the 10th epoch. The network
was trained using TensorFlow, and the resulting output was an
image for each slice representing a probability map of whether the
voxel represents a metastasis, ranging from 0–1.

The total number of cases were randomly broken into separate
train, development, and test sets. None of the cases in the test set were
present in the training set. To ensure a representative sample in our test
set, we first chose the test cases as follows. First, we determined the num-
ber of distinct metastatic lesions in each case in the entire cohort and then
broke the data into groups with (a) 1–3, (b) 4–10, (c) >10 lesions. We
then randomly selected 17 cases from each of these groups, leading to a
total test set size of 51 cases. The remaining cases were divided into train-
ing and development sets in a random 20:1 ratio, giving a final break-
down of 100 training cases, five development cases, and 51 test cases.
The test set had a total of 856 lesions.

Statistical Analysis
The network’s ability to detect metastases on a voxel-by-voxel basis was
evaluated using receiver operating characteristic (ROC) curve statistics,
measuring the area under the ROC curve (AUC) for each patient in the
test set. Only voxels within the brain mask were considered when calcu-
lating AUC. Corresponding sensitivity and specificity were determined
by using the maximum value of Youden’s index as a criterion for selecting
the optimal cutoff point. Based on ROC statistics from the development
set, the optimal probability threshold for including a voxel as a metastasis
was determined, and using this threshold the results were further evalu-
ated in terms of detection accuracy using precision and recall, and seg-
mentation accuracy using the Dice similarity score (also known as the F1
score). In addition to the voxel-by-voxel analysis, the detection perfor-
mance was also evaluated on a lesion-by-lesion basis by calculating the
number of false positives (FPs) per case. These metrics were determined
by comparing the ground truth maps and the probability maps, counting
the number of overlapping objects using a connecting component
approach. The number of FPs were determined both without and with a

TABLE 2. Overview of MRI Pulse Sequences and Key Imaging Parameters

Technique 3D T1 BRAVO Pre/Post 3D T1 CUBE 3D CUBE FLAIR

TR (msec)* 12.02 / 8.24 550 / 602 6000

TE (msec)* 5.05 / 3.24 9.54 / 12.72 119 / 136

Flip angle* 20 / 13 90 90

FOV (mm2) 240 × 240 250×250 240 × 240

Inversion time (msec)* 300 / 400 — 1880 / 1700

Acquisition matrix 256 × 256 256 × 256 256 × 256

Slice thickness (mm) 1 1 1–1.6

# of slices 160 270–320 270–320

Slice acquisition plane Axial Sagittal Sagittal

TR = repetition time; TE = echo time; FOV = field-of-view; BRAVO–T1-weighted inversion recovery prepped fast spoiled
gradient-echo; CUBE–T1-weighted fast spin-echo; FLAIR–fluid attenuated inversion recovery.
*In case of varying parametric values between field strength,’/’ notation is given (1.5T / 3T)
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lesion-size criterion, in which only objects ≥10 mm3 were considered a
detected lesion. The detection performance was also investigated as a
function of lesion size. This was done by comparing the 3D connective
components estimated from the ground truth maps and the probability
maps. The latter was done using a probability threshold of 0.1. If there
was more than a 10% overlap between the predicted lesion and the gro-
und truth, the networks prediction was labeled "found." If no such over-
lap existed, the networks prediction was labeled "missed." Furthermore,
given that the size threshold for differentiating large and small lesions is
not fixed, the detection sensitivity was estimated as a function this size
threshold. The lesion size was determined by the longest 3D diameter.
Finally, the Wilcoxon rank sum test was used to compare the detection
and segmentationmetrics between the patient subgroups. A statistical sig-
nificance level of 5% was used. All statistical analyses were performed
usingMatLab R2017a v. 9.2.0 (MathWorks, Natick,MA).

Results
The total time for training the neural network was ~15 hours. For
processing a test case, the forward pass on a single NVIDIA GTX
1080Ti GPU took less than 200 msec per slice during the test
time with a run time of ~1minute for a full MR volume.

Figure 2 shows an example case demonstrating the resulting
probability map as an overlay on the post-Gd FSPGR image series
using a lower probability threshold of 0.1. The voxel-by-voxel
detection performance showed an area under the ROC-curve,
averaged across all patients, of 0.98 � 0.04, corresponding to a
sensitivity and specificity of 94% and 97%, respectively, at the
optimal cutoff point. Further, the subgroups showed an area
under the ROC curve of 0.99 � 0.01 for patients having 1–3

metastases, 0.97� 0.05 for 4–10metastases, and 0.97� 0.03 for
>10 metastases (Fig. 3). The corresponding sensitivity and speci-
ficity are shown in Table 3A. The average optimal probability
threshold for including a voxel as a metastasis, measured in the
development set, was 0.93. Using this threshold, the precision,
recall, and Dice score were 0.79 � 0.20, 0.53 � 0.22, and 0.79
� 0.12, respectively. The distribution of these metrics within the
subgroups is shown Table 3B. On a lesion-by-lesion basis, and by
using the optimal probability threshold (average sensitivity =
83%), the network showed an average FP rate of 8.3 (no size
limit) and 3.4 (10 mm3 size limit) lesions per case, with the
highest sensitivity and lowest numbers of FP in patients with few
metastases (Table 3C). The P-values, testing the differences in all
detection and segmentation metrics between the subgroups, are
shown in Table 4A–C. Examples in representative cases with dif-
ferent numbers of metastases are shown in Fig. 4.

The network’s ability to detect brainmetastases was associated
with the lesion size (Fig. 5). For lesions smaller that 7 mm, the neu-
ral network showed a sensitivity of 50%. However, for all lesions
larger that 22 mm the network achieved a sensitivity of 100%.
Figure 6 show the network’s sensitivity as a function of size threshold
for differentiating large and small lesions. If the size threshold is set
to 22mm, the network’s sensitivity was 80% for detecting <22mm
lesions and ~100% for detecting >22mm lesions.

Discussion
This study demonstrated that a modified 2.5D GoogLeNet
CNN can detect and segment brain metastases on multisequence

FIGURE 1: Flowchart showing the four image inputs used to train the neural network, the modified GoogLeNet architecture, and the
resulting output color map (overlaid on a postcontrast BRAVO image) representing a probability map of whether the voxel
represents a metastasis, ranging from 0–1.
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MRI with high accuracy. By testing on a large number of patients,
thus facilitating subgroup analysis, this work demonstrates the
network’s clinical performance and potential, in addition to better
understanding of its generalizability. To our knowledge, no previ-
ous study has reported on subgroup analysis using deep learning
in brain metastases segmentation.

In recent years, many DL approaches have been developed
and tested for automatic segmentation of gliomas,22 thanks in part
to the publicly available BRAin Tumor Segmentation (BraTS)
dataset. In contrast, only a few studies have used this approach for
brain metastases. Liu et al investigated the use of a CNN-based seg-
mentation for SRS planning and reported a Dice score of 0.67 and
an AUC of 0.98.16 The performance of the current method is

superior to this prior method based on the average Dice score (0.79
vs. 0.67), but showed similar AUCperformance. Charron et al used
a 3D CNN (DeepMedic) for automatic detection and segmenta-
tion of brain metastases.17 By using segmented metastases to be
irradiated as the ground truth, their network was trained using three
MRI sequences from 146 patients as input and further tested on
18 patients. Similar to our study, their network was trained using
three MRI sequences that proved to outperform networks trained
on a single MRI contrast. Their network showed a sensitivity of
98% and 7.2 FP per patient. Sunwoo et al developed a computer-
aided diagnostic (CAD) system for detecting brain metastases and a
neural network for FP reduction.23 Their CAD system significantly
improved the diagnostic performance of the reviewers and showed
an overall sensitivity of 87%. One feature that separates our work
from these previous studies is the strength of having diverse data,
which may make it more challenging to demonstrate an overall
high performance. We included cases from both 1.5T and 3T
using multivendor scanners, and our data were not limited to
patients receiving SRS, thus including more patients with extensive
metastases disease (>10). This is supported by our results, which
indicate that the neural networks ability to detect and segment
brain metastases were reduced in patients with a higher number of
metastases. However, our patient cohort is more representative of
real-world data. Furthermore, there are also differences in network
architecture. Whereas Charron et al17 used a full 3D network, we
used a 2.5D network. The results indicate that our 2.5D network
achieves the same segmentation performance as a 3D network,
which reduces the computational and memory requirements for
training. However, further studies systematically comparing 2D,
2.5D, and 3D neural architectures must be performed to ade-
quately answer this question. Also note that, using comparable
graphic cards, our 2.5D network required ~1 minute to perform a
forward-pass (inference), while a 3D network would require
~20minutes for the same task.

FIGURE 2: Example case of a 47-year-old female patient presenting with three brain metastases from lung cancer. The image mosaic
shows the predictions (probability maps as indicated by the color bar), generated by the neural network, and manually delineated
metastases (yellow lines) overlaid on the postcontrast image.

FIGURE 3: ROC curves with 95% confidence intervals (shaded
areas) for the three subgroups having 1–3 metastases (green),
4–10 metastases (red), and >10 metastases (blue). The average
area under the ROC curve was 0.98, ranging from 0.79–1.00 for
all cases.
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The split between training/validation/testing in this
study is somewhat unusual compared with similar studies in
the literature. However, we chose to test on a large number
of cases to understand how generalizable the network was and
to facilitate subgroup analysis, enabling a better understand-
ing of the network’s clinical performance and potential. In
earlier stages of the study, we found that the network had
high performance training on approximately half of the cur-
rent training set, and that increasing the number of training
cases did not provide significant improvement, thus justifying
our use of a larger test set. Our results indicate that the net-
works ability to detect metastatic voxels, as measured by the
AUC, is best in patients with few (1–3) metastases and

further that the segmentation performance, as measured by
the Dice score, is slightly better for patients with 4–10 metas-
tases. On a lesion-by-lesion basis, our results suggest that the
network performs best on patients with few metastases, both
in terms of sensitivity and the number of FPs. One hypothe-
sis is that these results may be associated with an optimal tra-
deoff between total number and individual size of the
metastases. This is supported by our result suggesting that the
network has a higher sensitivity for detecting large lesions.
Larger lesions are often less subtle and may exhibit more tex-
tural features that may make them easier to detect. However,
through the multiple layers of downsampling with higher
order strides and pooling layers, the network may have a har-
der time distinguishing lesions without enough pixel informa-
tion. It should also be noted that in training segmentation
networks, a large lesion comprises many more voxels than a
smaller lesion, which may cause a data imbalance problem.

TABLE 3. Summary of Detection and Segmentation
Metrics (Mean Value � Standard Deviation)

A: Voxel-by-voxel detection accuracy using ROC
statistics*

# of
metastases AUC Sensitivity Specificity

1 to 3 0.99 � 0.01 98 � 3% 98 � 2%

4 to 10 0.97 � 0.05 92 � 10% 97 � 3%

>10 0.97 � 0.03 92 � 7% 95 � 3%

All cases 0.98 � 0.04 94 � 8% 97 � 3%

B: Detection and segmentation accuracy at an optimal
probability threshold**

# of
metastases Dice Recall Precision

1 to 3 0.76 � 0.20 0.54 � .026 0.79 � 0.27

4 to 10 0.83 � 0.04 0.59 � 0.21 0.76 � 0.22

>10 0.78 � 0.05 0.44 � 0.18 0.81 � 0.11

All cases 0.79 � 0.12 0.53 � 0.22 0.79 � 0.20

C: Lesion-by-lesion detection accuracy at an optimal
probability threshold**

# of
metastases Sensitivity

FP (no size
limit)

FP (10 mm3

size limit)

1 to 3 92 � 25% 3.2 � 4.0 1.7 � 2.0

4 to 10 81 � 19% 8.5 � 9.8 4.4 � 6.0

>10 76 � 20% 13.1 � 18.9 4.1 � 10.3

All cases 83 � 22% 8.3 � 12.9 3.4 � 7.0

AUC = area under the receiver operating characteristic (ROC)
curve; FP = false positive.
*Sensitivity and specificity were determined by using the maxi-
mum value of Youden’s index.
**The metrics were estimated using an optimal probability
threshold of 0.93, as determined from the development set.

TABLE 4. P-values Comparing Subgroups Using
Wilcoxon Rank Sum Test

A: Voxel-by-voxel detection accuracy using ROC
statistics*

Subgroups AUC Sensitivity Specificity

G1 vs. G2 0.0131 0.0017 0.0496

G1 vs. G3 0.0024 0.0024 0.0038

G2 vs. G3 0.4282 0.6794 0.0421

B: Detection and segmentation accuracy at an optimal
probability threshold**

Subgroups Dice Recall Precision

G1 vs. G2 1.0000 0.5816 0.2557

G1 vs. G3 0.0629 0.1131 0.2557

G2 vs. G3 0.0915 0.0230 0.8633

C: Lesion-by-lesion detection accuracy at an optimal
probability threshold**

Subgroups Sensitivity
FP (no
size limit)

FP (10 mm3

size limit)

G1 vs. G2 0.0069 0.0158 0.0829

G1 vs. G3 0.0002 0.0139 0.6352

G2 vs. G3 0.3952 0.7031 0.1178

G1 = subgroup having 1–3 metastases; G2 = subgroup having
4–10 metastases; G3 = subgroup having >10 metastases. Signifi-
cant P-values are highlighted in bold. All P-values were mea-
sured using the Wilcoxon rank sum test.
*Sensitivity and specificity were determined using the maximum
value of Youden’s index.
**The metrics were estimated using an optimal probability
threshold of 0.93, as determined from the development set.
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Multiple network architectures were considered for this
project, including residual networks,24 dense networks,25 U-
Nets,26 Pyramid Scene Parsing (PSP) Nets,27 and Feature Pyra-
mid Networks (FPNs).28 However, after running preliminary
experiments with the 2014 GoogLe (or Inception v1) network,
we found that this was already capable of overfitting the training
data. Thus, given that network complexity and capacity were not
driving issues in the project, and that the GoogLeNet enables high
computational efficiency, both in memory and speed, this became
our choice of architecture. The compact size of the network allows
it to be run on even the smallest mobile GPUs, such as the
NVIDIA Tegra chip. However, note that more ample gains from
advanced network architectures could be attained with larger
datasets.

Typical workflow in radiotherapy planning requires accu-
rate detection by a radiologist, followed by segmentation by a
radiation oncologist. Both steps are time-consuming and subject
to interobserver variation.Detection requiresmanual visualization
and annotation. Fatigue and image quality are a few factors that
may affect the accuracy.29,30 Special imaging techniques have
been proposed to improve this process. For instance, double-dose
Gd-based contrast-enhanced thin-slice MRI produced more pre-
cise delineation of lesions compared with using a single dose.31

The addition of overlapping CUBE maximum intensity projec-
tion (MIP) images, which have a better contrast-to-noise ratio of
metastatic lesions than post-Gd 3D isometric high-resolution
sequences, are often used to enhance the sensitivity of detection.
However, even with the addition of CUBE MIP images, the
interrater agreement for identification of metastases between two
experienced radiologists was reported as only fair-to-moderate in
one study.32 Segmentation requires tracing the contours of the
lesions on the 2D images slice-by-slice. Even though there is
semiautomatic software available for segmentation, extensive
manual editing is often required, thus generating nonreproducible
operator-dependent results.33,34 Accurate segmentation of the
metastases is imperative in radiation therapy planning to mini-
mize damage to adjacent normal tissue. Our neural network
essentially combines visualization, quantification, and segmenta-
tion into one fluid step, producing results that can be directly
applied to radiotherapy planning, with minimal user interaction.

While this study shows high accuracy and performance
using DL for segmenting brain metastasis, several potential study
limitations exist. First, the results must be interpreted in light of
the limited sample size in this single-center, retrospective study.
This is partly related to the time required for manual segmenta-
tion. Future studies will investigate the use of "coarse" segmenta-
tion, which is by far less time-consuming compared with fine
segmentation, and how this may affect the network’s ability to
detect and segment brain metastases. Also, testing of the network
performance on multisite data remains a key step towards under-
standing its clinical value. Second, the network sometimes fails in
terms of reporting FP. This is particularly true in and near vascular

FIGURE 6: Detection sensitivity as a function of the size used to
differentiate large and small lesions. The curves show the different
sensitivities of lesions both larger (blue) and smaller (red) than any
given threshold value.

FIGURE 4: Examples of representative cases with few (top row),
moderate (middle row), and extensive (bottom row) metastatic
disease. The top row shows a 70-year-old woman presenting with
one brainmetastasis from colon carcinoma. Themiddle row shows a
68-year-old man presenting with seven brain metastases from lung
cancer. The bottom row shows a 37-year-old man presenting with
78 brain metastases from lung cancer. The network’s predictions
are shown as probability maps and the yellow lines show the
manually delineated lesions.

FIGURE 5: Stacked histogram showing the number of missed
and found lesions as a function of lesion size (greatest
diameter). As seen in the histogram, the proposed network
does not miss any lesion of size larger than 22 mm.
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structures at the skull base such as venous sinuses, or over the cor-
tex. Finally, as our neural network is trained on four distinct MRI
contrasts, the use of this method is limited to sites acquiring all
sequences.However, future studies will address the issue of having
other or even lacking model inputs with the aim of making the
neural network more robust and versatile towards different input
channels.

In conclusion, our study shows that a deep learning net-
work can automatically detect and segment brain metastases on
multisequence MRI with high accuracy and thus illustrates the
potential use of this technique in a clinically relevant setting.
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