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a b s t r a c t 

We propose a novel method, the adaptive local window, for improving level set segmentation technique. 

The window is estimated separately for each contour point, over iterations of the segmentation pro- 

cess, and for each individual object. Our method considers the object scale, the spatial texture, and the 

changes of the energy functional over iterations. Global and local statistics are considered by calculat- 

ing several gray level co-occurrence matrices. We demonstrate the capabilities of the method in the do- 

main of medical imaging for segmenting 233 images with liver lesions. To illustrate the strength of our 

method, those lesions were screened by either Computed Tomography or Magnetic Resonance Imaging. 

Moreover, we analyzed images using three different energy models. We compared our method to a global 

level set segmentation, to a local framework that uses predefined fixed-size square windows and to a lo- 

cal region-scalable fitting model. The results indicate that our proposed method outperforms the other 

methods in terms of agreement with the manual marking and dependence on contour initialization or 

the energy model used. In case of complex lesions, such as low contrast lesions, heterogeneous lesions, or 

lesions with a noisy background, our method shows significantly better segmentation with an improve- 

ment of 0.25 ± 0.13 in Dice similarity coefficient, compared with state of the art fixed-size local windows 

(Wilcoxon, p < 0.001). 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Liver lesion segmentation is a well-studied area that has several

applications, such as treatment assessment, and computer-assisted

diagnosis. Manual segmentation of lesions is time-consuming, te-

dious procedure, which is highly depended on the user experience

( Hame and Pollari, 2012 ). Therefore, many works in literature sug-

gest accurate and robust automatic liver lesion segmentations ( Jolly

and Grady, 2008 ; Krishnamurthy et al., 2004 ; Li et al., 2015 ; Tan

et al., 2013 ; Yim P. and Foran, 2003 ). Shimizu et al. (2008) used

the AdaBoost technique to segment liver lesions based on local

image features. Pescia et al. (2008) also uses texture features to

segment liver lesions. The method of Moltz et al. (2009) , which

combines a threshold-based approach with model-based morpho-
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ogical operations, can segment 3D liver lesions with 31% error.

bdel-Massieh et al. (2010) incorporates intensity and shape infor-

ation while Militzer et al. (2010) utilizes a probabilistic boost-

ng tree for lesion segmentation. Masuda et al. (2010) proposed

 method that classifies voxels into normal and abnormal tissues

sing expectation–maximization and uses a morphological filter

hat incorporates circularity and proximity to boundary to elim-

nate false positives. The method of Wu et al. (2012) combines

radient-based locally adaptive segmentation with intensity and

eometric features-based classification. Schwier et al. (2011) and

an et al. (2015) apply watershed transformation for segmentation

f liver lesions. Cao et al. (2016) presents a technique for segment-

ng lesions according to their intensity and location properties,

ased on Iterative Relative Fuzzy Connectedness method; however,

t has difficulties in handling heterogeneous liver lesions. Addi-

ional recent work on liver and lesion segmentation employs sig-

oid edge modeling ( Foruzan and Chen, 2015 ) or machine learning

echniques ( Freiman et al., 2011; Kadoury et al., 2015 ). Other works

pply graph cut techniques ( Li et al., 2015; Linguraru et al., 2012 ). 
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Level set techniques are another popular approach that is used

or liver lesion segmentation due to their ability to handle image

oise, intensity heterogeneities, and discontinuous object bound-

ries ( Casciaro et al., 2012; Li et al., 2013; Li et al., 2011 ). The semi-

utomatic method presented by Smeets et al. (2010) is based on

 level set fitted on a fuzzy classification of the image data. The

ontour initialization is generated by a spiral-scanning technique

ased on dynamic programming. The method performed well in

he 3D Liver Tumor Segmentation Challenge 2008 ( Deng and

u, 2008 ), but its performance is limited in low contrast le-

ions. In addition, it does not perform well when lesions that

re surrounded by other pathologic tissues. Level set methods in-

lude both edge-based ( Caselles et al., 1997; C.M. Li et al., 2005b ;

alladi et al., 1995 ; Osher and Sethian, 1988 ) and region-based

odels ( Chan and Vese, 2001; Lankton et al., 2007; Lankton and

annenbaum, 2008; Li et al., 2007; Li et al., 2008; Mumford and

hah, 1989; Ronfard, 20 02; Tsai et al., 20 01; Vese and Chan, 20 02 ;).

dge-based models are not ideal for noisy images, objects with

ncomplete boundaries, or objects with low object-to-background

ontrast. Region-based models estimate spatial statistics of image

egions to find the minimal energy where the model best fits the

mage. Chan and Vese (2001) applied a region-based segmenta-

ion model with global constraint, based on the Mumford and Shah

unctional. The main advantage of the global constraint is its high

obustness to the location of the initial contour ( Chan and Vese,

001; Yezzi et al., 2002 ). However, in many cases such as with

eterogeneous intensity areas, a local framework performs better

han a global one ( Lankton and Tannenbaum, 2008; Li et al., 2007;

i et al., 2008; Malladi et al., 1995; Zheng et al., 2013; Zhang et al.,

010; Wang et al., 2009 ). Hybrid models are superior, defining

n energy functional with local and global constraints to obtain a

ore accurate segmentation that is more robust to contour initial-

zation ( Smeets, et al., 2008; Zhang et al., 2010 ). Those methods

llow curve deformation to find only significant local minima and

elineate object borders despite noise, poor edge information, and

eterogeneous intensity profiles ( Lankton et al., 2007 ). 

Robustness to initial conditions is an important measure of

egmentation performance. Initial shape and position parameters

size, rotation, and location) need to be adequately determined;

therwise, the contour may converge to a local minimum and fail

o capture the features of interest. The most common techniques

or contour initialization are 1) manual selection of initial points

 Ardon and Cohen, 2006; Cohen and Kimmel, 1997; Neuenschwan-

er et al., 1994 ); 2) analysis of the external force field ( Ge and Tian,

002; He et al., 2006; Li et al., 2005a ; Tauber et al., 2005 ); 3) naive

eometric models such as a circle in 2-D or sphere in 3-D; and, 4)

earned shape priors, where a statistical shape model is estimated,

nd the automated procedure then tries to find the segmentation

hat best fits the shape model ( Cootes et al., 1999 ; Das et al., 2006 ;

reedman and Zhang, 2005; Tsai et al., 2003 ). However, methods

ased on shape priors may be restrictive in applications involving

ighly variable shapes. 

Though the accuracy of contour initialization is important, the

ize of the local window surrounding each contour point plays a

ey role in the segmentation performance. The window size de-

nes how the local scale of the statistics evaluation, and thus must

e selected appropriately, even when initialization of the active

ontour is relatively accurate. Furthermore, well-defined local win-

ow can compensate on low-quality initial contour. Most local seg-

entation methods use candidates for pre-defined window sizes

s input. Each candidate window size is tested over an extensive

equence of images to ascertain the best window size and this

xed window size is used for the entire database of images. How-

ver, this window size will not be optimal for all images and new

mages with different spatial statistics may require additional ex-

eriments to find the best window size. Thus, choosing a fixed
indow size by trial and error is a time consuming process. More-

ver, when the images contain substantial diversity of spatial char-

cteristics, pre-defining a single window size may result in non-

ptimal segmentation performance for all images. For that reason,

 varied window size that is defined adaptively according to spatial

nformation has a greater chance of providing accurate segmenta-

ion. 

An et al. (2007) implemented a local framework at two dif-

erent scales and showed that segmentation performance is bet-

er when using more than one scale. Li et al. (2008) studied in-

epth the selection of kernel functions and its effect on segmen-

ation performance. The authors applied their method using three

ifferent predefined Gaussian scales. The most accurate segmenta-

ion was obtained by using the smallest scale, but their method

as more robust to contour initialization using a larger scale

 Li et al., 2008 ), creating a trade-off when choosing a local scale.

or those multi-scale methods ( An et al., 2007; Li et al., 2008 ), a

re-specified pyramid of discrete Gaussian scales should be sup-

lied as input. Using pre-specified scales may lead to a high de-

endence of segmentation accuracy on the number and the values

f the discrete scales input. 

Recently published research provides methods to select the best

cale from a range of input scales. Yang and Boukerroui (2011) pro-

osed a Gaussian scale selection based on the intersection of con-

dence intervals rule: the local scale is estimated by minimiz-

ng the mean square error of a local polynomials approximation

LPA). Pivano and Papadopoulo (2008) also applied a given pyra-

id of Gaussian kernels to compute local means and variances.

hey recommend choosing a scale that is the smallest one that in-

uces an evolution speed greater than a user-determined thresh-

ld ( Piovano and Papadopoulo, 2008 ). Choosing a single scale has

ome drawbacks. First, it may be sensitive to the criteria used. Sec-

nd, since scale choice is done by examining a specific scale, it

s based on the local window only; however, in many cases such

s low contrast objects, heterogeneous objects or objects with a

oisy background, global information can contribute substantially

o segmentation performance and thus should be considered when

 scale is chosen. Finally, these methods use the same chosen sin-

le scale during the whole segmentation process. 

We propose a method to overcome these limitations by adap-

ively estimating the appropriate local window size for each con-

our point. The local window size is re-estimated at each point by

n iterative process that considers the object scale, local and global

exture statistics, and minimization of the cost function, thus gen-

rating an adaptive local window. Further, this proposed method

stimates the size of the local window directly from the image, not

y testing a specific scale from a range of scales and thus requires

o pyramid of pre-defined scales as input, removing any potential

ensitivity to user input regarding scale sizes. To the best of our

nowledge, this kind of method has never been described before. 

We study the effect of the adaptive window size on seg-

entation results in-depth, and demonstrate the capabilities and

trength of our method through analysis of clinically-diagnosed le-

ions imaged by two different imaging modalities (CT and MRI).

e use three different local energy models for image analysis of

hese lesions to confirm the method works with a variety of mod-

ls, and compare our method to results from analyses using a

lobal segmentation and a pre-defined fixed-size square window

n local segmentation framework. 

In Section 2 , we present the global and the local energy mod-

ls that are the basis for our image analysis. Section 3 presents

ur method for estimating the adaptive local window. In

ections 4 and 5 , we discuss the key ideas regarding the imple-

entation and the experimental data. In Section 6 , we present

he results and compare the adaptive local window model with
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common-used methods. Section 7 discusses results and provides

some concluding remarks. 

2. Energy models 

We used three different energy models to extensively evalu-

ate our proposed adaptive local window. The piecewise constant

model provides both a global and local energy frameworks. We

also use the local mean separation and histogram separation en-

ergy models. 

2.1. Piecewise constant (PC) model 

Chan and Vese (2001) present a global framework of the PC

model, which assumes that an image I is formed by two distinct

areas (object and background areas), each of which have homoge-

neous intensities . Let M u and M v represent the mean intensity of

the object and its background, respectively. Set � as a bounded

subset in R 2 and I ( x, y ) as the coordinates of a point on image I .

Let φ( x, y ) be a signed distance map and ∇ be the first variation

of the energy with respect to the distance map φ( x, y ). Let F PC (M u ,

M v , φ) be a function that models the object and its background: 

F MS ( m u , m v , φ) = μ

∫ 
�n 

δφ(x, y ) | ∇φ(x, y ) | d xd y 

+ λ1 

∫ 
�n 

∣∣∣∣ I(x, y ) − m u 

A u 

∣∣∣∣
2 

Hφ(x, y ) d xd y 

+ λ2 

∫ 
�n 

∣∣∣∣ I(x, y ) − m v 

A v 

∣∣∣∣
2 

( 1 − Hφ(x, y ) ) d xd y. (1)

where μ affects the smoothness of the curve, and H φ( x, y ) is given

by the Heaviside function as is presented in ( Chan and Vese, 2001 ).

A local version of the PC model can be used by replacing M u and

M v with their local versions, m u and m v , to represent the local

means of a region surrounding each contour point ( Lankton and

Tannenbaum, 2008 ). 

2.2. Mean separation (MS) model 

The mean separation model was first proposed by

Yezzi et al. (2002) . It assumes that the object and its background

have maximal separation between mean intensities: 

F PC ( M u , M v , φ) = μ

∫ 
�

δφ(x, y ) | ∇φ(x, y ) | d xd y 

+ λ1 

∫ 
�

| I(x, y ) − M u | 2 Hφ(x, y ) d xd y 

+ λ2 

∫ 
�

| I(x, y ) − M v | 2 ( 1 − Hφ(x, y ) ) d xd y, (2)

Here, �n ∈ R 2 is the local version of � that represents the

narrow-band points only. A u and A v are the areas of the local in-

terior and exterior regions surrounding a contour point, respec-

tively: 

A u = 

∫ 
�n 

Hφ(x, y ) d xd y, A v = 

∫ 
�n 

(1 − Hφ(x, y )) d xd y . (3)

The MS energy is minimized when | m u – m v | is maximized.

In some cases, the MS model supplies better results than the PC

model due to its use of the maximal contrast between the inte-

rior and the exterior regions without any restrictions on intensity

homogeneity / uniformity within each region. 

s  
.3. Histogram separation (HS) model 

The HS model also allows for heterogeneous intensities. Let

 u (b) and p v (b) be two intensity histograms computed from local

nterior and exterior regions, respectively, that surround each ZLS

ontour point, where N is the number of histogram bins. The Bhat-

acharyya coefficient B is used to evaluate the similarity of the two

istograms ( Bhattacharyya, 1943 ): 

 = 

N ∫ 
b=1 

√ 

p u (b) p v (b) db. (4)

Using separate intensity histograms allows the interior and ex-

erior regions to be heterogeneous, as long as their intensity his-

ograms differ from each other. By using the Bhattacharyya met-

ic to quantify the separation of the intensity histograms, we can

egment objects that have local non-uniform intensities. Thus, no

reliminary assumption regarding the gray level distribution of the

bject is made; however, the intensity profile of the entire object

nd the entire background must be distinct. We can then model

he image using: 

 HS (x, y, φ) = 

∫ 
�n 

B ·
(

1 

A u 
− 1 

A v 

)
d xd y 

+ λ1 

∫ 
�n 

( 

1 

A u 
×

√ 

p u (x, y ) 

p v (x, y ) 
Hφ(x, y ) 

) 

d xd y 

+ λ2 

∫ 
�n 

( 

1 

A v 
×

√ 

p v (x, y ) 

p u (x, y ) 
( 1 − Hφ(x, y ) ) 

) 

d xd y, 

(5)

. The proposed method 

The PC, MS and HS local models require that a regional window

e defined in which the energy cost function can be calculated.

ere, we present a method to estimate adaptively the size of the

ocal window surrounding each contour point. The size of the local

indow depends on 1) lesion size, 2) spatial texture, and 3) con-

ergence of the energy functional over iterations ( Fig. 1 ). The pro-

ess is applied iteratively for each ZLS contour point, and for each

esion separately. We expect that using different window sizes for

ifferent lesions and contour points will lead segmentation to fit

etter with changes in the spatial statistics ( Fig. 2 ). To best ac-

ommodate varying spatial characteristics, the window size is es-

imated for the X and Y dimensions separately using the texture

omponent of the appropriate axis only. 

.1. Adaptive local window (ALW) 

The adaptive local window depends on the size of the lesion to

e segmented. It should be smaller for smaller lesions. The adap-

ive window also depends on the spatial texture of the lesion and

ts background. The window should ensure convergence of the Zero

evel Set (ZLS) contour towards the lesion boundaries, even in the

ase of low contrast lesions, while preventing convergence of the

ontour into local minima in cases of a noisy background. We thus

stimate the appropriate local window size using also texture anal-

sis, done by extracting Haralick texture features, i.e. contrast and

omogeneity, from a second order statistics model, the gray-level

o-occurrence matrices (GLCM) ( Haralick et al., 1973; Honeycutt

nd Plotnick, 2008; Wang and Georganas, 2009 ;). For each point

 x, y ) examined in image I , we compare pairs of pixels, where the

econd pixel in the pair is ( x + cos θ , y + sin θ ), where θ ∈ (0, 90,
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Fig 1. Main steps of the proposed method. The upper scheme presents the over- 

all segmentation procedure. The lower scheme focuses specifically on the proposed 

method - calculation of the local adaptive window. 

Fig 2. Adaptive local window sizes estimated for different lesions and different 

contour points. For each image, the adaptive local window size chosen is shown 

for two different contour points (a) Low contrast MRI liver lesion. Yellow window 

– 2.4 mm × 4 mm, green window – 4 mm × 4 mm. (b) Noisy CT liver lesion. Yellow 

window – 8 mm × 8 mm, green window – 7 mm × 9 mm. Red contour – radiologist 

manual marking. White contour – initial zero level set (ZLS) contour.(For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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80, 270) degrees. Thus, each pixels’ pair represents a comparison

etween the selected pixel and one pixel away in each of the four

ngular directions. Let W be a general local window of X W 

×Y W 

ixels, surrounding an examined contour point within an image I .

he co-occurrence matrix P ( m, n, θ ) of W is defined as the number

f pixel pairs (x, y) and ( x + cos θ , y + sin θ ) in W with grey values

f (m,n): 

 (m, n, θ ) = 

X W ∑ 

x =1 

Y W ∑ 

y =1 

{
1 , I(x, y ) = m and I(x + cosθ, y + sinθ ) = n 

0 , otherwise 
. 

(6) 

Then, homogeneity and contrast criteria are evaluated for each

as : 

omogeneity (θ ) = 

N G −1 ∑ 

m,n =0 

P (m, n, θ )(1 + | m − n | −1 ) 

contrast (θ ) = 

N G −1 ∑ 

m,n =0 

| m − n | 2 P (m, n, θ ) , 

(7) 

here N G is the total number of grey levels considered. These

patial criteria are averaged over all θ ’s separately for each axis,

 and Y . For local analysis, criteria are evaluated for each ZLS
oint separately. For global analysis, those criteria are calculated

nd averaged over all points within the lesion bounding box (see

ection 4.2 ). 

Along with the analysis of lesion size and the spatial texture,

e consider the progression of energy minimization over itera-

ions. Thus, we use lesion size, spatial texture and energy mini-

ization to estimate the adaptive window surrounding each ZLS

ontour point: 

ˆ 
 x i j 

= 

L x 

log( L x ) 

(
GH + 

1 

GC 
+ 

1 

L C x i j 

+ 

1 

F̄ j−1 

)−1 

, 

ˆ 
 y i j 

= 

L y 

log( L y ) 

(
GH + 

1 

GC 
+ 

1 

L C y i j 

+ 

1 

F̄ j−1 

)−1 

(8) 

The local window is estimated for the i th contour point over

he j th iteration. L x and L y are the X and Y lesion dimensions. To

epresent the effect of the lesion size appropriately, and to provide

ccurate segmentation for a wide range of lesion sizes, we apply a

on-linear log operator, dividing L x and L y by log( L x ) and log( L y ),

espectively. GH is the global homogeneity and GC is the global

ontrast; each of which are calculated once for each lesion. LC is

he local contrast, calculated in the X and Y directions separately.

oth global and local information play an important role in deter-

ining the appropriate window size and thus both are included.

 ̄j−1 represents the average of the energy functional over all ZLS

ontour points during the previous iteration. As long as curve evo-

ution continues, the average value of F̄ j−1 will decrease as the size

f the local window decreases. Therefore, F̄ j−1 demonstrates the

rogression of energy minimization over iterations. 

.2. Model design and testing 

We designed four different models and selected the best model

epending on test that has been performed on our dataset. For

ach modality, e.g. CT and MRI, we randomly partitioned the

ataset where 25% of the lesions were used for testing and the

emaining 75% were used to design the models. Finally, we chose

he model that provided the average best results for both CT and

RI datasets. 

.3. Method optimization 

To optimize local energies, each point is considered separately,

nd moves to minimize the energy computed in its own local re-

ion. Local neighborhoods are split into local interior and local ex-

erior by the evolving ZLS curve. Energy optimization is done by

sing the energy model in an adapted surrounding region. Let E( φ)

e an energy functional that is derived by a localization of the

orce F ( I, φ), in our case F PC , F MS or F HS : 

(φ) = 

∫ 
�n 

δφ(x, y ) F (I(x, y ) , φ(x, y )) d xd y . (9) 

The first variation of (9) is defined as: 

(φ + ξ ) = 

∫ 
�n 

δ(φ(x, y ) + ξ ) × F (I(x, y ) , φ(x, y ) + ξ ) d xd y , (10) 

here ξ represents a small change along the normal direction of

(x,y) . Taking the partial derivative of (10) and considering the mi-

or differential of the perturbation ( ξ → 0): 

 ξ | ξ=0 E(φ + ξ ) = 

∫ 
�n 

δφ(x, y ) d xd y ×
∫ 
�n 

| ∇φ(x, y ) | , φ(x, y )) d xd y 

+ 

∫ 
�n 

ηφ(x, y ) d xd y (11) 
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Fig. 3. Reconstruction of the initial contour. The radiologist marks two points to in- 

dicate a lesion’s long axis (white plus signs), from which a ROI (white rectangle) is 

constructed. An initial circular ZLS contour is created (white circle). (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Zero level set contour (white) with a chosen narrow band (white dots). (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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where ηφ(x, y) represents the derivative of δφ(x, y), which is equal

to zero for every ZLS point and thus does not affect curve evo-

lution. The Cauchy-Schwartz inequality can be used to show that

the optimal direction for curve evolution is ( Lankton and Tannen-

baum, 2008 ): 

∂φ(x, y ) 

∂t 
= 

∫ 
�n 

δφ(x, y ) ∇φ(x, y ) , φ(x, y )) d xd y (12)

We apply Eq. (12) to evolve the ZLS curve between sequential

iterations of the segmentation process. 

4. Implementation details 

4.1. Image preprocessing 

Normalization of gray values is done for each image separately.

We apply contrast-limited adaptive histogram equalization (CLAHE)

with a uniform distribution ( Zuiderveld, 1994 ) to enhance low con-

trast lesions, while preventing enhancement of noise. Due to the

high diversity of our dataset, both low contrast and noisy regions

exist. Thus, we apply bilinear interpolation between neighboring

patches to eliminate artificially induced boundaries. 

4.2. Lesion detection and distance map reconstruction 

Two board-certified abdominal imaging radiologists manually

annotated all lesion boundaries by marking two points that ap-

proximate the lesion’s long axis (white plus signs, Fig. 3 ). These

points are used to create a region of interest (ROI) by taking 8 mm

interval from those edge points. An initial zero level set (ZLS) is

obtained by using those 2 points as the diameter of the circular

contour ( Fig. 3 ). 

4.3. Narrow-band 

To save computation time, the proposed method calculates

the energy functional only for grid points located within a

narrow-band of the distance map φ( x, y ) around C ( Fig. 4 ).

Chopp (1993) was the first to introduce the narrow-band idea that

is now commonly used in implementations of local segmentation

frameworks ( Lankton and Tannenbaum, 2008 ; Peng et al., 1999 ).

The segmentation process begins with initialization of every pixel

within a narrow band surrounding the current contour, so that val-

ues of exterior and interior statistics are estimated ( Lankton and
annenbaum, 2008 ). An update of the distance map φ( x, y ) then

ccurs within the narrow band. Thus, using the local framework,

he initialization computations can be significantly reduced de-

ending on the size of the local window and on the initial location

f the contour relative to its final position ( Lankton and Tannen-

aum, 2008 ). 

. Experimental details 

Our institutional review board approved this study. We ana-

yzed 233 liver lesions divided into two subsets. The first subset

ontains 69 lesions, obtained from 69 contrast-enhanced CT im-

ges of distinct patients (Siemens Medical Solutions, Erlangen, Ger-

any). This subset, which was obtained at Stanford Medical Cen-

er, includes 20 hemangiomas, 25 cysts and 24 metastases liver

esions. The following image acquisition parameters were used:

20 kVp, 140–400 mAs, 2.5–5 mm section thickness and pixel spac-

ng of 0.729 ± 0.072 mm (min - 0.684 mm, median - 0.784 mm, and

ax – 0.938 mm). All CT images have isotropic pixels. The second

ubset includes 164 liver lesions, obtained from 164 MRI images

f 52 different patients scanned at a different academic institution

UC San Diego Medical Center). All patients underwent 3T gadox-

tic acid enhanced MRI (Signa Excite HDxt; GE Healthcare, Milwau-

ee, WI) at a tertiary liver center for evaluation of suspected hep-

tocellular carcinoma (HCC) and were found to have one or more

I-RADS (LR) legions classified as LR-3 or LR-4. Slice thickness is

 mm and pixel spacing is 0.804 ± 0.077 mm (min - 0.584 mm, me-

ian - 0.815 mm, and max – 0.945 mm). Similar to CT images, all

RI images have isotropic pixels. Pulse sequences of single-shot

ast spin-echo T2-weighted, and pre- and post-contrast axial 3D

1-weighted fat-suppressed gradient-echo were used. 

The different imaging modalities and clinical diagnoses re-

ult in high diversity of lesion characteristics present. A wide

ange of lesion sizes was found in the full set of 233 le-

ions. The size of CT liver lesions ranged from 18.58 × 20.20 mm

o 125.24 × 132.15 mm. The MRI liver lesions ranged from

6.87 × 14.06 mm to 32.81 × 36.56 mm. Therefore, using a single

xed-size local window for all lesions may be inaccurate and will

reate an inconsistent segmentation performance, means that a

pecific window size will be good for some lesions, but for other it

ill not. A wide range of other spatial characteristics such as con-

rast and homogeneity illustrates the importance of, and need for,

n adaptive local window size that is able to handle a wide range

f spatial characteristics. These spatial criteria serve as key ideas

or our method as given in equation ( Fig. 5 ). 
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Fig. 5. Spatial characteristics of the lesions (L) and the whole ROI (G). (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

Table 1 

Average dice coefficient and 95% confidence interval (CI) 

for the lesion analysis using the proposed adaptive local 

window compared to manual marking. 

ALW versus. Manual marking [95% CI] 

PC energy 0.89 [0.88, 0.90] 

MS energy 0.87 [0.86, 0.88] 

HS energy 0.88 [0.87, 0.89] 
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Fig. 6. Automatic segmentations (yellow) of liver lesions in CT (a-d, f) and MRI (e, 

g-i) images obtained using the ALW method with the piecewise constant model 

(PC). (a-b) different lesion sizes (Dice of 0.88, 0.91 respectively), (b-d) heteroge- 

neous lesions (Dice of 0.91,0.92, and 0.89, respectively), (e) homogeneous lesion 

(Dice of 0.97), (f -g) low contrast lesions (Dice of 0.92, and 0.96 respectively), (h- 

i) noisy background (Dice of 0.93, 0.86 respectively). Green contours represent the 

manual annotations. (For interpretation of the references to color in this figure leg- 

end, the reader is referred to the web version of this article.) 
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Radiologists supplied two different types of manual annota-

ions. 

The first type manual annotation was a linear markup - two in-

ut points that represent the approximate long axis of the liver le-

ion. These two points were used as a diameter of a circle that we

enerated to provide an initial contour for the automated segmen-

ation. Inter- reader variability of 2.87 mm ± 2.28mm was found

etween the two input points supplied by the two radiologists.

herefore, to investigate the sensitivity of the segmentation to

aried initializations that may be supplied by different radiolo-

ists, we changed the angle and length of the user-supplied lin-

ar markup. Five linear markups were generated for each lesion by

andomly adjusting the position of the two input points within a

-pixel diameter ( ∼ 4 mm ). A 5-pixel diameter was considered rea-

onable, based on intra-variability of radiologist annotations. 

The second type of manual annotation provided was a complete

anual segmentation of the entire lesion. It was used only for val-

dating the final result of our automated segmentation. The au-

omated segmentation contours were extracted and quantitatively

ompared with the average of the two radiologists’ marking. 

. Results 

.1. Segmentation performance 

Cost function parameters of μ1 = 0.15, λ1 = 2, λ2 = 2 were

sed, as they supplied the best average results for all 233 lesions.

ig. 6 shows some examples of segmentation for different lesions.

egmentation performance was assessed using the Dice similarity

oefficient ( Table 1 ). The Dice coefficient was calculated relative to
ach radiologist’s manual marking, and then an average Dice score

stimated. Our proposed segmentation method has high agree-

ent with the manual markings for different local energies. Those

esults are better than the overlap that was measured between

he complete manual annotations of both radiologists (average of

.872, 95% CI of [0.863 0.88]), thus demonstrating the strength

f our automated method. Non-significant differences were found

etween the average manual annotations and the automated seg-

entations (Wilcoxon, p > 0.05), thus the manual marking can be

eplaced by the automated one. 

.2. Process convergence 

Fig. 7 demonstrates the convergence of both the Dice coefficient

nd the energy functional over multiple iterations. For both CT and

RI images, the Dice coefficient increased rapidly over a few iter-

tions as the automated segmentation converged on a result that

atched the manual segmentations. As expected, energy decreased

ith increasing iterations, converging on a single value; this im-

lies minimization of the energy functional. For both metrics, sub-

tantial convergence was obtained after fewer than 20 iterations

nd there were only minor fluctuations around their final values

ver later iterations. 

.3. Comparison with global energy 

We compared our method with the PC global energy model of

han and Vese (2001) , using the same μ, λ1 , and λ2 parameter

alues as we used for our ALW method. The global energy model
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Fig. 7. Convergence of the (a) Dice coefficient and the (b) energy functional over 

iterations for both MRI and CT datasets. 

Fig. 8. Examples for contours that were obtained by the manual marking (green 

contour), the proposed ALW (yellow contour) and the global PC energy (magenta 

contour). Parts of the magenta contour, which are seen as a straight line, repre- 

sent excessive curve evolution that was stopped by the borders of the selected ROI 

bounding box. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Examples for contours that were obtained by the manual marking (green 

contour), the proposed ALW (yellow contour) and the FLW method (magenta con- 

tour). (a) PC model – CT liver lesion, (b) PC model – MRI liver lesion, (c) Mean 

separation (MS) model – MRI liver lesion, (d) Mean separation (MS) model – CT 

liver lesion (e) Histogram separation (HS) model – CT liver lesions, (f) Histogram 

separation (HS) model – MRI liver lesions. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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and manual marking had a mean overlap (Dice similarity coeffi-

cient) of 0.784, with a 95% Confidence Interval of [0.759–0.805].

This is significantly less than the 0.89 Dice coefficient obtained

using ALW for the local PC energy model (Wilcoxon, p < 0.001).

Fig. 8 reveals that the global energy model shows poor agreement

with manual marking when analyzing images with low contrast

( Fig. 8 a–c) or heterogeneous lesions ( Fig. 8 d–f), especially if the le-

sions are located near the boundaries of the liver itself ( Fig. 8 e). 

6.4. Comparison with fixed square local window 

We also compared our ALW with a common-used method that

uses a fixed square local window (FLW) surrounding each contour

point. The comparison was done for each of the three local en-

ergy models – PC, MS and HS. As with the ALW and global en-

ergy models, the same parameter values ( μ1 = 0.15, λ1 = 2, λ2 

= 2) were used because they supplied the best results on aver-

age for all 233 lesions. Thus, the only difference between the FLW

and the ALW methods was the size of the local window in which
he statistics were calculated. Hence, any difference in performance

as directly related to the local window size. For FLW, we began

y testing a range of window sizes from 4 mm to 20 mm. For CT le-

ions, 11 mm square windows gave the best average performance,

nd for MRI liver lesions, 9 mm square windows were best. There-

ore, these two fixed sizes were used for the FLW method. For all

33 lesions, the 9 mm square window gave an average Dice coef-

cient of 0.851(95% CI: 0.84–0.86) for all three local energy mod-

ls. Using a 11 mm square window, the mean Dice coefficient was

.83 (95% CI: 0.81–0.85). For each applied energy model, the per-

ormance of ALW was significantly better than FLW with each of

hose fixed radii (Wilcoxon, p < 0.01). Fig. 9 shows six different

esions that demonstrate segmentation challenges and reveal that

ur ALW can handle these diverse types of images better than lo-

al FLW segmentation. The superiority of the adaptive method can

e seen for each of the three energy models tested (PC, MS and

S). 

Subset of lesions for which one or more automated methods

ALW or FLW) had less than 70% agreement with the manual mark-

ng were also examined separately ( Fig. 10 ). Significant Dice im-

rovement of 0.19 ± 0.09 was obtained for this subset by using our

LW (Wilcoxon, p < 0.05 for PC model, p < 0.001 for MS and HS

odels), compared with the classic FLW. 

A second subset of lesions that had performance differences be-

ween ALW and FLW of greater than 10% was also considered. The

0% difference was chosen according to clinical decision, wherein

LW could be better or worse than FLW. Table 2 shows that

ur ALW outperforms FLW for each of the local energy models,

ith a significant mean performance improvement of 0.25 ± 0.13

Wilcoxon, p < 0.001 for all three energy models). Moreover, ALW

hows lower sensitivity and smaller dependence on a specific local

nergy than FLW. 

.5. Comparison with region-scalable fitting (RSF) model 

We compared our method to an additional local level set ap-

roach ( Li et al., 2008 ). The authors propose a region-scalable

tting (RSF) model. In their work, the authors present weighted

verages of the image intensities in a Gaussian window inside

nd outside the contour. Therefore, the authors claimed that their

ethod is better than FLW for cases with high spatial inhomogene-

ty, which is a challenge that appears in our dataset. However, as

ith the FLW method presented above, RSF method still requires
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Fig. 10. Subset of lesions, for which one or more automated methods obtained less 

than 70% agreement with the manual marking. For FLW, 9 mm and 11 mm window 

sizes were used. Comparison was performed for all. 

Table 2 

Subset of lesions for which absolute performance 

differences higher than 10% between ALW and 

FLW was obtained. Dice coefficient is presented. 

Wilcoxon paired test was performed between the 

ALW and each FLW (p < 0.001). 

Number of lesions Number of lesions 

ALW [95% CI], ALW [95% CI], 

FLW9 [95% CI] FLW11 [95% CI] 

PC 11 18 

0 .84 [0.77, 0.89] 0 .83 [0.79, 0.87] 

0 .70 [0.63, 0.8] 0 .72 [0.64, 0.8] 

MS 42 60 

0 .84 [0.79, 0.85] 0 .85 [0.81, 0.86] 

0 .54 [0.47, 0.59] 0 .47 [0.41, 0.52] 

HS 25 32 

0 .82 [0.80, 0.85] 0 .83 [0.78, 0.86] 

0 .60 [0.55, 0.64] 0 .59 [0.54, 0.64] 
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Fig. 11. Inaccurate initialization and final segmentation. Both long-axis input points 

(white stars) and the initial contour (red circle) that was reconstructed due to those 

points are presented. The yellow contour in each image illustrates the final accurate 

segmentation of the lesion. (For interpretation of the references to color in this fig- 

ure legend, the reader is referred to the web version of this article.) 
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ser input - pre-definition of the values of local scales that can be

pplied. In their method, three different scales were tested and a

pecific one was manually fitted for each type of lesions accord-

ng to a visual qualitative analysis of the lesions’ spatial character-

stics. The chosen scale was fixed for all contour points and over

terations. The inefficiency and the inaccuracy of the manual tun-

ng enhance the added value of our adaptive ALW method that

tted different window sizes for different lesions, contour points

nd over iterations, without any required input of those scales. We

ested Li’s RSF method on both the MRI and CT datasets across all

nitializations. In order to conduct an optimal evaluation of the RSF

ethod, we analyzed our lesions using a range of Gaussian scales

0.5:0.5:4). Li et al. used only 3 tested scales; therefore our RSF val-

dation should be even more accurate. Values to the left and right

f this range resulted in worse segmentation performance and con-

ergence of the contour into local minima and increased sensitiv-

ty to noise. The best Gaussian scale was then chosen for each

esion. In addition, several values of λ1 and λ2 were tested, and

1 = λ2 = 2 was found to yield the best average results. Li’s method

upplied an average Dice of 0.88 ± 0.06 for the entire dataset of

33 lesions. Thus, the segmentation results obtained by the RSF

ethod are comparable to the traditional FLW results (p > 0.05,

ilcoxon) but still worse than our ALW results. 
.6. Sensitivity to parameters 

Only one parameter is required for the decision of the local

indow size - the distance between each pair of pixels used for

alculating the GLCM matrices. We tested distances of 1, 2, 3, 4

nd 5 pixels before choosing the 1-pixel distance as best. All 233

esions and all tested distances combined had an average Dice co-

fficient of 0.887 ± 0.004. The negligible standard deviation indi-

ates that the segmentation performance is affected very little by

he value of this parameter. Thus, the performance of our method

s stable, and the parameter does not need to be re-tuned manu-

lly for different populations of lesions. 

.7. Sensitivity to initialization 

We assessed the ability of our model to deal with deviations

n the positioning of the initial contour by applying five randomly

ifferent contour initializations. Results demonstrate that the ALW

ethod supplied the highest Dice similarity values, compared with

oth FLW fixed window sizes and with the RSF model. Table 3

hows the average performance of ALW, and FLW when using five

ifferent contour initializations. The ALW showed better agreement

ith the manual marking and smaller changes in the segmenta-

ion performance when it was applied using different local energy

odels, significantly better than FLW windows (Wilcoxon, p < 0.05

or PC model, p < 0.001 for MS and HS models). When the RSF

odel was applied, an average Dice coefficient of 0.84 with 95% CI

f [0.83, 0.85] was obtained, for all contour initializations. The RSF

howed comparable results to the FLW method, but with smaller

I, suggesting that the RSF model is more robust than the FLW.

owever, those values are still significantly lower than our ALW

erformance (Wilcoxon, p < 0.05). Fig. 11 presents two represen-

ative images to show this result visually. Each image contains two

naccurate long-axis points that lead to reconstruction of an inac-

urate initial contour. The results reveal that despite with noise

 Fig. 11 a) and low contrast lesions ( Fig. 11 b), our model can deal

ith substantial deviations of the location of the initial contour. 

.8. Computational time 

We examined the computational time required by the proposed

ethod to analyze each lesion. All data were processed using MAT-

AB R2013b 64–bit (MathWorks Inc., 2013). Compared to the time

equired by the FLW method, or proposed ALW model took 2–5

imes ( ∼20–60 s) longer to run on the same hardware. 
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Table 3 

Segmentation performance (mean Dice coefficient for comparison with manual mark- 

ing) for the proposed ALW and the classic FLW at two different fixed sizes: 9 mm 

square (FLW9) and 11 mm square (FLW11). Results from five different contour initial- 

izations were averaged. Three different energy models were used. 

PC (N = 233) [95% CI] MS (N = 233) [95% CI] HS (N = 233) [95% CI] 

ALW 0.885 0.86 0.87 

[0.88, 0.89] [0.85, 0.86] [0.87, 0.88] 

FLR9 0.878 0.82 0.85 

[0.87, 0.88] [0.81, 0.83] [0.84, 0.87] 

FLR11 0.88 0.78 0.83 

[0.87, 0.88] [0.77, 0.80] [0.80, 0.86] 
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7. Discussion and conclusions 

We present a novel method for adaptive re-estimation of the

local window (ALW) for level set segmentations. The window is

re-estimated 1) for each contour point, 2) separately for X and Y

window dimensions, 3) over level set segmentation iterations, and

4) separately for each lesion in the dataset. The size of the local

window is re-estimated based on 1) the size of the lesion, 2) the

spatial texture, and 3) the minimization of the energy functional

over iterations. The rationale for choosing those criteria is the sub-

stantial diversity of these lesion characteristics ( Fig. 5 ). 

Our method contains a local contrast term in addition to global

criteria for contrast and homogeneity. The inclusion of both local

and global criteria has an important benefit. We demonstrate that

incorporating both global and local criteria correctly identifies the

best local window size. 

Our proposed method shows high agreement with expert man-

ual marking for a diverse dataset of CT and MRI images ( Fig. 6 ).

The variety of spatial texture characteristics in our datasets em-

phasizes the strength of our adaptive method. Our ALW method

performed well with low contrast images, heterogeneous lesions,

and with noisy lesions or noisy backgrounds. 

We compared our results to a global PC energy model ( Fig. 8 ),

to models using a pre-defined fixed local window size ( Fig. 9 ),

and to RSF model with scalable regions. Lankton and colleagues

( Lankton et al., 2007; Lankton and Tannenbaum, 2008 ) note that

their FLW model has high chances of breaking down in a set of

widely varying lesions. Our results confirm that it is almost im-

possible to choose single fixed-size local window that will best

fit every case ( Section 6.4 ). Among all fixed window sizes tested,

a 9 mm square window was better for MRI lesions and a 11 mm

square window was better for CT lesions. Estimating an adaptive

local window using our method, results in a better agreement with

traditional manual marking. 

We analyzed two subsets of lesions based on results.

Table 2 shows that for lesions with Dice differences higher than

10% between ALW and FLW, our ALW was significantly better. Dice

similarity to manual marking was greater by 0.25 ± 0.13 (Wilcoxon,

p < 0.001 for all 3 energy models). The second subset of lesions

were those in which one or more automated methods obtained

less than 70% agreement with the manual marking ( Fig. 10 ). For

this subset, the Dice coefficient with manual marking was im-

proved by 0.19 ± 0.09 using ALW versus FLW (Wilcoxon, p < 0.05

for PC model, p < 0.001 for MS and HS models). 

The method was also evaluated using five different contour ini-

tializations. Our ALW method performs better under these condi-

tions than the FLW methods as it was affected less by different

initial contour values ( Table 3 ). The use of both local and global

statistics in the model increases the segmentation agreement with

the manual marking and by lowers dependence of the model on

changes in the location of the initial contour. 

We compared our method also to the RSF method. The RSF

showed comparable results to the FLW method, after manually
ptimizing the local window sizes for each lesion separately. RSF

howed performance that is more robust than the FLW across

ifferent contour initializations. Still, our ALW method produced

igher agreement with the manual marking, as well as higher ro-

ustness across initializations, compared with the RSF model. 

We also examined model sensitivity to parameters. Sensitivity

o the single pre-defined parameter in the method - the distance

etween each pair of pixels used for calculating the GLCM matrices

 was very low. Therefore, parameter tuning is not needed for the

valuation of the adaptive local window. 

The presented work has some limitations. First, although our

atabase of images of 233 lesions (69 CT, 164 MR) comes from

wo academic institutions, a larger sample size is desirable. Sec-

nd, additional manual markings for each lesion may result in a

ore accurate evaluation of the automated segmentation. 

Future work may include an automated evaluation of the level

et parameters μ, λ1 , and λ2 . Extension of the method to 3D is also

 future direction, as well as incorporation of automatic detection

f the lesions prior to segmentation, so that the entire segmenta-

ion process is fully automated, with no dependence on user input.

In summary, the method presented shows significantly more

ccurate lesion segmentation than current state of the art level set

ethods. It performed better than prior methods in all tested con-

gurations, including different local energy models, different con-

our initializations, and for different levels of lesion complexity. 

cknowledgments 

This project was supported by the National Cancer Insti-

ute, National Institutes of Health, under Grants U01CA142555 ,

U01CA190214 , and R01CA160251 . 

eferences 

bdel-massieh, N.H. , Hadhoud, M.M. , Amin, K.M. , 2010. A novel fully automatic
technique for liver tumor segmentation from CT scans with knowledge-based

constraints. In: Proceedings of 10th International Conference on Intelligent Sys-

tems Design and Applications, pp. 1253–1258 . 
n, J. , Rousson, M. , Xu, C. , 2007. Convergence approximation to piecewise smooth

medical image segmentation. Proc. Med. Imag. Comput. Comp. Assist. Interven.
4792, 495–502 . 

rdon, R. , Cohen, L.D. , 2006. Fast constrained surface extraction by minimal paths.
Int. J. Comput. Vis. 69, 127–136 . 

hattacharyya, A. , 1943. On a measure of divergence between two statistical pop-

ulations defined by their probability distributions. Bull. Calcutta Math. Soc. 35,
99–110 . 

ao, L. , Udupa, J.K. , Odhnera, D. , Huanga, L. , Tonga, Y. , Torigiana, D.A. , 2016. A Gen-
eral Approach to Liver Lesion Segmentation in CT Images. SPIE . 

asciaro, S. , Franchini, R. , Massoptier, L. , Casciaro, E. , Conversano, F. , Malvasi, A. ,
Lay-Ekuakille, A. , 2012. Fully automatic segmentations of liver and hepatic tu-

mors from 3-d computed tomography abdominal images: comparative evalua-
tion of two automatic methods. IEEE. Sens. J. 12 (3), 464–473 . 

Caselles, V. , Kimmel, R. , Sapiro, G. , 1997. Geodesic active contours. Int. J. Comput.

Vision 22 (1), 61–79 . 
han, T.F. , Vese, L.A. , 2001. Active contour without edges. IEEE Trans. Image Process.

10 (2), 266–277 . 
han, T.F. , Vese, L.A. , 2002. A multiphase level set framework for image segmenta-

tion using the Mumford–Shah model. Int. J. Comput. Vision. 50, 271–293 . 

http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0001
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0001
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0001
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0001
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0002
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0002
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0002
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0002
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0003
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0003
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0003
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0004
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0004
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0006
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0006
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0006
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0006
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0006
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0006
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0006
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0006
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0007
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0007
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0007
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0007
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0008
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0008
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0008
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0009
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0009
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0009


A. Hoogi et al. / Medical Image Analysis 37 (2017) 46–55 55 

C  

C  

C  

 

D  

D  

 

 

F  

F  

F  

 

G  

H  

 

H  

H  

H  

 

J
K  

K  

L  

L  

L  

 

L  

L  

L  

L  

 

L  

L  

 

L  

 

 

M  

M  

 

M  

 

M  

 

 

 

M  

N  

O  

P  

P  

 

P  

R  

S  

 

S  

 

 

S  

 

 

S  

 

 

T  

 

T  

 

T  

 

T  

 

W  

W  

 

W  

 

Y  

Y  

 

Y  

 

Y  

 

Z  

Z  

 

Z  
hopp, D. , 1993. Computing minimal surfaces via level set curvature flow. J. Comput.
Phys. 106 (1), 77–91 . 

ohen, L.D. , Kimmel, R. , 1997. Global minimum for active contour models: A mini-
mal path approach. Int. J. Comput. Vis. 24, 57–78 . 

ootes, T. , Beeston, C. , Edwards, G. , Taylor, C. , 1999. A unified framework for atlas
matching using active appearance models. in Proc. of the Int. Conf. on Info. Proc.

in Medical Imaging 322–333 . 
as, P. , Veksler, O. , Zavadsky, V. , Boykov, Y. , 2006. Semiautomatic segmentation with

compact shape prior. Canadian Conf. on Computer and Robot Vision, 28–36 . 

eng, X., Du, G., 2008. 3D Segmentation in the Clinic: A Grand Challenge II
– Liver Tumor Segmentation. Proc. MICCAI Workshop on 3-D Segmenta-

tion in the Clinic . http://grand-challenge2008.bigr.nl/proceedings/pdfs/lts08/00 _
Editorial.pdf 

oruzan, A.H. , Chen, Y.W. , 2015. Improved segmentation of low-contrast lesions us-
ing sigmoid edge model. Int. J. Comput. Assist. Radiol. Surg. 1–17 . 

reedman, D. , Zhang, T. , 2005. Interactive Graph Cut Based Segmentation with

Shape Priors. In: Proc. IEEE Conf. CVPR, 1, pp. 755–762 . 
reiman, M. , Cooper, O. , Lischinski, D. , Joskowicz, L. , 2011. Liver tumors segmenta-

tion from cta images using voxels classification and affinity constraint propaga-
tion. Int. J. Comput. Assist. Radiol. Surg. 6 (2), 247–255 . 

e, X. , Tian, J. , 2002. An automatic active contour model for multiple objects. Int.
Conf. Pattern Recognition unpublished . 

äme, Y. , Pollari, M. , 2012. Semi-automatic liver tumor segmentation with hidden

Markov measure field model and non-parametric distribution estimation. Med.
Image Anal. 16 (1), 140–149 . 

e, Y. , Luo, Y. , Hu, D. , 2006. Semi-automatic initialization of gradient vector flow
snakes. J. Electron. Imag. 15, 043006 . 

aralick, R.M. , Shanmugam, K. , Dinstein, I. , 1973. Textural features for image classi-
fication. IEEE Trans. Syst., Man Cybernetics, SMC 3 (6), 610–620 . 

oneycutt, C.E. , Plotnick, R. , 2008. Image analysis techniques and gray-level co-oc-

currence matrices GLCM for calculating bioturbation indices and characterizing
biogenic sedimentary structures. Comput. Geosci. 34, 1461–1472 . 

olly, M. , Grady, L. , 2008. 3D general lesion segmentation in CT. IEEE ISBI 796–799 . 
adoury, S. , Vorontsov, E. , Tang, A. , 2015. Metastatic liver tumour segmentation from

discriminant grassmannian manifolds. Phys. Med. Biol. 60 (16), 6459 . 
rishnamurthy, C., Rodriguez, J. J., and Gillies, R. J., Snake-based liver lesion segmen-

tation, 2004. 187–191. 

ankton, S. , Nain, D. , Yezzi, A. , Tannenbaum, A. , 2007. Hybrid geodesic region-based
curve evolutions for image segmentation. Proc. SPIE: Med. Imag. 6510, 65104U . 

ankton, S. , Tannenbaum, A. , 2008. Localizing region-based active contours. IEEE
Trans. Image Process. 17 (11), 2029–2039 . 

i, C. , Huang, R. , Ding, Z. , Gatenby, J.C. , Metaxas, D.N. , Gore, J.C. , 2011. A level set
method for image segmentation in the presence of intensity inhomogeneities

with application to MRI. IEEE Trans. Image Process. 20 (7), 2007–2016 . 

i, C.M. , Kao, C. , Gore, J. , Ding, Z. , 2007. Implicit active contours driven by local bi-
nary fitting energy. IEEE CVPR . 

i, C.M. , Kao, C. , Gore, J. , Ding, Z. , 2008. Minimization of region-scalable fitting en-
ergy for image segmentation. IEEE Trans. Image Process 17, 1940–1949 . 

i, C.M. , Liu, J. , Fox, M.D. , 2005a. Segmentation of external force field for automatic
initialization and splitting of snakes. Pattern Recognit. 38, 1947–1960 . 

i, C. , Wang, X. , Eberl, S. , Fulham, M. , Yin, Y. , Chen, J. , Feng, D.D. , 2013. A likelihood
and local constraint level set model for liver tumor segmentation from ct vol-

umes. IEEE Trans. Biomed. Eng. 60 (10), 2967–2977 . 

i, C.M. , Xu, C.Y. , Gui, C.F. , Fox, M.D. , 2005b. Level set evolution without re-initial-
ization: a new variational formulation. In: Proc IEEE CVPR, pp. 430–436 . 

i, G. , Chen, X. , Shi, F. , Zhu, W. , Tian, J. , Xiang, D. , 2015. Automatic liver segmentation
based on shape constraints and deformable graph cut in ct images. IEEE Trans.

Image Process. 24 (12), 5315–5329 . 
inguraru, M.G. , Richbourg, W.J. , Liu, J. , Watt, J.M. , Pamulapati, V. , Wang, S. , Sum-

mers, R.M. , 2012. Tumor burden analysis on computed tomography by au-

tomated liver and tumor segmentation. IEEE Trans Med Imaging 31 (10),
1965–1976 . 

alladi, R. , Sethian, J.A. , Vemuri, B.C. , 1995. Shape modeling with front propagation:
a level set approach. IEEE Trans. Pattern Anal. 17, 158–175 . 

asuda, Y. , Foruzan, A.H. , Tateyama, T. , Chen, Y.W. , 2010. Automatic liver tumor de-
tection using EM/MPM algorithm and shape information. Softw. Eng. Data Min.

692–695 . 

ilitzer, A. , Hager, T. , Jäger, F. , Tietjen, C. , Hornegger, J. , 2010. Automatic detection
and segmentation of focal liver lesions in contrast enhanced CT images. In: 20th

International Conference on, Pattern Recognition, pp. 2524–2527 . 
oltz, J.H. , Bornemann, L. , Kuhnigk, J.M. , Dicken, V. , Peitgen, E. , Meier, S. , Bolte, H. ,
Fabel, M. , Bauknecht, H.C. , Hittinger, M. , Kiessling, A. , Pusken, M. , Peitgen, H.O. ,

2009. Advanced segmentation techniques for lung nodules, liver metastases,
and enlarged lymph nodes in CT scans. IEEE J. Sel. Topics Signal Process 3 (1),

122–134 . 
umford, D. , Shah, J. , 1989. Optimal approximation by piecewise smooth function

and associated variational problems. Commun. Pur. Appl. Math. 42, 577–685 . 
euenschwander, W. , Szekely, P.F.G. , Kubler, O. , 1994. Initializing snakes. IEEE CVPR

unpublished . 

sher, S. , Sethian, J.A. , 1988. Fronts propagating with curvature dependent speed:
algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 . 

eng, D. , Merriman, B. , Osher, S. , Zhao, H. , Kang, M. , 1999. A PDE-based fast local
level set model. J. Comp. Phys. 155, 410–438 . 

escia, D. , Paragios, N. , Chemouny, S. , 2008. Automatic detection of liver tumors. In:
Proceedings of the 2008 IEEE International Symposium on Biomedical Imaging,

pp. 672–675 . 

iovano, J. , Papadopoulo, T. , 2008. Local statistics based region segmentation with
automatic scale selection. In: ECCV, pp. 4 86–4 99 . 

onfard, R. , 2002. Region-based strategies for active contour models. Int. J. Comput.
Vision 46, 223–247 . 

chwier, M. , Moltz, J.H. , Peitgen, H.O. , 2011. Object-based analysis of CT images for
automatic detection and segmentation of hypodense liver lesions. Int. J. Comput.

Assist Radiol.Surg. 6 (6), 737–747 . 

himizu, A. , Narihira, T. , Furukawa, D. , Kobatake, H. , Nawano, S. , Shinozaki, K. , 2008.
Ensemble segmentation using AdaBoost with application to liver lesion extrac-

tion from a CT volume. Workshop on 3D segmentation in the clinic: a grand
challenge II, MICCAI . 

meets, D. , Stijnen, B. , Loeckx, D. , De Dobbelaer, B. , Suetens, P. , 2008. Segmentation
of liver metastases using a level set method with spiral-scanning technique and

supervised fuzzy pixel classification. MICCAI Workshop on 3-D Segmentation in

the Clinic: A Grand Challenge II . 
meets, D. , Loeckx, D. , Stijnen, B. , De Dobbelaer, B. , Vandermeulen, D. , Suetens, P. ,

2010. Semi-automatic level set segmentation of liver tumors combining a spiral
scanning technique with supervised fuzzy pixel classification. Med. Image Anal.

14, 13–20 . 
an, Y. , Schwartz, L.H. , Zhao, B. , 2013. Segmentation of lung lesions on CT scans

using watershed, active contours, and Markov random field. Med Phys. 40 (4),

043502 . 
auber, C. , Batatia, H. , Ayache, A. , 2005. A general quasi-automatic initialization for

snakes: Application to ultrasound images. IEEE Int. Conf. Image Processing un-
published . 

sai, A. , Yezzi, A. , Wells, W. , Tempany, C. , Tucker, D. , Fan, A. , Grimson, E. , Willsky, A. ,
2003. A shape based approach to curve evolution for segmentation of medical

imagery. IEEE Trans. Med. Imaging 22 (2), 137–154 . 

sai, A. , Yezzi, A. , Willsky, A.S. , 2001. Curve evolution implementation of the Mum-
ford–Shah functional for image segmentation, denoising, interpolation, and

magnification. IEEE Trans. Image Process 10, 1169–1186 . 
ang, L. , Macione, J. , Sun, Q. , Xia, D. , Li, C. , 2009. Level set segmentation based on

local Gaussian distribution fitting. In: Asian Conf. Comput. Vision, pp. 293–302 . 
ang, X. , Georganas, N.D. , 2009. GLCM texture based fractal model for evaluating

fabric surface roughness. In: Proceedings of the Canadian Conf. El Comp En,
pp. 104–107 . 

u, D. , Liu, D. , Suehling, M. , Tietjen, C. , Soza, G. , Zhou, K.S. , 2012. Automatic de-

tection of liver lesion from 3d computed tomography images. In: IEEE CVPR
Workshops, pp. 31–37 . 

an, J. , Schwartz, L.H. , Zhao, B. , 2015. Semiautomatic segmentation of liver metas-
tases on volumetric CT images. Med. Phys. 42, 6283–6293 . 

ang, Q. , Boukerroui, D. , 2011. Optimal spatial adaptation for local region-based ac-
tive contours: An intersection of confidence intervals approach. In: IMAGAPP,

pp. 87–93 . 

ezzi, J.A. , Tsai, A. , Willsky, A. , 2002. A fully global approach to image segmentation
via coupled curve evolution equations. J. Vis. Comm. Image Rep. 13 (1), 195–216 .

im P., J. , Foran, D.J. , 2003. Volumetry of hepatic metastases in computed tomogra-
phy using the watershed and active contour algorithms. In: Proceedings of the

16th IEEE Symposium on Computer-Based Medical Systems . 
hang, K. , Song, H. , Zhang, L. , 2010. Active contours driven by local image fitting

energy. Pattern Recognit. 43 (4), 1199–1206 . 

heng, Q. , Lu, Z. , Yang, W. , Zhang, M. , Feng, Q. , Chen, W. , 2013. A robust medical im-
age segmentation model using KL distance and local neighborhood information.

Comput. Biol. Med. 43 (5), 459–470 . 
uiderveld, K. , 1994. Contrast Limited Adaptive Histogram Equalization. Graphics

Gems IV:. Academic Press Professional, pp. 474–485 . 

http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0010
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0010
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0012a
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0012a
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0012a
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0012a
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0012a
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0012b
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0012b
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0012b
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0012b
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0012b
http://grand-challenge2008.bigr.nl/proceedings/pdfs/lts08/00_Editorial.pdf
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0014
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0014
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0014
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0015
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0015
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0015
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0016
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0016
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0016
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0016
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0016
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0018
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0018
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0018
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0019
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0019
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0019
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0019
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0021
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0021
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0021
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0022
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0022
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0022
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0023
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0023
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0023
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0023
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0024
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0024
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0024
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0024
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0024
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0026
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0026
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0026
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0026
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0026
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0026
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0026
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0029
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0029
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0029
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0029
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0032
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0032
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0032
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0032
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0032
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0033
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0033
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0033
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0033
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0033
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0033
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0033
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0034
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0034
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0034
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0034
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0034
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0034
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0034
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0034
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0035
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0035
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0035
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0035
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0036
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0036
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0036
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0036
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0036
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0037
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0037
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0037
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0037
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0037
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0037
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0039
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0039
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0039
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0040
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0040
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0040
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0040
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0041
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0041
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0041
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0042
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0042
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0042
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0042
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0042
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0042
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0043
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0043
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0043
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0043
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0044
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0044
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0044
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0045
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0045
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0046
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0046
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0046
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0046
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0047
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0047
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0047
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0047
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0047
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0047
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0047
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0048
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0048
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0048
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0048
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0048
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0048
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0049
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0049
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0049
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0049
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0049
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0049
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0049
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0050
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0050
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0050
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0050
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0051
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0051
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0051
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0051
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0052
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0052
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0052
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0052
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0052
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0052
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0052
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0052
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0052
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0053
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0053
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0053
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0053
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0054
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0054
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0054
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0054
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0054
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0054
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0055
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0055
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0055
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0057
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0057
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0057
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0057
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0058
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0058
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0058
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0059
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0059
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0059
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0059
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0060
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0060
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0060
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0061
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0061
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0061
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0061
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0062
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0062
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0062
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0062
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0062
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0062
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0062
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0063
http://refhub.elsevier.com/S1361-8415(17)30010-5/sbref0063

	Adaptive local window for level set segmentation of CT and MRI liver lesions
	1 Introduction
	2 Energy models
	2.1 Piecewise constant (PC) model
	2.2 Mean separation (MS) model
	2.3 Histogram separation (HS) model

	3 The proposed method
	3.1 Adaptive local window (ALW)
	3.2 Model design and testing
	3.3 Method optimization

	4 Implementation details
	4.1 Image preprocessing
	4.2 Lesion detection and distance map reconstruction
	4.3 Narrow-band

	5 Experimental details
	6 Results
	6.1 Segmentation performance
	6.2 Process convergence
	6.3 Comparison with global energy
	6.4 Comparison with fixed square local window
	6.5 Comparison with region-scalable fitting (RSF) model
	6.6 Sensitivity to parameters
	6.7 Sensitivity to initialization
	6.8 Computational time

	7 Discussion and conclusions
	 Acknowledgments
	 References


